Skip to main content
Log in

Complexation and detoxification of Zn and Cd in metal accumulating plants

  • Reviews
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Metal accumulating plants exposed to toxic levels of zinc (Zn) and cadmium (Cd) uptake metals through extracellular and intracellular complexation with inorganic and organic ligand formation. However, little is known about the nature and formation mechanism of these metal–ligand complexes. Though, Zn and Cd have many similar chemical properties, yet their complexation and compartmentalization in plants vary with plant species. In principal, the question arises what factors govern Zn and Cd partitioning in plants? What form of the metal is taken up by the root, and is further distributed and accumulated in both vegetative and reproductive tissues? Therefore, the aim of present study is to address several questions concerning the mechanisms of Zn and Cd coordination and compartmentalization in plants using X-ray absorption spectroscopy (XAS) technique. XAS allows direct determination of elemental oxidation states and coordination environments in different plant tissues. This review article briefly explains some other important techniques of XAS; EXAFS (extended X-ray absorption fine structure) and XANES (X-ray absorption near edge structure), which are employed for determining Zn and Cd complexation within the plant. Therefore, In present review, the predominant as well as the minor chemical forms of Zn and Cd present in particular plant tissue have been discussed which could give better insight towards metal accumulation and detoxification mechanisms operated in plants. This information could assist in employing suitable hyperaccumulator plants for metal phytoextraction and reclamation of metal contaminated sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adriano D (2001) Cadmium. In: Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals, 2nd edn. Springer, New York, pp 264–314

  • Aldrich MV, Gardea-Torresdey JL, Peralta-Videa JR, Parsons JG (2003) Uptake and Reduction of Cr(VI) to Cr(III) by Mesquite (Prosopis spp.): chromate-plant interaction in hydroponics and solid media studied using XAS. Environ Sci Technol 37:1859–1864

    Article  CAS  Google Scholar 

  • Auda MA, Ali EES (2010) Cadmium and zinc toxicity effects on growth and mineral nutrients of carrot (daucus carota). Pak J Bot 42:341–351

    Google Scholar 

  • Bhatia NP, Orlic I, Siegele R, Ashwath N, Baker AJM, Walsh KB (2003) Elemental mapping using PIXE shows the main pathway of nickel movement is principally symplastic within the fruit of the hyperaccumulator Stackhousia tryonii. New Phytol 160:479–488

    Article  CAS  Google Scholar 

  • Bittsanszky A, Komives T, Gullner G, Gyulai G, Kiss J, Heszky L, Radimszky L, Rennenberg H (2005) Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress. Environ Int 31:251–254

    Article  CAS  Google Scholar 

  • Bourgis F, Roje S, Nuccio ML, Fisher DB, Tarczynski MC, Li C, Herschbach C, Rennenberg H, Pimenta MJ, Shen TL (1999) S-methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11:1485–1498

    Article  CAS  Google Scholar 

  • Bracey MH, Christiansen J, Tovar P, Cramer SP, Bartlett SG (1994) Spinach carbonic anhydrase: investigation of the zinc-binding ligands by site-directed mutagenesis, elemental analysis, and EXAFS. Biochemistry 33:13126–13131

    Article  CAS  Google Scholar 

  • Brandle JE, Labbe H, Hattori J, Miki BL (1993) Field performance and heavy metal concentrations of transgenic flue-cured tobacco expressing a mammalian metallothionein-b-glucuronidase gene fusion. Genome 36:255–260

    Article  CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  Google Scholar 

  • Castiglione S, Franchin C, Fossati T, Lingua G, Torrigiani P, Biondi S (2007) High zinc concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar (Populus alba cv. Villafranca). Chemos 67:1117–1126

    Article  CAS  Google Scholar 

  • Chaney RL (1993) Zinc phytotoxicity. In: Robson AD (ed) Zinc in soil and plants. Kluwer, Dordrecht, pp 135–150

    Chapter  Google Scholar 

  • Choi Y, Harada E, Wada M, Tsuboi H, Morita Y, Kusano SHT (2001) Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213:45–50

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy metal detoxification. Curr Opin Plant Biol 3:211–216

    CAS  Google Scholar 

  • Cobbett CS, Goldsbrough PB (2002) Mechanisms of metal resistance: phytochelatins and metallothioneins. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, London, pp 247–269

    Google Scholar 

  • Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2004) Distribution of cadmium in leaves of Thlaspi caerulescens. J Exp Bot 56:765–775

    Google Scholar 

  • Czuba M, Kraszewski A (1994) Long-term cadmium accelerates oxidant injury: significant of bound/free water status during long-term metal stress. Ecotoxicol Environ Saf 29:330–348

    Article  CAS  Google Scholar 

  • De la Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL (2004) Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemos 55:1159–1168

    Article  Google Scholar 

  • Deef HES (2008) Effect of cadmium and zinc on growth parameters of tomato seedlings. Acad J Plant Sci 1:5–11

    Google Scholar 

  • Di Baccio D, Tognetti R, Sebastiani L, Vitagliano C (2003) Responses of Populus deltoids X Populus nigra (Populus X euramericana) clone I-214 to high zinc concentrations. New Phytol 159:443–451

    Article  CAS  Google Scholar 

  • Di Baccio D, Kopriva S, Sebastiani L, Rennenberg H (2005) Does glutathione metabolism have a role in the defence of poplar against zinc excess? New Phytol 167:73–80

    Article  CAS  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    Article  CAS  Google Scholar 

  • Ernst WHO, Nelissen HJM, Ten Bookum WM (2000) Combination toxicology of metal-enriched soils: physiological responses of Zn- and Cd-resistant ecotype of Silene vulgaris on polymetallic soils. Environ Exp Bot 43:55–71

    Article  CAS  Google Scholar 

  • Fan TW, Lane AN, Higashi RM (2004) An electrophoretic profiling method for thiol-rich phytochelatins and metallothioneins. Phytochem Anal 15:175–183

    Article  CAS  Google Scholar 

  • Ferrol N, González-Guerrero M, Valderas A, Benabdellah K, Azcón-Aguilar C (2009) Survival strategies of arbuscular mycorrhizal fungi in Cu-polluted environments. Phytochem Rev 8:551–559

    Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Min Proc Environ Prot 3:58–66

    Google Scholar 

  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Peralta-Vide JR, de la Rosa G, Parsons JG (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem Rev 249:1797–1810

    Article  CAS  Google Scholar 

  • Gupta DK, Rai UN, Singh A, Inouhe M (2003) Cadmium accumulation and toxicity in Cicer aerietinium L. Poll Res 22:457–463

    CAS  Google Scholar 

  • Gzyl J, Gwozdz EA (2005) Selection in vitro and accumulation of phytochelatins in cadmium tolerant cell lines of cucumber (Cucumis sativus). Plant Cell Tissue Organ Cult 80:59–67

    Article  CAS  Google Scholar 

  • Halim M, Conte P, Piccolo A (2003) Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemos 52:265–275

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Kramer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    Article  CAS  Google Scholar 

  • Harada E, Yamaguchi Y, Koizumi N, Hiroshi S (2002) Cadmium stress induces production of thiols compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis. J Plant Physiol 159:445–448

    Google Scholar 

  • Hernandez LE, Carpena-Ruiz R, G′arate A (1996) Alterations in the mineral nutrition of pea seedlings exposed to cadmium. J. Plant Nutr 19:1581–1598

    Article  CAS  Google Scholar 

  • Isaure MP, Fayard B, Sarret G, Pairis S, Bourguignon J (2006) Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochimica Acta B 61:1242–1252

    Article  Google Scholar 

  • Kabata-Pendias A, Pendias H (1989) Trace elements in the soil and plants. CRC Press, Florida

    Google Scholar 

  • Kachenko AG, Bhatia NP, Siegele R, Walsh KB, Singh B (2009) Nickel, Zn and Cd localisation in seeds of metal hyperaccumulators using μ-PIXE spectroscopy. Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms 267:2176–2180

    Article  CAS  Google Scholar 

  • Koningsberger DC, Prins R (1988) X-ray absorption: principles, applications, techniques of EXAFS SEXAFS, and XANES. In: Koningsberger DC, Prins R (eds) Chemical analysis 92. Wiley, New York, p 673

    Google Scholar 

  • Koprivova A, Kopriva S, Jager D, Will B, Jouanin L, Rennenberg H (2002) Evaluation of transgenic poplars over-expressing enzymes of glutathione synthesis for phytoremediation of cadmium. Plant Biol 4:664–670

    Article  CAS  Google Scholar 

  • Kramer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thalaspi species. Plant Physiol 122:1343–1353

    Article  CAS  Google Scholar 

  • Kupper H, Zhao FJ, McGrath SP (1999) Cellular compartmentation of zinc in leaves of hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–311

    Article  CAS  Google Scholar 

  • Kupper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Article  CAS  Google Scholar 

  • Kupper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PHM (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757

    Article  Google Scholar 

  • Fukuda N, Hokura A, Kitajima N, Terada Y, Saito H, Abed T, Nakai A (2008) Micro X-ray fluorescence imaging and micro X-ray absorption spectroscopy of cadmium hyper-accumulating plant, Arabidopsis halleri ssp. gemmifera, using high-energy synchrotron radiation. J Anal Atom Spec 23:1068–1075

    Article  CAS  Google Scholar 

  • Lagriffoul A, Mocquot B, Mench M, Vangronsveld J (1998) Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil 200:241–250

    Google Scholar 

  • Lasat MM, Baker AJM, Kochian LV (1998) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol 118:875–883

    Article  CAS  Google Scholar 

  • Lehoczky E, Marth P, Szabados I, Palkovics M, Luka′cs P (2000) Influence of soil factors on the accumulation of cadmium by lettuce. Commun Soil Sci Plant Anal 31:2425–2431

    Article  CAS  Google Scholar 

  • Lei B, Li-Chan ECY, Oomah BD, Mazza G (2003) Distribution of cadmium-binding components in flax (Linum usitatissimum L.) seed. J Agric Food Chem 51:814–821

    Article  CAS  Google Scholar 

  • Leyval C, Turnau K, Wandter H (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Lyons TJ, Gasch A, Gaither LA, Botstein D, Brown PO, Eide D (2000) Genome-wide characterization of the Zap1p zinc- responsive regulon in yeast. Proc Natl Acad Sci USA 97:7957–7962

    Article  CAS  Google Scholar 

  • Ma JF, Ueno D, Zhao FJ, McGrath SP (2005) Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220:731–736

    Article  CAS  Google Scholar 

  • Ma Y, Dickinson NM, Wong MH (2006) Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous shrubs on Pb/Zn mine tailings. Soil Biol Biochem 38:1403–1412

    Article  CAS  Google Scholar 

  • MacDiarmid CW, Gaithe LA, Eide D (2000) Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae. EMBO J 19:2845–2855

    Article  CAS  Google Scholar 

  • Maitani T, Kubota H, Sato K, Yamada T (1996) The composition of metals bound to class III metallothionein (phytochelatins and its desglycyl peptide) induced by various metals in root cultures off Rubia tinctorium. Plant Physiol 110:1145–1150

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, p 889

    Google Scholar 

  • Mendez MO, Glenn EP, Maier RM (2007) Phytostabilization potential of quailbush for mine tailings: growth, metal accumulation and microbial community changes. J Environ Qual 36:245–253

    Article  CAS  Google Scholar 

  • Mendoza-Cozatl DG, Butko E, Springer F, Tropey JW, Komives EA, Kehr J, Schroeder JI (2008) Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role of thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J 54:249–259

    Article  CAS  Google Scholar 

  • Mesjazs-Przybyłowicz J, Grodzińska K, Przybyłowicz WJ, Godzik B, Szarek-Łukaszewska G (2001) Nuclear microprobe studies of elemental distribution in seeds of Biscutella laevigata L. from zinc wastes in Olkusz, Poland. Nucl Instrum Methods Phys Res B Beam Interact Mater Atoms 181:634–639

    Article  Google Scholar 

  • Molina AS, Nievas C, Chaca MVP, Garibotto F, Gonza′lez U, Marsa SM, Luna C, Gime′nez MS, Zirulnik F (2008) Cadmium-induced oxidative damage and antioxidative defense mechanisms in Vigna mungo L. Plant Growth Regul 56:285–295

    Article  CAS  Google Scholar 

  • Pal M, Horváth E, Janda T, Páldi E, Szalai G (2006) Physiological changes and defense mechanisms induced by cadmium stress in maize. J Plant Nutr Soil Sci 169:239–246

    Article  CAS  Google Scholar 

  • Palmgren M, Clemens S, Williams L, Krämer U, Borg S, Schjørring J, Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends in Plant Sci 13:464–473

    Article  CAS  Google Scholar 

  • Parsons JG, Aldrich MV, Gardea-Torresdey JL (2002) Environmental and biological applications of extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies. Appl Spectrosc Rev 37:187–222

    Article  CAS  Google Scholar 

  • Pavlikova D, Pavlik M, Vaščikova S, Szákova J, Tlustoš P, Vokač K, Balik J (2004) Speciation analysis and environment separation of organic compounds binding trace elements in seeds of Leuzea carthamoides (Wild.) DC. Appl Organomet Chem 18:619–625

    Article  CAS  Google Scholar 

  • Penner-Hahn JE (2004) X-ray absorption spectroscopy. Compr Coord Chem II 2:159–186

    Google Scholar 

  • Pickering IJ, Wright C, Bubner B, Ellis D, Persans MW, Yu EY, George GN, Prince RC, Salt DE (2003) Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus. Plant Physiol 131:1460–1467

    Article  CAS  Google Scholar 

  • Pocsi I, Prade RA, Penninckx MJ (2004) Glutathione, altruistic metabolite in fungi. Adv Microbiol Physiol 49:1–76

    Google Scholar 

  • Ramos J, Clemente MR, Naya L, Loscos J, Pérez-Rontome C, Sato S, Tabata S, Becana M (2007) Phytochelatin synthases of the model legume lotus japonicus. A small multigene family with differential response to cadmium and alternatively spliced variants. Plant Physiol 143:1110–1118

    Article  CAS  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides: structure, biosynthesis, and function. Plant Physiol 109:1141–1149

    Article  CAS  Google Scholar 

  • Reese RN, White CA, Winge DR (1992) Cadmium-sulfide crystallites in Cd-(γEC)nG peptide complexes from tomato. Plant Physiol 98:225–229

    Google Scholar 

  • Richau K, Kozhevnikova A, Seregin I, Vooijs R, Koevoets PLM, Smith A, Ivanov V, Schat H (2009) Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens. New Phytol 183:106–116

    Article  CAS  Google Scholar 

  • Rout GR, Das P (2003) Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie 23:3–11

    Article  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    CAS  Google Scholar 

  • Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ (1999) Zinc ligands in the metal hyperaccumulator Thlaspi caerulescens as determined using x-ray absorption spectroscopy. Environ Sci Technol 33:713–717

    Article  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    CAS  Google Scholar 

  • Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Sarret G, Laprade PS, Bert V, Proux O, Hazemann JL, Traverse A, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130:1815–1826

    Article  CAS  Google Scholar 

  • Sarret G, Harada E, Choi Y, Isaure MP, Geoffroy N, Fakra S, Marcus MA, Birschwilks M, Clemens S, Manceau A (2006) Trichomes of tobacco excrete zinc as zinc-substituted calcium carbonate and other zinc-containing compounds. Plant Physiol 141:1021–1034

    Article  CAS  Google Scholar 

  • Sarret G, Willems G, Isaure MP, Marcus MA, Fakra SC, Frerot H, Pairis S, Geoffroy N, Manceau A, Saumitou-Laprade P (2009) Zinc distribution and speciation in Arabidopsis halleri X Arabidopsis lyrata progenies presenting various zinc accumulation capacities. New Phytol 84:581–595

    Article  Google Scholar 

  • Stacey SP, McLaughlin MJ, Cakmak I, Hetitiarachchi GM, Scheckel KG, Karkkainen M (2008) Root uptake of lipophilic zinc-rhamnolipid complexes. J Agric Food Chem 56:2112–2117

    Article  CAS  Google Scholar 

  • Straczek A, Sarret G, Manceau A, Hinsinger P, Geoffroy N, Jaillard B (2008) Zinc distribution and speciation in roots of various genotypes of tobacco exposed to Zn. Environ Exp Bot 63:80–90

    Article  CAS  Google Scholar 

  • Tauris B, Borg S, Gregersen PL, Holm PB (2009) A roadmap for zinc trafficking in the developing barley grain based on laser capturemicrodissection and gene expression profiling. J Exp Bot 60:1333–1347

    Article  CAS  Google Scholar 

  • Terzano R, Al Chami Z, Vekemans B, Janssens K, Miano T, Ruggiero P (2008) Zinc distribution and speciation within rocket plants (Eruca vesicaria L. Cavalieri) grown on a polluted soil amended with compost as determined by XRF microtomography and Micro-XANES. J Agric Food Chem 56:3222–3231

    Google Scholar 

  • Thangavel P, Long S, Minocha R (2007) Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress. Plant Cell Tiss Organ Cult 88:201–216

    Article  CAS  Google Scholar 

  • Ueno D, Ma JF, Iwashita T, Zhao FJ, McGrath SP (2005) Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using 113Cd-NMR. Planta 221:928–936

    Article  CAS  Google Scholar 

  • Vangronsveld J, Clijsters H (1994) Toxic effects of metals. In: Farago ME (ed) Plants and the chemical elements. Biochemistry, uptake, tolerance and toxicity. VCH Publishers, Weinheim, pp 150–177

    Google Scholar 

  • Vazquez MD, Poschenrieder C, Barcelo J, Baker AJM, Hatton P, Cope GH (1994) Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens J & C Prel. Bot Acta 107:243–250

    Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  Google Scholar 

  • Vogel-Mikus K, Pongrac P, Kump P, Nečemer M, Simčič J, Pelicon J, Budnar M, Povh B, Regvar M (2007) Localisation and quantification of elements within seeds of the Cd/Zn hyperaccumulator Thlaspi praecox by micro-PIXE. Environ Pollut 147:50–59

    Article  CAS  Google Scholar 

  • Vogel-Mikus K, Simčič J, Pelicon P, Budnar M, Kump P, Nečemer M, Mesjasz-Przybyłowicz J, Przybyłowicz WJ, Regvar M (2008) Comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Plant Cell Environ 31:1484–1496

    Article  CAS  Google Scholar 

  • Vogel-Mikus K, Arčon I, Kodre A (2010) Complexation of cadmium in seeds and vegetative tissues of the cadmium hyperaccumulator Thlaspi praecox as studied by X-ray absorption spectroscopy. Plant Soil 331:439–451

    Article  CAS  Google Scholar 

  • Webb SM, Gaillard JF, Ma LQ, Tu C (2003) XAS speciation of arsenic in a hyperaccumulatinf fern. Environ Sci Technol 37:754–760

    Article  CAS  Google Scholar 

  • Welch RM (1995) Micronutrient nutrition of plants. Crit Rev Plant Sci 14:49–82

    CAS  Google Scholar 

  • Wojcik M, Vangronsveld J, Tukiendorf DHJA (2005) Cadmium tolerance in Thlaspi caerulescens- II. Localization of cadmium in Thlaspi caerulescens. Environ Exp Bot 53:163–171

    CAS  Google Scholar 

  • Xing JP, Jiang RF, Ueno D, Ma JF, Schat H, McGrath SP, Zhao FJ (2008) Variation in root-to-shoot translocation of cadmium and zinc among different accessions of the hyperaccumulators Thlaspi caerulescens and Thlaspi praecox. New Phytol 178:315–325

    Article  CAS  Google Scholar 

  • Xiong YH, Yang XE, Ye ZQ, He ZL (2004) Characteristics of cadmium uptake and accumulation by two contrasting ecotypes of Sedum alfredii. J Environ Sci Health 39:2925–2940

    Google Scholar 

  • Yang XE, Yang MJ (2001) Some mechanisms of zinc and cadmium detoxification in a zinc and cadmium hyperaccumulating plant species (Thlaspi). In: Horst WJ (ed) Plant nutrition-food security and sustainability of agro-ecosystems. Kluwer, Dordrecht, pp 444–445

    Google Scholar 

  • Zhao FJ, Lombi E, Breedon T, McGrath SP (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ 23:507–514

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the concept and literature provided on the theme by various workers and two anonymous reviewers for critically going through and providing valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta Saraswat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saraswat, S., Rai, J.P.N. Complexation and detoxification of Zn and Cd in metal accumulating plants. Rev Environ Sci Biotechnol 10, 327–339 (2011). https://doi.org/10.1007/s11157-011-9250-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-011-9250-y

Keywords

Navigation