Skip to main content

Advertisement

Log in

Amidases: versatile enzymes in nature

  • Reviews
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Amidases are ubiquitous enzymes and biological functions of these enzymes vary widely. In past five decades, they turned out to be an attractive tool in industries for the synthesis of wide variety of carboxylic acids, hydroxamic acids and hydrazide, which find applications in commodity chemicals synthesis, pharmaceuticals agrochemicals and waste water treatments etc. Their proteins structures revealed that aliphatic amidases share the typical α/β hydrolase fold (like nitrilase superfamily) and signature amidases are evolutionary related to aspartic proteinases. They hydrolyse wide variety of amides (short chain aliphatic amides, mid-chain amides, arylamides, α-aminoamides and α-hydroxyamides) and can be grouped on the basis of their catalytic site and preferred substrate. They resist denaturation at extreme of pH and temperature because of their strong and compact multimeric structures. Inhibition studies and three-dimensional analysis of the structures identified a Glu59, Lys134, Cys166 catalytic triad and follow “Bi-bi Ping-Pong” mechanism reaction for amide hydrolysis and acyl transferase reactions. Many recombinant amidases have been expressed in Escherichia coli as well as in Brevibacterium lactofermentum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambler RP, Auffret AD, Clarke PH (1987) The amino acid sequence of the aliphatic amidase from Pseudomonas aeruginosa. FEBS Lett 215:285–290

    CAS  Google Scholar 

  • Andrade J, Karmali A, Carrondo MA, Frazão C (2007) Structure of amidase from Pseudomonas aeruginosa showing a trapped acyl transfer reaction intermediate state. J Biol Chem 282:19598–19605

    CAS  Google Scholar 

  • Arnaud A, Galzy P, Jallageas J (1980) Production d’acides α-amines stereospecifiques par hydrolyse biolofique d’α-aminonitriles racemiques. Bull Soc Chim Fr 2:87–90

    Google Scholar 

  • Asano Y, Yamaguchi K (1995) Mutants of d-aminopeptidase with increased thermal stability. J Ferment Bioeng 79:614–616

    CAS  Google Scholar 

  • Asano Y, Yamaguchi S (2005) Dynamic kinetic resolution of amino acid amide catalyzed by d-aminopeptidase and α-Amino-ε-caprolactam racemase. J Am Chem Soc 127:7696–7697

    CAS  Google Scholar 

  • Asano Y, Yasuda T, Tani Y, Yamada H (1982) Microbial-degradation of nitrile compounds.7. A new enzymatic method of acrylamide production. Agric Biol Chem 46:1183–1189

    CAS  Google Scholar 

  • Asano Y, Mori T, Hanamoto S, Kato Y, Nakazawa A (1989) A new d-stereospecific amino acid amidase from Ochrobactrum anthropi. Biochem Biophys Res Commun 162:470–474

    CAS  Google Scholar 

  • Baek DH, Song JJ, Lee SG, Kwon SJ, Asano Y, Sung MH (2003) New thermostable d-methionine amidase from Brevibacillus borstelensis BCS-1 and its application for d-phenylalanine production. Enz Microb Technol 32:131–139

    CAS  Google Scholar 

  • Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44

    CAS  Google Scholar 

  • Bhalla TC, Kumar J, Kumar H, Agrawal HO (1997) Amidase production by Rhodococcus sp. NHB-2. NAS Lett 20:139–142

    CAS  Google Scholar 

  • Bianchi D, Bosetti A, Cesti P, Franzosi G, Spezia S (1991) Stereoselective microbial hydrolysis of 2-aryloxypropionitriles. Biotechnol Lett 13:241–244

    CAS  Google Scholar 

  • Bigey F, Chebrou H, Fournand D, Arnaud A (1999) Transcriptional analysis of the nitrile-degrading operon from Rhodococcus sp ACV2 and high level production of recombinant amidase with an Escherichia coli-T7 expression system. J Appl Microbiol 86:752–760

    CAS  Google Scholar 

  • Black TD, Briggs BS, Evans R, Muth WL, Vangala S, Zmijewski MJ (1996) O-Phthalyl amidase in the synthesis of loracarbef, process development using this novel biocatalyst. Biotechnol Lett 18:875–880

    CAS  Google Scholar 

  • Bork P, Koonin EV (1994) A new family of carbon–nitrogen hydrolases. Protein Sci 3:1344–1346

    CAS  Google Scholar 

  • Bovenberg RAL, Koekman BP, Schipper D, Vollebregt AWH (1996) Process for the production of 7-ADCA via expandase activity on penicillin G. WO 9638580

  • Brammer WJ, Clarke PH (1964) Induction and repression of Pseudomonas aeruginosa amidase. J Gen Microbiol 37:307–319

    Google Scholar 

  • Brennan MR, Armitage YC, Mortimer MG, Hughes J, Ramsden DK (1995) Amidase active whole cells of Corynebacterium nitrilophilus for ammonium acrylate production. Biotechnol Lett 17:513–518

    CAS  Google Scholar 

  • Briggs BS, Kreuzman AJ, Whitesitt C, Yeh WK, Zmijewski M (1996) Discovery, purification, and properties of o-phthalyl amidase from Xanthobacter agilis. J Mol Catal B: Enzymatic 2:53–69

    CAS  Google Scholar 

  • Brown JE, Brown PR, Clarke PH (1969) Butyramide-utilizing mutants of Pseudomonas aeruginosa 8602 which produce an amidase with altered substrate specificity. J Gen Microbiol 57:273–285

    CAS  Google Scholar 

  • Cai G, Zhu S, Wang X, Jiang W (2005) Cloning, sequence analysis and expression of the gene encoding a novel wide-spectrum amidase belonging to the amidase signature superfamily from Achromobacter xylosoxidans. FEMS Microbiol Lett 249:15–21

    CAS  Google Scholar 

  • Cameron RA, Sayed M, Cowan DA (2005) Molecular analysis of the nitrile catabolism operon of the thermophile Bacillus pallidus RAPc8. Biochim Biophys Acta 1725:35–46

    Google Scholar 

  • Chebrou H, Bigey F, Arnaud A, Galzy P (1996) Study of the amidase signature group. Biochim Biophys Acta 1298:285–293

    CAS  Google Scholar 

  • Cheong TK, Oriel PJ (2000) Cloning of a wide-spectrum amidase from Bacillus stearothermophilus BR388 in Escherichia coli and marked enhancement of amidase expression using directed evolution. Enzyme Microb Technol 26:152–158

    CAS  Google Scholar 

  • Cilia E, Fabbri A, Uriani M, Scialdone GG, Ammendola S (2005) The signature amidase from Sulfolobus solfataricus belongs to the CX3C subgroup of enzymes cleaving both amides and nitriles: Ser195 and Cys145 are predicted to be the active site nucleophiles. FEBS J 272:4716–4724

    CAS  Google Scholar 

  • Ciskanik LM, Wilczek JM, Fallon RD (1995) Purification and characterization of an enantioselective amidase from Pseudomonas chlororaphis B 23. Appl Environ Microbiol 61:998–1003

    CAS  Google Scholar 

  • Clarke PH (1970) The aliphatic amidases of Pseudomonas aeruginosa. Adv Microb Physiol 4:179–222

    CAS  Google Scholar 

  • Corrick CM, Twomey AP, Hynes MJ (1987) The nucleotide sequence of the amdS gene of Aspergillus nidulans and the molecular characterization of 5′ mutations. Gene 53:63–71

    CAS  Google Scholar 

  • Cowan D, Meyer Q, Stafford W, Muyanga S, Cameron R, Wittwer P (2005) Metagenomic gene discovery: past, present and future. Trends Biotechnol 23:321–332

    CAS  Google Scholar 

  • Cramp R, Gilmour M, Cowan DA (1997) Novel thermophilic bacteria producing nitrile degrading enzymes. Microbiology 143:2313–2320

    CAS  Google Scholar 

  • Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87

    CAS  Google Scholar 

  • Curnow AW, Hong K, Yuan R, Kim S, Martins O, Winkler W, Henkin TM, Soll D (1997) Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Proc Natl Acad Sci USA 94:11819–11826

    CAS  Google Scholar 

  • d’Abusco SA, Ammendola S, Scandurra R, Politi L (2001) Molecular and biochemical characterization of the recombinant amidase from hyperthermophilic archaeon Sulfolobus solfataricus. Extremophiles 5:183–192

    Google Scholar 

  • Delmarcelle M, Boursoit M-C, Filée P, Baurin SL, Frère J-M, Joris B (2005) Specificity inversion of Ochrobactrum anthropi d-aminopeptidase to a d, d-carboxypeptidase with new penicillin binding activity was by directed mutagenesis. Protein Sci 14:2296–2303

    CAS  Google Scholar 

  • Doran JP, Duggan P, Masterson M, Turner PD, O’Reilly C (2005) Expression and purification of a recombinant enantioselective amidase. Protein Express Puri 40:190–196

    CAS  Google Scholar 

  • Drew R, Lowe N (1989) Positive control of Pseudomonas aeruginosa amidases synthesis is mediated by a transcription anti-termination mechanism. J Gen Microbiol 135:817–823

    CAS  Google Scholar 

  • Duchateau ALL, Hillemans-Crombach MG, van Duijnhoven A, Reiss R, Sonke T (2004) A colorimetric method for determination of amino amidase activity. Anal Biochem 330:362–364

    CAS  Google Scholar 

  • Egorova K, Trauthwein H, Verseck S, Antranikian G (2004) Purification and properties of an enantioselective and thermoactive amidase from the thermophilic actinomycete Pseudonocardia thermophila. Appl Microbiol Biotechnol 65:38–45

    CAS  Google Scholar 

  • Farin F, Clarke PH (1978) Positive regulation of amidase synthesis in Pseudomonas aeruginosa. Bacteriol J 35:379–392

    Google Scholar 

  • Farnaud S, Tata R, Sohi MK, Wan T, Brown PR, Sutton BJ (1999) Evidence that cysteine-166 is the active-site nucleophile of Pseudomonas aeruginosa amidase: crystallization and preliminary X-ray diffraction analysis of the enzyme. Biochem J 340:711–714

    CAS  Google Scholar 

  • Fournand D, Arnaud A (2001) Aliphatic and enantioselective amidases: from hydrolysis to acyl transfer activity. J Appl Microbiol 91:381–393

    CAS  Google Scholar 

  • Fournand D, Bigey F, Arnaud A (1998) Acyl transfer activity of an amidase from Rhodococcus sp. strain R312: formation of a wide range of hydroxamic acids. Appl Environ Microbiol 64:2844–2852

    CAS  Google Scholar 

  • Gao WY, Mitsuya H, Driscoll JS, Johns DG (1995) Enhancement by hydroxyurea of the anti-human immunodeficiency virus type 1 potency of 2′-β-fluoro-2′, 3′- dideoxyadenosine in peripheral blood mononuclear cells. Biochem Pharma 50:274–276

    CAS  Google Scholar 

  • Gilligan T, Yamada H, Nagasawa T (1993) Production of S-(+)-2-phenylpropionic acid from (R, S)-2-phenylpropionitrile by the combination of nitrile hydratase and stereoselective amidase in Rhodococcus equi TG 328. Appl Microbiol Biotechnol 39:720–725

    CAS  Google Scholar 

  • Givovich A, Sandstrom J, Niemeyer HM, Pettersson J (1994) Presence of hydroxamic acid glycoside in wheat phloem sap, and its consequences for performance of Rhopalosiphum padi (L.) (Homoptera: Aphididae). J Chem Ecol 20:1923–1930

    CAS  Google Scholar 

  • Goodman M (1985) Peptide homologs, isosteres, and isomers: a general approach to structure–activity relationships. Biopolymers 24:137–155

    CAS  Google Scholar 

  • Gregoriou M, Brown PR (1980) Adaptation to phenylacetamide as a growth substrate by an acetanilide-utilizing mutant of Pseudomonas aeruginosa. Arch Microbiol 125:277–283

    CAS  Google Scholar 

  • Hamer RRL, Tegeler JJ, Kurtz ES, Allen RC, Bailey SC, Elliott ME, Hellyer L, Hessley GC, Przekop P, Freed BS, White J, Martin LL (1996) Dibenzoxepinone hydroxylamines and hydroxamic acids: dual inhibitors of cyclooxygenase and 5-lipoxygenase with potent topical antiinflammatory activity. J Med Chem 39:246–252

    CAS  Google Scholar 

  • Hayashi T, Yamamoto K, Matsuo A, Otsubo K, Muramatsu S, Matsuda A, Komatsu KI (1997) Characterization and cloning of an enantioselective amidase from Comamonas acidovorans KPO-2771-4. J Ferment Bioeng 83:139–145

    CAS  Google Scholar 

  • Heitner HI, Ryles RG (1992). European Patent 0514648 B1

  • Henke E, Bornscheuer UT (2003) Fluorophoric assay for the high throughput determination of amidase activity. Anal Chem 75:255–260

    CAS  Google Scholar 

  • Hermes HFM, Randler RF, Sonke T, Dijkhuizen L, Meijer EM (1994) Purification and characterization of an l-amino amidase from Mycobacterium neoaurum ATCC 25795. Appl Environ Microbiol 60:153–159

    CAS  Google Scholar 

  • Hirrlinger B, Stolz A, Knackmuss HJ (1996) Purification and properties of an amidase from Rhodococcus erythropolis MP50 which enantioselectively hydrolyzes 2- arylpropionamides. J Bacteriol 178:3501–3507

    CAS  Google Scholar 

  • Holmes LB (1996) Hydroxamic acid: a potential human teratogen that could be recommended to treat ureaplasma. Teratology 53:227–229

    CAS  Google Scholar 

  • Hongpattarakere T, Komeda H, Asano Y (2005) Purification, characterization, gene cloning and nucleotide sequencing of D: stereospecific amino acid amidase from soil bacterium: Delftia acidovorans [My paper]. J Ind Microbiol Biotechnol 32:567–576

    CAS  Google Scholar 

  • Jallageas JC, Arnaud A, Galzy P (1980) Bioconversion of nitriles and their applications. Adv Biochem Eng 14:1–32

    CAS  Google Scholar 

  • Joeres U, Kula MR (1994) Purification and characterization of a microbial l-carnitine amidase. Appl Microbiol Biotechnol 40:606–610

    CAS  Google Scholar 

  • Kagayama T, Ore T (1990) Purification and properties of an aromatic amidase from Pseudomonas sp. GDI 211. Agric Biol Chem 54:2565–2571

    CAS  Google Scholar 

  • Kamphuis J, Boesten WHJ, Kaptein B, Hermes HFM, Sonke T, Broxterman QB, Tweel WJJVD, Scoemaker HE (1992) The production and uses of optically pure natural and unnatural amino acids. In: Collin AN, Sheldrake GN, Crosby J (eds) Chirality in industry. Wiley, New York, p 187

    Google Scholar 

  • Karmali A, Tata R, Brown PR (2000) Substitution of Glu59Val in amidase from Pseudomonas aeruginosa results in a catalytically inactive enzyme. Mol Biotechnol 16:6–15

    Google Scholar 

  • Karmali A, Pacheco R, Tata R, Brown P (2001) Substitutions of Thr-103-Ile and Trp-138-Gly in amidase from Pseudomonas aeruginosa are responsible for altered kinetic properties and enzyme instability. Mol Biotechnol 17:201–212

    CAS  Google Scholar 

  • Karmali A, Serraleiro MLM, Haris PI (2005) Amidase encapsulated in TTAB reversed micelles for the study of transamidation reactions. Biocat Biotrans 23:407–414

    Google Scholar 

  • Kato Y, Asano Y, Nakazawa A, Kondo K (1989) First stereoselective synthesis of d-amino acid N-alkyl amide catalyzed by d-aminopeptidase. Tetrahedron 45:5743–5754

    CAS  Google Scholar 

  • Kelly M, Clarke PH (1962) An inducible amidase produced by a strain of Pseudomonas aeruginosa. J Gen Microbiol 27:305–316

    CAS  Google Scholar 

  • Kieny-L’Homme MP, Arnaud A, Galzy P (1981) Etude d’une l-aamino-amidase particulaire de Brevibacterium sp. en vue de l’obtention d’acides a-amines optiquement actifs. J Gen Appl Microbiol 27:307–325

    Google Scholar 

  • Kim SH, Oriel P (2000) Cloning and expression of the nitrile hydratase and amidase genes from Bacillus sp. BR449 into Escherichia coli. Enz Microb Technol 27:492–501

    CAS  Google Scholar 

  • Kimani SW, Agarkar VB, Cowan DA, Sayed MFR, Sewell BT (2007) Structure of an aliphatic amidase from Geobacillus pallidus RAPc8. Acta Crystallograph 63:1048–1058

    Google Scholar 

  • Kobayashi M, Komeda H, Nagasawa T, Yamada H, Shimizu S (1993) Occurrence of amidases in the industrial microbe Rhodococcus rhodochrous J1. Biosci Biotechnol Biochem 57:1949–1950

    CAS  Google Scholar 

  • Kobayashi M, Fujiwara Y, Goda M, Komeda H, Shimizu S (1997) Identification of active sites in amidase: evolutionary relationship between amide-bond and peptide bond-cleaving enzymes. Proc Natl Acad Sci USA 94:11986–11991

    CAS  Google Scholar 

  • Koide Y, Uchino M, Yamada K (1987) Studies of collectors. IX. The flotation of a trace amount of uranium by using 2-(alkylamino) propionohydroxamic acid and cotelomer-type surfactants bearing hydroxyaminocarbonyl and pyridyl groups. Bull Chem Soc Jpn 60:3477–3483

    CAS  Google Scholar 

  • Komeda H, Asano Y (2000) Gene cloning, nucleotide sequencing, and purification and characterization of the d-stereospecific amino-acid amidase from Ochrobactrum anthropi SV3. Eur J Biochem 267:2028–2035

    CAS  Google Scholar 

  • Komeda H, Asano Y (2008) A novel d-stereoselective amino acid amidase from Brevibacterium iodinum: Gene cloning, expression and characterization. Enz Microbial Technol 43:276–283

    CAS  Google Scholar 

  • Komeda H, Harada H, Washika S, Sakamoto T, Ueda M, Asano Y (2004) A novel R-stereoselective amidase from Pseudomonas sp. MCI3434 acting on piperazine-2-tert-butylcarboxamide. Eur J Biochem 271:1580–1590

    CAS  Google Scholar 

  • Komeda H, Hariyama N, Asano Y (2006) l-Stereoselective amino acid amidase with broad substrate specificity from Brevundimonas diminuta: characterization of a new member of the leucine aminopeptidase family. Appl Microbiol Biotechnol 70:412–421

    CAS  Google Scholar 

  • Komeda H, Asano Y (2005) A DmpA-homologous protein from Pseudomonas sp. is a dipeptidase specific for β-alanyl dipeptides. FEBS 272:3075–3084

    CAS  Google Scholar 

  • Kotlova EK, Chestukhina CG, Astaurova OB, Leonova TE, Yanenko AS, Debaboy VG (1999) Isolation and primary characterization of an amidase from Rhodococcus rhodochrous [My paper]. Biochemistry (Mosc) 64:384–390

    CAS  Google Scholar 

  • Krieg L, Ansorge-Schumacher MB, Kula M-R (2002) Screening for amidases: isolation and characterization of a novel d-amidase from Variovorax paradoxus. Adv Synth Catal 344:965–973

    CAS  Google Scholar 

  • Labahn J, Neumann S, Buldt G, Kula MR, Granzin J (2002) An alternative mechanism for amidase signature enzymes. J Mol Biol 322:1053–1064

    CAS  Google Scholar 

  • Lewellyn ME (1996) World patent WO 96/14271

  • Liebeton K, Eck J (2004) Identification and expression in E. coli of novel nitrile hydratases from the metagenome. Life Sci 4:557–562

    CAS  Google Scholar 

  • Linardi VR, Dias JCT, Rosa CA (1996) Utilization of acetonitrile and other aliphatic nitriles by a Candida famata strain. FEMS Microbiol Lett 144:67–77

    CAS  Google Scholar 

  • Madhavan NK, Roopesh K, Chacko S, Pandey A (2005) Comparative study of amidase production by free and immobilised Escherichia coli cells. Appl Biochem Biotechnol 120:97–108

    Google Scholar 

  • Maestracci M, Bui K, Thiery A, Arnaud A, Galzy P (1988) The amidases from a Brevibacterium strain: study and applications. Adv Biochem Eng Biotechnol 36:67–115

    CAS  Google Scholar 

  • Maestracci M, Thiėry A, Bui K, Arnaud A, Galzy P (1984) Activity and regulation of an amidase (acylamide amidohydrolase EC 3.5.1.4) with a wide substrate spectrum from a Brevibacterium sp. Arch Microbiol 138:315–320

    Google Scholar 

  • Makhongela HS, Glowacka AE, Agarkar VB, Sewell T, Weber B, Cameron RA, Cowan DA, Burton SG (2007) A novel thermostable nitrilase superfamily amidase from Geobacillus pallidus showing acyl transfer activity. Appl Microbiol Biotechnol 75:801–811

    CAS  Google Scholar 

  • Martins S, Andrade J, Karmali A, Serralheiro ML (2005) Characterization of monoclonal antibodies against altered (T103I) amidase from Pseudomonas aeruginosa. Mol Biotechnol 30:207–219

    CAS  Google Scholar 

  • Martins S, Andrade J, Karmali A, Serralheiro ML (2006a) Selective adsorption of monoclonal antibodies against mutant amidase from Pseudomonas aeruginosa on tailor-made immobilized metal chelates. J Mol Recog 19:340–347

    CAS  Google Scholar 

  • Martins S, Karmali A, Serralheiro MLM (2006b) Kinetic properties of wild-type and altered recombinant amidases by the use of ion-selective electrode assay method. Anal Biochem 355:232–239

    CAS  Google Scholar 

  • Masuyama A, Akiyama K, Okahara M (1987) Surface active hydroxamic acids. II. Comparison of surface properties of hydroxamic acids with ketones and methyl esters with similar hydrophilic and lipophilic structure. J Am Oil Chem Soc 64:1040–1043

    CAS  Google Scholar 

  • Mayaux JF, Cerebelaud E, Soubrier F, Faucher D, Petre D (1990) Purification, cloning, and primary structure of an enantiomer-selective amidase from Brevibacterium sp. strain R312: structural evidence for genetic coupling with nitrile hydratase. J Bacteriol 172:6764–6773

    Google Scholar 

  • Mayaux JF, Cerbelaud E, Soubrier F, Yeh P, Blanche F, Petre D (1991) Purification, cloning and primary structure of a new enantiomer-selective amidase from a Rhodococcus strain: structural evidence for a conserved genetic coupling with nitrile hydratase. J Bacteriol 173:6694–6704

    CAS  Google Scholar 

  • Moreau JL, Arnaud A, Galzy P (1991) Application of high-performance liquid chromatography to the study of biological transformation of adiponitrile by nitrile hydratase and amidase. Analyst 116:1381–1383

    CAS  Google Scholar 

  • Muri EMF, Nieto MJ, Sindler RD, Williamson JS (2002) Hydroxamic acids as pharmacological agents. Curr Med Chem 9:1631–1653

    CAS  Google Scholar 

  • Nagasawa T, Mathew CD, Mauger J, Yamada H (1988) Nitrile hydratase-catalyzed production of nicotinamide from 3-cyanopyridine in Rhodococcus rhodochrous J1. Appl Environ Microbiol 54:1766–1769

    CAS  Google Scholar 

  • Nakagawa E, Amano T, Hirai N, Iwamura H (1995) Non-induced cyclic hydroxamic acids in wheat during juvenile stage of growth. Phytochemistry 38:1349–1354

    CAS  Google Scholar 

  • Nawaz MS, Khan AA, Seng JE, Leakey JE, Siitonen PH, Cerniglia CE (1994) Purification and characterization of an amidase from an acrylamide-degrading Rhodococcus sp. Appl Environ Microbiol 60:3343–3348

    CAS  Google Scholar 

  • Nawaz MS, Khan AA, Bhattacharayya D, Siitonen PH, Cerniglia CE (1996) Physical, biochemical and immunological characterization of a thermostable amidase from Klebsiella pneumoniae NCTR 1. J Bacteriol 178:2397–2401

    CAS  Google Scholar 

  • Neumann S, Kula M-R (2002) Gene cloning, overexpression and biochemical characterization of the peptide amidase from Stenotrophomonas maltophilia. Appl Microbiol Biotechnol 58:772–780

    CAS  Google Scholar 

  • Novo C, Tata R, Clemente A, Brown PR (1995) Pseudomonas aeruginosa aliphatic amidase is related to the nitrilase/cyanide hydratase enzyme family and Cys166 is predicted to be the active site nucleophile of the catalytic mechanism. FEBS Lett 367:275–279

    CAS  Google Scholar 

  • Novo C, Farnaud S, Tata R, Clemente A, Brown PR (2002) Support for a three dimensional structure predicting a Cys-Glu-Lys catalytic triad for Pseudomonas aeruginosa amidase comes from site-directed mutagenesis and mutations altering substrate specificity. Biochem J 365:731–738

    CAS  Google Scholar 

  • Pace HC, Brenner C (2001) The nitrilase superfamily: classification, structure and function. Genome Biol 2:Reviews 0001.1–0001.9

    Google Scholar 

  • Pacheco R, Karmali A, Serralheiro MLM, Haris PI (2005) Application of Fourier transform infrared spectroscopy for monitoring hydrolysis and synthesis reactions catalyzed by a recombinant amidase. Anal Biochem 346:49–58

    CAS  Google Scholar 

  • Pal A, Samanta TB (1999) β-lactamase-free penicillin amidase from Alcaligenes sp.: Isolation strategy, strain characteristics, and enzyme immobilization. Curr Microbiol 39:244–248

    CAS  Google Scholar 

  • Patricelli MP, Cravatt BF (2000) Clarifying the catalytic roles of conserved residues in the amidase signature family. J Biol Chem 275:19177–19184

    CAS  Google Scholar 

  • Pereira RA, Graham D, Rainey FA, Cowan DA (1998) A novel thermostable nitrile hydratase. Extremophiles 2:347–357

    CAS  Google Scholar 

  • Pertsovich SI, Guranda DT, Podchernyaev DA, Yanenko AS, Svedas VK (2005) Aliphatic amidase from Rhodococcus rhodochrous M8 is related to the nitrilase/cyanide hydratase family. Biochemistry (Mosc) 70:1280–1287

    CAS  Google Scholar 

  • Piotraschke E, Nurk A, Golunsky B, Kasche V (1994) Genetic construction of catalytically active cross-species heterodimer penicillin G amidase. Biotechnol Lett 16:119–124

    CAS  Google Scholar 

  • Piotrowski M, Schönfelder S, Weiler EW (2001) The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode beta-cyano-l-alanine hydratase/nitrilase. J Biol Chem 276:2616–2621

    CAS  Google Scholar 

  • Pogorelova TE, Ryabchenko LE, Sunzov NI, Yanenko AS (1996) Cobalt-dependent transcription of the nitrile hydratase gene in Rhodococcus rhodochrous M8. FEMS Microbiol Lett 144:191–195

    CAS  Google Scholar 

  • Prasad S, Sharma DR, Bhalla TC (2005) Nitrile- and Amide-hydrolysing Activity in Kluyveromyces thermotolerans MGBY 37. World J Microbiol Biotechnol 21:1447–1450

    CAS  Google Scholar 

  • Precigou S, Goulas P, Duran R (2001) Rapid and specific identification of nitrile hydratase encoding genes in soil samples by polymerase chain reaction. FEMS Microbiol Lett 204:155–161

    CAS  Google Scholar 

  • Ramakrishna C, Desai JD (1993) Bioconversion of acrylonitrile to acrylamide by Arthrobacter sp. IPCB-3. Indian J Exp Biol 31:173–177

    CAS  Google Scholar 

  • Remaut H, Bompard-Gilles C, Goffin C, Frère J-M, Beeumen JV (2001) Structure of the Bacillus subtilis d-aminopeptidase DppA reveals a novel self-compartmentalizing protease. Nature Struc Biol 8:674–678

    CAS  Google Scholar 

  • Ryabchenko LE, Podchernyaev DA, Kotlova EK, Yanenko AS (2006) Cloning the amidase gene from Rhodococcus rhodochrous M8 and its expression in Escherichia coli. Russ J Genet 42:886–889

    CAS  Google Scholar 

  • Schröder G, Waffenschmidt S, Weiler EW, Schröder J (1984) The T-region of Ti-plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 138:387–391

    Google Scholar 

  • Ševo M, Degrassi G, Skoko N, Venturi V, Ljubijankić G (2002) Production of glycosylated thermostable Providencia rettgeri penicillin G amidase in Pichia pastoris. FEMS Yeast Res 1:271–277

    Google Scholar 

  • Silman NJ, Carver MA, Jones CW (1989) Physiology of amidase production by Methylophilus methylotrophus: isolation of hyperactive strains using continuous culture. J Gen Microbiol 135:3153–3164

    CAS  Google Scholar 

  • Silva N, Gil D, Karmali A, Matos M (2009) Biosensor for acrylamide based on an ion-selective electrode using whole cells of Pseudomonas aeruginosa containing amidase activity. Biocat Biotrans 27:143–151

    CAS  Google Scholar 

  • Skouloubris S, Labigne A, Reuse HD (1997) Identification and characterization of an aliphatic amidase in Helicobacter pylori. Mol Microbiol 25:989–998

    CAS  Google Scholar 

  • Stelkes-Ritter U, Wyzgol K, Kula MR (1995) Purification and characterization of a newly screened microbial peptide amidase. Appl Microbiol Biotechnol 44:393–398

    CAS  Google Scholar 

  • Suzuki Y, Ohta H (2006) Identification of a thermostable and enantioselective amidase from the thermoacidophilic archaeon Sulfolobus tokodaii strain 7. Protein Express Puri 45:368–373

    CAS  Google Scholar 

  • Tani Y, Kurihara M, Nishise H, Yamamoto K (1989) Bioconversion of dinitrile to mononitrile, a tranexamic acid intermediate by Corynebacterium sp. Agric Biol Chem 12:3143–3149

    Google Scholar 

  • Thalenfeld B, Grossowic ZN (1976) Regulatory properties of an inducible aliphatic amidase in a thermophilic bacillus. J Gen Microbiol 94:131–141

    CAS  Google Scholar 

  • Thiery A, Maestracci M, Arnaud A, Galzy P (1986) Acyltransferase activity of the wide spectrum amidase of Brevibacterium sp R312. J Gen Microbiol 132:2205–2208

    CAS  Google Scholar 

  • Thompson LA, Knowles CJ, Linton EA, Wyatt JM (1988) Microbial biotransformations of nitriles. Chem Britain 24:900–912

    CAS  Google Scholar 

  • Trott S, Burger S, Calaminus C, Stolz A (2002) Cloning and heterologous expression of an enantioselective amidase from Rhodococcus erythropolis strain MP50. Appl Environ Microbiol 68:3279–3286

    CAS  Google Scholar 

  • Tsafack A, Golenser J, Libman J, Shanzer A, Cabantchik ZI (1995) Mode of action of iron (III) chelators as antimalarials. III. Over additive effects in the combined action of hydroxamate-based agents on in vitro growth of Plasmodium falciparum. Mol Pharmacol 47:403–409

    CAS  Google Scholar 

  • van den Tweel WJJ, Van Dooren TJGM, De Jonge PH, Kaptein B, Duchateau ALL, Kamphuis J (1993) Ochrobactrum anthropi NCIMB 40321: a new biocatalyst with broad-spectrum l-specific amidase activity. Appl Microbiol Biotechnol 39:296–300

    Google Scholar 

  • Watanabe I, Yoshiaki S, Enomoto K (1987) Screening, isolation and taxonomical properties of microorganisms having acrylonitrile-hydrating activity. Agric Biol Chem 51:3193–3199

    CAS  Google Scholar 

  • Wilson SA, Wachira SJM, Norman RA, Pearl LH, Drew RE (1996) Transcription antitermination regulation of the Pseudomonas aeruginosa amidase operon. EMBO J 15:5907–5916

    CAS  Google Scholar 

  • Wyndham RC, Slater JH (1986) A comparative study of acquired amidase activity in Pseudomonas sp. J Gen Microbiol 132:2195–2204

    CAS  Google Scholar 

  • Yamada H, Ryuno K, Nagasawa T, Enomoto K, Watanabe I (1986) Optimum culture conditions for production by Pseudomonas chlororaphis B23 of NHase. Agric Biol Chem 50:2859–2865

    CAS  Google Scholar 

  • Yamaguchi S, Komeda H, Asano Y (2007) New enzymatic method of chiral amino acid synthesis by dynamic kinetic resolution of amino acid amides: use of stereoselective amino acid amidases in the presence of a-amino-ε-caprolactam racemase. Appl Envion Microbiol 73:5370–5373

    CAS  Google Scholar 

  • Yamaki T, Oikawa T, Ito K, Nakamura T (1997) Cloning and Sequencing of a Nitrile Hydratase Gene from Pseudonocardia thermophila JCM3095. J Ferment Bioeng 83:474–477

    CAS  Google Scholar 

  • Zheng R–C, Zheng Y-G, Shen Y-C (2007) A simple method to determine concentration of enantiomers in enzyme-catalyzed kinetic resolution. Biotech Lett 29:1087–1091

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for providing financial assistance in the form of Senior Research Fellowship to Ms. Monica Sharma and Mr. Nitya Nand Sharma. Authors also acknowledge the computation facility availed at Bioinformatics Centre, H P University, Shimla (India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tek Chand Bhalla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, M., Sharma, N.N. & Bhalla, T.C. Amidases: versatile enzymes in nature. Rev Environ Sci Biotechnol 8, 343–366 (2009). https://doi.org/10.1007/s11157-009-9175-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-009-9175-x

Keywords

Navigation