Reduction of azo dyes by anaerobic bacteria: microbiological and biochemical aspects

  • Francisco J. CervantesEmail author
  • André B. Dos Santos


Azo dyes are recalcitrant pollutants commonly found in several industrial wastewaters, such as those originated from textile factories, which generally persist to biological transformation. Discharge of these effluents in open water bodies not only represents an aesthetic problem, but also may limit photosynthesis in aquatic plants. Furthermore, many azo dyes and products derived from their partial transformation in the environment (e.g. aromatic amines) may be toxic or carcinogenic. Biological wastewater treatment processes have emerged as promising technologies to remove azo dyes from industrial effluents and intensive research has been conducted during the last two decades in order to elucidate the mechanisms involved in the reductive decolourisation of azo dyes. The present work describes the main biochemical and microbiological aspects involved in the reductive decolourisation of azo dyes by anaerobic bacteria.


Anaerobic decolourisation Bacterial consortia Biological wastewater treatment Textile industry 


  1. Albuquerque MGE, Lopes AT, Serralheiro ML, Novais JM, Pinheiro HM (2005) Biological sulphate reduction and redox mediator effects on azo dye decolourisation in anaerobic-aerobic sequencing batch reactors. Enzyme Microb Tech 36:790–799CrossRefGoogle Scholar
  2. Anliker R (1979) Ecotoxicology of dyestuffs–a joint effort by industry. Ecotoxicol Environ Saf 3:59–74CrossRefGoogle Scholar
  3. Anliker R, Moser P (1987) The limits of bioaccumulation of organic pigments in fish: their relation to the partition coefficient and the solubility in water octanol. Ecotoxicol Environ Saf 13:43–52CrossRefGoogle Scholar
  4. Anliker R, Clarke EA, Moser P (1981) Use of the partition coefficient as an indicator of bioaccumulation tendency of dyestuffs in fish. Chemosphere 10:263–274CrossRefGoogle Scholar
  5. Anliker R, Moser P, Poppinger D (1988) Bioaccumulation of dyestuffs and organic pigments in fish. Relationships to hydrophobicity and steric factors. Chemosphere 17:1631–1644CrossRefGoogle Scholar
  6. Bragger JL, Lloyd AW, Soozandehfar SH, Bloomfield SF, Marriott C, Martin GP (1997) Investigations into the azo reducing activity of a common colonic microorganism. Int J Pharm 157:61–71CrossRefGoogle Scholar
  7. Broadbent AD (2001) Basic principles of textile coloration. Society of Dyers and Colourists, Bradford, p 579Google Scholar
  8. Brohm K, Frohwein E (1937) Nachweis von durch Säuerung entfärbten künstlichen Eigelbfabstoffen in Milchspeiseeis. Zbl Lebensmitt Forsch 73:30Google Scholar
  9. Cervantes FJ, Van der Zee FP, Lettinga G, Field JA (2001) Enhanced decolourisation of acid orange 7 in a continuous UASB reactor with quinones as redox mediators. Water Sci Technol 44(4):123–128Google Scholar
  10. Cervantes FJ, Enríquez JE, Mendoza-Hernández MR, Razo-Flores E, Field JA (2006) The role of sulphate reduction on the reductive decolorization of the azo dye reactive orange 14. Water Sci Technol 54(2):171–177CrossRefGoogle Scholar
  11. Cervantes FJ, Enríquez JE, Galindo-Petatán E, Arvayo H, Razo-Flores E, Field JA (2007) Biogenic sulphide plays a major role on the riboflavin-mediated decolourisation of azo dyes under sulphate reducing conditions. Chemosphere 68:1082–1089CrossRefGoogle Scholar
  12. Cervantes FJ, López-Vizcarra MI, Siqueiros E, Razo-Flores E (2008) Riboflavin prevents inhibitory effects during the reductive decolorization of reactive Orange 14 by methanogenic sludge. J Chem Technol Biotechnol 83:1703–1709CrossRefGoogle Scholar
  13. Chen H, Wang RF, Cerniglia CE (2004) Molecular cloning, overexpression, purification, and characterization of an aerobic FMN-dependent azoreductase from Enterococcus faecalis. Protein Expres Purif 34:302–310CrossRefGoogle Scholar
  14. Chen X, Xu M, Wei J, Sun G (2010) Two different electron transfer pathways may involve in azoreduction in Shewanella decolorationis S12. Appl Microbiol Biotechnol 86:743–751CrossRefGoogle Scholar
  15. Chung KT, Fulk GE, Egan M (1978) Reduction of azo dyes by intestinal anaerobes. Appl Environ Microbiol 35:558–562Google Scholar
  16. Clarke AE, Anliker R (1980) Organic dyes and pigments. In: Hutzinger (ed) The handbook of environmental chemistry. Springer, BerlinGoogle Scholar
  17. Dos Santos AB, Bisschops IAE, Cervantes FJ, Van Lier JB (2004) Effect of different redox mediators during thermophilic azo dye reduction by anaerobic granular sludge and comparative study between mesophilic (30°C) and thermophilic (55°C) treatments for decolourisation of textile wastewaters. Chemosphere 55:1149–1157CrossRefGoogle Scholar
  18. Dos Santos AB, de Madrid MP, Stams AJM, Van Lier JB, Cervantes FJ (2005a) Azo dye reduction by mesophilic and thermophilic anaerobic consortia. Biotechnol Progress 21:1140–1145CrossRefGoogle Scholar
  19. Dos Santos AB, Traverse J, Cervantes FJ, Van Lier JB (2005b) Enhancing the electron transfer capacity and subsequent color removal in bioreactors by applying thermophilic anaerobic treatment and redox mediators. Biotechnol Bioeng 89:42–52CrossRefGoogle Scholar
  20. Dos Santos AB, Bisschops IAE, Cervantes FJ (2006a) Closing process water cycles and product recovery in textile industry: perspective for biological treatment. In: Cervantes FJ, Pavlostathis SG, van Haandel AC (eds) Advanced biological treatment processes for industrial wastewaters: principles & applications. IWA Publishing, London., pp 298–320Google Scholar
  21. Dos Santos AB, de Madrid MP, de Bok FAM, Stams AJM, Van Lier JB, Cervantes FJ (2006b) The contribution of fermentative bacteria and methanogenic archaea to azo dye reduction by a thermophilic anaerobic consortium. Enz Microbial Technol 39:38–46CrossRefGoogle Scholar
  22. Dos Santos AB, Cervantes FJ, Van Lier JB (2007) Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour Technol 98:2369–2385CrossRefGoogle Scholar
  23. Dyes and Pigments (2010). Available at the site:
  24. Franciscon E, Zille A, Fantinatti-Garboggini F, Silva IS, Cavaco-Paulo A, Durrant LR (2009a) Microaerophilic–aerobic sequential decolourization/biodegradation of textile azo dyes by a facultative Klebsiella sp. strain VN-31. Process Biochem 44:446–452CrossRefGoogle Scholar
  25. Franciscon E, Zille A, Guimaro FD, de Menezes CR, Durrant LR, Cavaco-Paulo A (2009b) Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. Int Biodeter Biodegr 63:280–288CrossRefGoogle Scholar
  26. Gnanapragasam G, Senthikumar M, Arutchelvan V, Sivarajan P, Nagarajan S (2010) Recycle in upflow anaerobic sludge blanket reactor on treatment of real textile dye effluent. World J Microb Biot 26:1093–1098CrossRefGoogle Scholar
  27. Greene JC, Baughman GI (1996) Effects of 46 dyes on population growth of freshwater green alga Selenastrum capricornutum. Text Chem Color 28:23–30Google Scholar
  28. Hao OJ, Kim H, Chiang PC (2000) Decolorization of wastewater. Crit Rev Env Sci Tec 30:449–505CrossRefGoogle Scholar
  29. Hong Y, Xu M, Guo J, Xu Z, Chen X, Sun G (2007) Respiration and growth of Shewanella decolorationis S12 with an Azo compound as the sole electron acceptor. Appl Environ Microbiol 73:64–72CrossRefGoogle Scholar
  30. Isik M, Sponza DT (2008) Anaerobic/aerobic treatment of a simulated textile wastewater. Sep Purif Technol 60:64–72CrossRefGoogle Scholar
  31. Işik M, Sponza DT (2003) Effect of oxygen on decolorization of azo dyes by Escherichia coli and Pseudomonas sp. and fate of aromatic amines. Process Biochem 38:1183–1192CrossRefGoogle Scholar
  32. Jianrong Z, Yanru Y, Huren A, Yi (1994) A study of dyewaste treatment using anaerobic-aerobic process. In: Proceedings of the seventh international symposium on anaerobic digestion, Cape Town, South Africa, pp 360–363Google Scholar
  33. Kalyani DC, Patil PS, Jadhav JP, Govindwar SP (2008) Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresour Technol 99:4635–4641CrossRefGoogle Scholar
  34. Kuai L, De Vreese I, Vandevivere P, Verstraete W (1998) GAC-amended UASB reactor for the stable treatment of toxic textile wastewater. Environ Technol 19:1111–1117CrossRefGoogle Scholar
  35. Kudlich M, Keck A, Klein J, Stolz A (1997) Localization of the enzyme system involves in anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction. Appl Environ Microbiol 63:3691–3694Google Scholar
  36. Li XH, Telser J, Kunz RC, Hoffman BM, Herfen G, Ragsdale SW (2010) Observation of organometallic and radical intermediates formed during the reaction of Methyl-Coenzyme M reductase with Bromoethanesulfonate. Biochemistry 49:6866–6876CrossRefGoogle Scholar
  37. Little LW, Chillingworth MA (1974) In: ADM Institute (ed) Reports on selected dyes and their effect. American Dye manufacturers Institute, New YorkGoogle Scholar
  38. O′Neill C, Hawkes FR, Hawkes DL, Lourenço ND, Pinheiro HM, Deleé W (1999) Colour in textile effluents –sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol 74:1009–1018Google Scholar
  39. Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeter Biodegr 59:73–84CrossRefGoogle Scholar
  40. Rau J, Stolz A (2003) Oxygen-sensitive nitroreductases NfsA and NsfB of Escherichia coli function under anaerobic conditions as lawsone-dependent azo reductases. Appl Environ Microbiol 69:3448–3455CrossRefGoogle Scholar
  41. Rau J, Knackmuss HJ, Stolz A (2002) Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environ Sci Technol 36:1497–1504CrossRefGoogle Scholar
  42. Russ R, Rau J, Stolz A (2000) The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria. Appl Environ Microbiol 66:1429–1434CrossRefGoogle Scholar
  43. Seesuriyachan P, Takenaka S, Kuntiya A, Klayraung S, Murakami S, Aoki K (2007) Metabolism of azo dyes by Lactobacillus casei TISTR 1500 and effects of various factors on decolorization. Water Res 41:985–992CrossRefGoogle Scholar
  44. Semdé R, Pierre D, Geuskens G, Devleeschouwer M, Moes AJ (1998) Study of some important factors involved in azo derivative reduction by Clostridium perfringens. Int J Pharm 161:45–54CrossRefGoogle Scholar
  45. Specht K, Platzek T (1995) Textile dyes and finishes–remarks to toxicological and analytical aspects. Deut Lebensm Rundsch 91:352–359Google Scholar
  46. Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56:69–80CrossRefGoogle Scholar
  47. Telke AA, Kalyani DC, Dawkar VV, Govindwar SP (2009) Influence of organic and inorganic compounds on oxidoreductive decolorization of sulfonated azo dye C.I. reactive Orange 16. J Hazard Mater 172:298–309CrossRefGoogle Scholar
  48. Van der Zee FP (2002) Anaerobic azo dye reduction. PhD Thesis. Wageningen University, Wageningen, The NetherlandsGoogle Scholar
  49. Van der Zee FP, Villaverde S (2005) Combined anaerobic-aerobic treatment of azo dyes-A short review of bioreactor studies. Water Res 39:1425–1440CrossRefGoogle Scholar
  50. Van der Zee FP, Lettinga G, Field JA (2000) The role of (auto)catalysis in the mechanism of anaerobic azo reduction. Water Sci Technol 42:301–308Google Scholar
  51. Van der Zee FP, Bouwaman RHM, Strik DPBTB, Lettinga G, Field JA (2001) Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnol Bioeng 75:691–701CrossRefGoogle Scholar
  52. Van der Zee FP, Bisschops IAE, Blanchard VG, Bouwman RHM, Lettinga G, Field JA (2003) The contribution of biotic and abiotic processes during azo dye reduction in anaerobic sludge. Water Res 37:3098–3109CrossRefGoogle Scholar
  53. Wang H, Su JQ, Zheng XW, Tian Y, Xiong XJ, Zheng TL (2009) Bacterial decolorization and degradation of the reactive dye reactive Red 180 by Citrobacter sp. CK3. Int Biodeter Biodegr 63:395–399CrossRefGoogle Scholar
  54. Wang B, Xu M-Y, Sun G-P (2010) Extracellular respiration of different amounts azo dye by Shewanella decolorationis S12 and comparative analysis of the membrane proteome. Int Biodeter Biodegr 64:274–280CrossRefGoogle Scholar
  55. Yu J, Wang X, Yue PL (2001) Optimal decolorization and kinetic modeling of synthetic dyes by Pseudomonas strains. Water Res 35:3579–3586CrossRefGoogle Scholar
  56. Zhao L, Zhou J, Jia Y, Chen J (2010) Biodecolorization of acid Red GR by a newly isolated Dyella ginsengisoli LA-4 using response surface methodology. J Hazard Mater 181:602–608CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Francisco J. Cervantes
    • 1
    Email author
  • André B. Dos Santos
    • 2
  1. 1.División de Ciencias AmbientalesInstituto Potosino de Investigación Científica y Tecnológica (IPICyT)San Luis PotosíMexico
  2. 2.Departamento de Engenharia Hidráulica e AmbientalUniversidade Federal do CearáFortaleza, CearáBrazil

Personalised recommendations