Skip to main content
Log in

Eukaryotes in acidic mine drainage environments: potential applications in bioremediation

  • Review Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Passive remediation of Acid Mine Drainage (AMD) is a popular technology continuously under development for more than 50 years now. Roles of eukaryotes, the natural residents of AMD and its attenuator are not emphasized adequately. Studies suggest that macrophyte distinctively generate alkalinity through benthic sediments as part of root respiration. Other eukaryotic populations effectively enrich the carbon source for maintaining sulphate reducing bacterial (SRB) populations and act symbiotically. Algae produce anoxic zones for SRB action and help in biogenic alkalinity generation. While studies on algal populations and actions are relatively available those on fungal population are limited. Fungi show capacity to absorb significant amount of metals in their cell wall, or by extra cellular polysaccharide slime. This review examines the roles of these microorganisms and documents their activities in holistic form in the mine water environment. This work discusses the potential areas of likely future research that could enable AMD remediation using active eukaryotes to be made on sound understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AMD:

Acid mine drainage

ARD:

Acid rock drainage

SRB:

Sulphate reducing bacteria

GPP:

Gross primary production

NPP:

Net primary production

FDA:

Fluoresceindiacetate

EPS:

Extracellular polysaccharide

DOC:

Dissolved organic carbon

PDOC:

Photosynthetically produced dissolved organic carbon

ASPAM:

Algal sulphate reducing ponding process for the treatment of acidic and metal wastewaters

HRAP:

High rate algal pond

REE:

Rare earth elements

References

  • Abreu MM, Tavares MT, Batista MJ (2008) Potential use of Erica andevalensis and Erica australis in phytoremediation of sulphide mine environments: Sao Domingos, Portugal. J Geochem Explor 96:210–222. doi:10.1016/j.gexplo.2007.04.007

    Article  CAS  Google Scholar 

  • Aguilera A, Manrubia SC, Gomez F, Rodriguez N, Amils R (2006) Eukaryotic community distribution and its relationship to water physicochemical parameters in an extreme acidic environment, Rio tinto (southwestern spain). Appl Environ Microbiol 72:5325–5330. doi:10.1128/AEM.00513-06

    Article  CAS  Google Scholar 

  • Aguilera A, Souza-Egipsy V, Gomez F, Amils R (2007) Development and structure of eukaryotic biofilms in an extreme acidic environment, Rio tinto (SW, spain). Microb Ecol 53:294–305. doi:10.1007/s00248-006-9092-2

    Article  Google Scholar 

  • Aguilera A, Souza-Egipsy V, San Martin-Uriz P, Amils R (2008) Extracellular matrix assembly in extreme acidic eukaryotic biofilms and their possible implications in heavy metal adsorption. Aquat Toxicol 88:257–266. doi:10.1016/j.aquatox.2008.04.014

    Article  CAS  Google Scholar 

  • Amaral Zettler LA, Gómez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Eukaryotic diversity in Spain’s river of fire. Nature 417:137. doi:10.1038/417137a

    Article  CAS  Google Scholar 

  • Baker BJ, Lutz MA, Dawson SD, Bond PL, Banfield JF (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70:6264–6271. doi:10.1128/AEM.70.10.6264-6271.2004

    Article  CAS  Google Scholar 

  • Baker BJ, Tyson GW, Goosherst L, Banfield JF (2009) Insight into the diversity of eukaryotes in acid mine drainage biofilm communities. Appl Environ Microbiol 75:2192–2199. doi:10.1128/AEM.02500-08

    Article  CAS  Google Scholar 

  • Batty LC, Younger PL (2002) Critical role of macrophytes in achieving low iron concentrations in mine water treatment wetlands. Environ Sci Technol 36:3997–4002. doi:10.1021/es020033+

    Article  CAS  Google Scholar 

  • Beech IB, Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186. doi:10.1016/j.copbio.2004.05.001

    Article  CAS  Google Scholar 

  • Beech IB (2004) Corrosion of technical materials in the presence of biofilms—current understanding and state-of-the art methods of study. Int Biodeterior Biodegradation 53:177–183. doi:10.1016/S0964-8305(03)00092-1

    Article  CAS  Google Scholar 

  • Bhattacharya J, Islam M, Cheong YW (2006) Microbial growth and action: Implications for passive bioremediation of acid mine drainage. Mine Water Environ 25:233–240. doi:10.1007/s10230-006-0138-y

    Article  CAS  Google Scholar 

  • Bhattacharya J, Ji SW, Lee HS, Cheong YW, Yim GJ, Min JS, Choi YS (2008) Treatment of acidic coal mine drainage: design and operational challenges of successive alkalinity producing systems. Mine Water Environ 27:12–19. doi:10.1007/s10230-007-0022-4

    Article  CAS  Google Scholar 

  • Blinn DW, Tompkins T, Zaleski L (1977) Mercury inhibition on primary productivity using large volume plastic chambers in situ. J Phycol 13:58–61

    CAS  Google Scholar 

  • Bortnikova SB, Smolyakov BS, Sidenko NV, Kolonin GR, Bessonova EP, Androsova NV (2001) Geochemical consequences of acid mine drainage into a natural reservoir: inorganic precipitation and effects on plankton activity. J Geochem Explor 74:127–139. doi:10.1016/S0375-6742(01)00179-0

    Article  CAS  Google Scholar 

  • Boshoff G, Duncan J, Rose PD (2004) The use of micro-algal biomass as a carbon source for biological sulfate reducing systems. Water Res 38:2659–2666. doi:10.1016/j.watres.2004.03.031

    Article  CAS  Google Scholar 

  • Brake SS, Hasiotis ST, Dannely HK (2004) Diatoms in acid mine drainage and their role in the formation of iron- rich stromatolites. Geomicrobiol J 21:331–340. doi:10.1080/01490450490454074

    Article  CAS  Google Scholar 

  • Brake SS, Hasiotis ST, Dannelly HK, Connors KA (2002) Eukaryotic stromatolite builders in acid mine drainage: Implications for Precambrian iron formations and oxygenation of the atmosphere? Geology 30:599–602. doi:10.1130/0091-7613(2002)030<0599:ESBIAM>2.0.CO;2

    Article  CAS  Google Scholar 

  • Bridge Cooke WM (1976) Fungi in and near streams carrying acid mine drainage. Ohio J Sci 76:231–240

    Google Scholar 

  • Brierley JA, Brierley CL (1982) Biological accumulation of some heavy metals-biotechnological application. In: Westbroek P, De Jong EW (eds) Biomineralization and biological metal accumulation. Springer, The Netherlands, pp 499–510

    Google Scholar 

  • Briden S (2004) The effects of low pH characteristic of Acid Mine Drainage on Lythrum salicaria, an invasive wetland species, and Typha latifolia, a native wetland species. Triad#37, Sect. 005. hermes.icrc.wvu.edu/biology/bio321/Manuscript%20Example%202.pdf

  • Casado M, Anwar HM, Garcia-sanchez A, Santa Regina I (2007) Arsenic bioavailability in polluted mining soil and uptake by tolerant plants (EI Cabaco mine, Spain). Bull Environ Contam Toxicol 79:29–35. doi:10.1007/s00128-007-9214-7

    Article  CAS  Google Scholar 

  • Cordell CE, Marrs LF, Farley ME (1999) Mycorrhizal fungi and trees—a successful reforestation alternative for mine reclamation. In: Proceeding of enhancement of reforestation at surface coal mines: Technical Interactive Forum. March 23–24, 1999, Fort Mitchell, KY. pp. 177–187

  • Davison W, George DG, Edwards NJA (1995) Controlled reversal of lake acidification by treatment with phosphate fertilizer. Nature 377:504–507. doi:10.1038/377504a0

    Article  CAS  Google Scholar 

  • De la Pena S, Barreiro R (2009) Biomonitoring acidic drainage impact in a complex setting using periphyton. Environ Monit Assess 150:351–363. doi:10.1007/s10661-008-0235-4

    Article  CAS  Google Scholar 

  • DeNicola DM (2000) A review of diatoms found in highly acidic environments. Hydrobiologia 433:111–122. doi:10.1023/A:1004066620172

    Article  Google Scholar 

  • Dennison F, Sen AM, Hallberg KB, Johnson DB (2001) Biological versus abiotic oxidation of iron in acid mine drainage waters:an important role for moderately acidophilic, iron–oxidising bacteria. In: Ciminelli VST, Garcia O Jr (eds) Biohydrometallurgy: fundamentals, technology and sustainable development, vol 11B. Elsevier, Amsterdam, pp 493–501

    Google Scholar 

  • Dessouki TCE, Hudson JJ, Neal BR, Bogard MJ (2005) The effects of phosphorus additions on the sedimentation of contaminants in a uranium mine pit-lake. Water Res 39:3055–3061. doi:10.1016/j.watres.2005.05.009

    Article  CAS  Google Scholar 

  • Elbaz-Poulichet F, Dupuy C, Cruzado A, Velasqaez Z, Achterberg EP, Braungardt CB (2000) Influence of sorption process by iron oxides and algae fixation on arsenic and phosphate cycle in an acidic estuary (Tinto River, Spain). Water Res 34:3222–3230. doi:10.1016/S0043-1354(00)00073-7

    Article  CAS  Google Scholar 

  • Fakoussa RM, Hofrichter M (1999) Biotechnology and microbiology of coal degradation. Appl Microbiol Biotechnol 52:25–40. doi:10.1007/s002530051483

    Article  CAS  Google Scholar 

  • Ferris FG, Schultze S, Witten TC, Fyfe WS, Beveridge TJ (1989) Metal interactions with microbial biofilms in acidic and neutral pH environments. Appl Environ Microbiol 55:1249–1257

    CAS  Google Scholar 

  • Ford T, Maki J, Mitchell R (1995) Metal-microbe interactions. In: Gaylarde CC, Videla HA (eds) Bioextraction and biodeterioration of metals. Cambridge University Press, Cambridge, pp 1–24

    Google Scholar 

  • Ford T, Ryan D (1995) Toxic metals in aquatic ecosystems: a microbiological perspective. Environ Health Perspect 103:25–28. doi:10.2307/3432007

    Article  CAS  Google Scholar 

  • Freire-Nordi CS, Vieira AAH, Nascimento OR (2005) The metal binding capacity of Anabaena spiroides extracellular polysaccharide: an EPR study. Process Biochem 40:2215–2224. doi:10.1016/j.procbio.2004.09.003

    Article  CAS  Google Scholar 

  • Fyson A, Nixdorf B, Kalin M (2006) The acidic lignite pit lakes of Germany- Microcosm experiment on acidity removal through controlled eutrophication. Ecol Eng 28:288–295. doi:10.1016/j.ecoleng.2006.06.012

    Article  Google Scholar 

  • Fyson A (2000) Angiosperms in acidic waters at pH 3 and below. Hydrobiologia 433:129–135. doi:10.1023/A:1004059814237

    Article  Google Scholar 

  • Gadd GM (1993) Interactions of fungi with toxic metals. New Phytol 124:25–60. doi:10.1111/j.1469-8137.1993.tb03796.x

    Article  CAS  Google Scholar 

  • Gadd GM, Griffiths AJ (1978) Microorganisms and heavy metal toxicity. Microb Ecol 4:303–317. doi:10.1007/BF02013274

    Article  CAS  Google Scholar 

  • Galum M, Keller P, Feldstein H, Siegel S, Siegel B (1983) Recovery of uranium (VI) from solution using precultured Penicillium biomass. Water Air Soil Pollut 20:221. doi:10.1007/BF00279632

    Article  Google Scholar 

  • Gadanho M, Sampaio JP (2006) Microeukaryotic diversity in the extreme environments of the Iberian Pyrite Belt: a comparison between universal and fungi-specific primer sets, temperature gradient gel electrophoresis and cloning. FEMS Microbiol Ecol 57:139–148. doi:10.1111/j.1574-6941.2006.00098.x

    Article  CAS  Google Scholar 

  • Garcia-Meza JV, Barrangue C, Admiraal W (2005) Biofilm formation by algae as a mechanism for surviving on mine tailings. Environ Toxicol Chem 24:573–581. doi:10.1897/04-064R.1

    Article  CAS  Google Scholar 

  • Gerloff-Elias A, Barua D, Mölich A, Spijkerman E (2006) Temperature- and pH-dependent accumulation of heat-shock proteins in the acidophilic green alga Chlamydomonas acidophila. FEMS Microbiol Ecol 56:345–354. doi:10.1111/j.1574-6941.2006.00078.x

    Article  CAS  Google Scholar 

  • Gibert O, de Pablo J, Cortina JL, Ayora C (2002) Treatment of acid mine drainage by sulfate-reducing bacteria using permeable reactive barriers: A review from laboratory to full-scale experiments. Rev Environ Sci Biotechnol 1:327–333. doi:10.1023/A:1023227616422

    Article  CAS  Google Scholar 

  • Gross S, Robbins EI (2000) Acidophilic and acid-tolerant fungi and yeasts. Hydrobiologia 433:91–109. doi:10.1023/A:1004014603333

    Article  Google Scholar 

  • Gross W (2000) Ecophysiology of algae living in highly acidic environments. Hydrobiologia 433:31–37. doi:10.1023/A:1004054317446

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A (2008) Biosorption of lead (II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp. –a comparative study. Colloids Surf B Biointerfaces 64:170–178. doi:10.1016/j.colsurfb.2008.01.019

    Article  CAS  Google Scholar 

  • Gyure RA, Konopka A, Brooks A, Doemel W (1987) Algal and bacterial activities in acidic (pH 3) strip mine lakes. Appl Environ Microbiol 53:2069–2076

    CAS  Google Scholar 

  • Haferburg G, Reinicke M, Merten D, Buchel G, Kothe E (2007) Microbes adapted to acid mine drainage as source for strains active in retention of aluminum or uranium. J Geochem Explor 92:196–204. doi:10.1016/j.gexplo.2006.08.011

    Article  CAS  Google Scholar 

  • Hamdy AA (2000) Biosorption of heavy metals by marine algae. Curr Microbiol 41:232–238. doi:10.1007/s002840010126

    Article  CAS  Google Scholar 

  • Hamsher SE, Casamatta DA, Filkin NR, McClintic AS, Chiasson WB, Verb GR, Vis ML (2002) A new method for studying nutrient limitation of periphyton: A case study from Acid Mine Drainage streams. J Phycol 38(1):15

    Article  Google Scholar 

  • Holker U, Bend J, Pracht R, Tetsch L, Muller T, Hofer M, de Hoog GS (2004) Hortaea acidophila, a new acid-tolerant black yeast from lignite. Antonie Van Leeuwenhoek 86:287–294. doi:10.1007/s10482-005-0101-0

    Article  CAS  Google Scholar 

  • Jilek R, Prochazka H, Stamberg K, Katzer J, Nemec P (1975) Properties and development of cultivated biological sorbent. Rudy 23:282–286

    CAS  Google Scholar 

  • Johnson DB, Hallberg KB (2002) Pitfalls of passive mine water treatment. Rev Environ Sci Biotechnol 1:335–343. doi:10.1023/A:1023219300286

    Article  CAS  Google Scholar 

  • Kalin M, Wheeler WN, Meinrath G (2004) The removal of uranium from mining wastewater using algal microbial biomass. J Environ Radioact 78:151–177. doi:10.1016/j.jenvrad.2004.05.002

    Article  CAS  Google Scholar 

  • Kalin M, Wheeler WN, Olaveson MM (2006) Response of phytoplankton to ecological engineering remediation of a Canadian Shield Lake affected by acid mine drainage. Ecol Eng 28:296–310. doi:10.1016/j.ecoleng.2006.08.010

    Article  Google Scholar 

  • Kapfer M (1998) Assessment of the colonization and primary production of microphytobenthos in the littoral of acidic mining lakes in Lusatia (Germany). Water Air Soil Pollut 108:331–340. doi:10.1023/A:1005125916712

    Article  CAS  Google Scholar 

  • Kapoor A, Viraraghavan T (1998) Removal of heavy metals from aqueous solutions using immobilized fungal biomass in continuous mode. Water Res 32:1968–1977. doi:10.1016/S0043-1354(97)00417-X

    Article  CAS  Google Scholar 

  • Karsten U, Schumann R, Mostaert AS (2007) Aeroterrestrial algae growing on man-made surfaces: what are the secrets of their ecological success? In: Seckbach J (ed) Algae and cyanobacteria in extreme environment. Springer, Netherland, pp 584–600

    Google Scholar 

  • Kleinmann RLP (1990) Acid mine water treatment using engineered wetlands. Mine water Environ 9:269–276

    Google Scholar 

  • Knauert S, Knauer K (2008) The role of reactive oxygen species in copper toxicity to two freshwater green algae. J Phycol 44:311–319. doi:10.1111/j.1529-8817.2008.00471.x

    Article  CAS  Google Scholar 

  • Komnitsas K, Paspaliaris I, Zilberchmidt M, Groudev S (2001) Environmental impacts at coal waste disposal sites- efficiency of desulfurization technologies. Global Nest: the Int. J. 3:109–116

    Google Scholar 

  • Koschorreck M, Frommichen R, Herzsprung P, Tittel J, Wendt-Potthoff K (2002) Function of straw for in situ remediation of acidic mining lakes. Water Air Soil Pollut 2:97–109. doi:10.1023/A:1019991326498

    Article  CAS  Google Scholar 

  • Koschorreck M, Tittel J (2002) Benthic photosynthesis in an acidic mining lake (pH 2.6). Limnol Oceanogr 47:1197–1201

    Article  CAS  Google Scholar 

  • Koschorreck M, Tittel J (2007) Natural alkalinity generation in neutral lakes affected by acid mine drainage. J Environ Qual 36:1163–1171. doi:10.2134/jeq2006.0354

    Article  CAS  Google Scholar 

  • Koschorreck M, Kleeberg A, Herzsprung P, Wendt-Potthoff K (2007) Effects of benthic filamentous algae on the sediment–water interface in an acidic mining lake. Hydrobiologia 592:387–397. doi:10.1007/s10750-007-0776-5

    Article  CAS  Google Scholar 

  • Koschorreck M (2008) Microbial sulfate reduction at a low pH. FEMS Microbiol Ecol 64:329–342. doi:10.1111/j.1574-6941.2008.00482.x

    Article  CAS  Google Scholar 

  • Kosolapov DB, Kuschk P, Vainshtein MB, Wieszner A, Kastner M, Muller RA (2004) Microbial process of heavy metal removal from carbon-deficient effluents in constructed wetlands. Eng Life Sci 4:403–411. doi:10.1002/elsc.200420048

    Article  CAS  Google Scholar 

  • Lee RE (1999) Phycolgy, 3rd edn. Cambridge University Press, UK, pp 3–59 ISBN 0521638836

    Google Scholar 

  • Lessmann D, Fyson A, Nixdorf B (2000) Phytoplankton of the extremely acidic mining lakes of Lusatia (Germany) with pH ≤ 3. Hydrobiologia 433:123–128. doi:10.1023/A:1004018722898

    Article  Google Scholar 

  • Levings CD, Varela DE, Mehlenbacher NM, Barry KL, Piercey GE, Guo M, Harrison PJ (2005) Effect of an acid mine drainage effluent on phytoplankton biomass and primary production at Britannia Beach, Howe Sound, British Columbia. Mar Pollut Bull 50:1585–1594. doi:10.1016/j.marpolbul.2005.06.032

    Article  CAS  Google Scholar 

  • MacFarlane GR, Burchett MD (2001) Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the Gray Mangrove Avicennia marina (Forsk) Veirh. Mar Pollut Bull 42:233–240. doi:10.1016/S0025-326X(00)00147-8

    Article  CAS  Google Scholar 

  • Martin AJ, McNee JJ, Crusius J, Pieters R, Dunbar D (2003) Field-scale assessment of bioremediation strategies for two pit lakes using limnolcorrals. 6th ICARD, Australia July 2003. pp 529–539

  • Mays PA, Edwards GS (2001) Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage. Ecol Eng 16:487–500. doi:10.1016/S0925-8574(00)00112-9

    Article  Google Scholar 

  • Merten D, Kothe E, Buchel G (2004) Studies on microbial heavy metal retention from uranium mine drainage water with special emphasis on rare earth elements. Mine Water Environ 23:34–43. doi:10.1007/s10230-004-0034-2

    Article  CAS  Google Scholar 

  • Mills AL (1985) Acid mine waste drainage: microbial impact on the recovery of soil and water ecosystems. In: Tate RL, Klein DA (eds) Soil reclamation process: microbiological analysis and applications. CRC Press, Boca Raton, pp 35–74 ISBN 0824772865

    Google Scholar 

  • EPA (2005) Algal bioremediation of the Berkeley Pit lake system: an in situ test using limnocorrals

  • Mirete S, de Figueras CG, González-Pastor JE (2007) Novel nickel-resistance genes from the rhizosphere metagenome of acid mine drainage-adapted plants. Appl Environ Microbiol 73:6001–6011

    Article  CAS  Google Scholar 

  • Mitsch WJ, Wise KM (1998) Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage. Water Res 32:1888–1900

    Article  CAS  Google Scholar 

  • Molwantwa JB, Molipane NP, Rose PD (2000) Biological sulfate reduction utilizing algal extracellular products as a carbon source. WISA 2000 Biennal Conference, Sun City, South Africa

  • Naegoe A, Ebena G, Carlsson E (2005) The effect of soil amendments on plant performance in an area affected by acid mine drainage. Chem Erde 65:115–129

    Article  CAS  Google Scholar 

  • Nawrot JR, Klimstra WB (1990) Biochemical treatment of mine drainage through a reedgrass wetland. Proceedings of the Mining and Reclamation Conference and Expo. Morgantown, WV, WV University Publication Serv.: No. 2, pp 353–363. http://wvmdtaskforce.com/proceedings/90/90NAW/90NAW.HTM

  • Nakatsu C, Hutchinson TC (1988) Extreme metal and acid tolerance of Euglena mutabilis and an associated yeast from Smoking Hills, Northwest Territories, and their apparent mutualism. Microb Ecol 16:213–231

    Article  CAS  Google Scholar 

  • Nixdorf B, Kapfer M (1998) Stimulation of phototrophic pelagic and benthic matabolism close to sediments in acidic mining lakes. Water Air Soil Pollut 108:317–330

    Article  CAS  Google Scholar 

  • Nixdorf B, Mischke U, Lessmann D (1998) Chrysophytes and Chlamydomonads: pioneer colonists in extremely acidic mining lakes (pH < 3) in Lusatia (Germany). Hydrobiologia 369(370):315–327

    Article  Google Scholar 

  • Nixdorf B, Krumbeck H, Jander J, Beulker C (2003) Comparison of bacterial and phytoplankton productivity in extremely acidic mining lakes and eutrophic hard water lakes. Acta Oecologica 24:S281–S288

    Article  Google Scholar 

  • Niyogi DK, McKnight DM, Lewis WM Jr (1999) Influences of substrate quality for periphyton in a montane stream affected by acid mine drainage. Limnol Oceanogr 44:804–809

    Article  CAS  Google Scholar 

  • Niyogi DK, Lewis WM Jr, McKnight DM (2002) Effects of stress from mine drainage on diversity, biomass, and function of primary producers in mountain streams. Ecosystems 5:554–567

    CAS  Google Scholar 

  • Novis PM, Harding JS (2007) Extreme acidophiles: freshwater algae associated with acid mine drainage. In: Seckbach J (ed) Algae and cyanobacteria in extreme environment. Springer, Netherlands, pp 443–463

    Chapter  Google Scholar 

  • Orandi S, Yaghubpur A, Sahraei H (2007) Influence of AMD on aquatic life at Sar Cheshmeh copper mine. Abstract. Goldschmidt conference, Cologne, Germany, August 2007

  • Ottow JGG, von Klopotek A (1969) Enzymatic reduction of iron oxide by fungi. Appl Microbiol 18:41–43

    CAS  Google Scholar 

  • O’Sullivan AD, McCabe OM, Murray DA, Otte ML (1999) Wetlands for rehabilitation of metal mine wastes. Biol. Environ.–Proc. R. Irish Acad 99B:11–17

    Google Scholar 

  • Payne RA (2000) Spirulina as bioremediation agent: Interaction with metals and involvement of carbonic anhydrase. M.Sc. Thesis, Rhodes University

  • Phillips P, Bender J, Simms R, Rodriguez-Eaton S, Britt C (1995) Manganese removal from acid coal-mine drainage by a pond containing green algae and microbial mat. Water Sci Technol 31:161–170

    CAS  Google Scholar 

  • Pinto E, Sigaud-kutner TCS, Leitao MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal–induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Prasad MNV (2007) Aquatic plants for phytotechnology. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, Berlin, pp 259–274

    Chapter  Google Scholar 

  • Rai LC, Gaur JP, Kumar HD (1981) Phycology and heavy-metal pollution. Biol Rev 56:99–151

    Article  CAS  Google Scholar 

  • Ramm AE, Bella DA (1974) Sulfide production inanaerobic microcosoms. Limnol Oceanogr 19:110–118

    Article  CAS  Google Scholar 

  • Reed RH, Gadd GM (1989) Metal tolerance in eukaryotic and prokaryotic algae. In: Shaw AJ (ed) Heavy metal tolerance in plants. CRC press, Boca Raton

    Google Scholar 

  • Regel RH, Ferris JM, Ganf GG, Brookes JD (2002) Algal esterase activity as a biomeasure of environmental degradation in a Freshwater creek. Aquat Toxicol 59:209–223

    Article  CAS  Google Scholar 

  • Rodríguez N, Amils R, Jiménez-Ballesta R, Rufo L (2007) Heavy metal content in Erica andevalensis: an endemic plant from the extreme acidic environment of Tinto River and its soil. Arid Land Res Manage 21:51–65

    Article  CAS  Google Scholar 

  • Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98:3344–3353

    Article  CAS  Google Scholar 

  • Rose PD, Boshoff GA, Van Hille RP, Wallace LC, Dunn KM, Duncun JR (1998) An integrated algal sulphate reducing high rate ponding process for the treatment of Acid Mine drainage wastewater. Biodegradation 9:247–257

    Article  CAS  Google Scholar 

  • Russell RA, Holden PJ, Wilde KL, Neilan BA (2003) Demonstration of the use of Scenedesmus and Carteria biomass to drive bacterial sulfate reduction by Desulfovibrio alcoholovorans isolated from an artificial wetland. Hydrometallurgy 71:227–234

    Article  CAS  Google Scholar 

  • Rustler S, Stolz A (2007) Isolation and characterization of a nitrile hydrolysing acidotolerant black yeast - Exophiala oligosperma R1. Appl Microbiol Biotechnol 75:899–908

    Article  CAS  Google Scholar 

  • Schlief J, Mutz M (2005) Long-term leaf litter decomposition and associated microbial processes in extremely acidic (pH < 3) mining waters. Arch Hydrobiol 164:53–68

    Article  CAS  Google Scholar 

  • Sheng PX, Ting YP, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci 275:131–141

    Article  CAS  Google Scholar 

  • Sheoran AS, Bhandari S (2005) Treatment of mine water by a microbial mat: Bench scale experiments. Mine Water Environ 24:38–42

    Article  CAS  Google Scholar 

  • Sheoran AS (2005) Performance of a natural wetland treating acid mine drainage in arid condition. Mine Water Environ 24:150–154

    Article  CAS  Google Scholar 

  • Sheoran AS (2006a) Performance of three aquatic plant species in bench-scale acid mine drainage weiland test cells. Mine Water Environ 25:23–36

    Article  CAS  Google Scholar 

  • Sheoran AS (2006b) A laboratory treatment study of acid mine water of wetlands with emergent macrophyte (Typha angustata). Int J Min Reclam Environ 20:209–222

    Article  CAS  Google Scholar 

  • Shiomi N, Yasuda T, Inoue Y, Kusumoto N, Iwasaki S, Katsuda T, Katoh S (2004) Characteristics of neutralization of acids by newly isolated fungal cells. J Biosci Bioeng 97:54–58

    CAS  Google Scholar 

  • Siefert J, Mutz M (2001) Processing of leaf litter in acid waters of the post-mining landscape in Lusatia, Germany. Ecol Eng 17:297–306

    Article  Google Scholar 

  • Simmons JA, Long JM, Ray JW (2004) What limits the productivity of acid mine drainage treatment ponds? Mine Water Environ 23:44–53

    Article  CAS  Google Scholar 

  • Spijkerman E, Barua D, Gerloff-Elias A, Kern J, Gaedke U, Heckathorn SA (2007) Stress responses and metal tolerance of Chlamydomonas acidophila in metal-enriched lake water and artificial medium. Extremophiles 11:551–562

    Article  CAS  Google Scholar 

  • Stevens AE, McCathy BC, Vis ML (2001) Metal content of Klebsormidium-dominated (Chlorophyta) algal mats from acid mine drainage waters in southeastern. Ohio J Torrey Bot Soc 128:226–233

    Article  Google Scholar 

  • Strandberg GW, Shumate SEII, Parrot JR (1981) Microbial cells as biosorbents of heavy metals: accumulation of uranium by Saccharomyces cerevisae and Pseudomonas aeruginosa. Appl Environ Microbiol 41:237–245

    CAS  Google Scholar 

  • Sutherland IW (2005) Microbial Exopolysaccharides. In: Dumitriu S and Dekker M (ed) Polysaccharides: Structural Diversity and Functional Versatility, 2nd edn. New York. pp 431–458

  • Shu WS. (2003). Exploring the potential utilization of Vetiver in treating Acid Mine Drainage. Proceedings of ICV-3. prvn.rdpb.go.th/files/icv/2-15t.pdf

  • Skousen J (1997) Overview of passive systems for treating acid mine drainage. Green Lands 27:34–43

    Google Scholar 

  • Tate CM, Broshears RE, McKnight DM (1995) Phosphate dynamics in an acidic mountain stream : interactions involving algal uptake, sorption by iron oxide, and photoreduction. Limnol Oceanogr 40:938–946

    Article  CAS  Google Scholar 

  • Tittel J, Kamjunke N (2004) Metabolism of dissolved organic carbon by planktonic bacteria and mixotrophic algae in lake neutralisation experiments. Freshw Biol 49:1062–1071

    Article  Google Scholar 

  • Totsche O, Fyson A, Steinberg CEW (2003) Neutralizing extrem acidic mining lakes by chemical and microbial treatment–mesocosm studies. Mining and the Environment III Sudbury: 2003

  • Totsche O, Fyson A, Steinberg CEW (2006) Microbial alkalinity production to prevent reacidification of neutralized mining lakes. Mine Water Environ 25:204–213

    Article  CAS  Google Scholar 

  • Urrutia MM (1997) General bacterial sorption processes. In: John Wase DA, Forster CF (eds) Biosorbants for metal ions. CRC Press. Taylor and Francis, Boca Raton

    Google Scholar 

  • Valente TM, Gomes CL (2007) The role of two acidophilic algae as ecological indicators of acid mine drainage sites. J Iber Geol 33:283–294

    Google Scholar 

  • Van Hille R, Boshoff GA, Rose PD, Duncan JR (1999) A continuous process for the biological treatment of heavy metal contaminated acid mine water. Resour Conserv Recycl 27:157–167

    Article  Google Scholar 

  • Van Hullebusch ED, Peerbolte A, Zandvoort MH, Lens PNL (2005) Sorption of cobalt and nickel on anaerobic granular sludges: isotherms and sequential extraction. Chemosphere 58:493–505

    Article  CAS  Google Scholar 

  • Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316

    Article  CAS  Google Scholar 

  • Vieira MGA, Oisiovici RM, Gimenes ML, Silva MGC (2008) Biosorption of chromium (VI) using a Sargassum sp. packed bed column. Bioresour Technol 99:3094–3099

    Article  CAS  Google Scholar 

  • Volesky B (1994) Advances in biosorption of metals: selection of biomass types. FEMS Microbiol Rev 14:291–302

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  CAS  Google Scholar 

  • Whitton BA, Diaz BM (1981) Influence of environmental facors on photosynthetic species composition in highly acidic waters. Verh Int Ver Theor Angew Limnol 21:1459–1465

    Google Scholar 

  • Wilde EW, Benemanni JR (1993) Bioremoval of heavy metals by the use of microalgae. Biotechnol Adv 11:781–812

    Article  CAS  Google Scholar 

  • Yakubu NA, Dudeney AWL (1986) Biosorption of uranium with Aspergillus niger. In: Eccles H, Hunt S (eds) Immobilization of ions by biosorption. Ellis Horwood, Chichester, pp 183–200

    Google Scholar 

  • Yan G, Viraraghavan T (2003) Heavy-metal removal from aqueous solution by fungus. Water Res 37:4486–4496

    Article  CAS  Google Scholar 

  • Zafar S, Aqil F, Ahmed I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98:2557–2561

    Article  CAS  Google Scholar 

  • Zajic JE, Chiu YS (1972) Recovery of heavy metals by microbes. Dev Ind Microbiol 13:91–100

    CAS  Google Scholar 

  • Zarrouk C (1966) Contribution à l’étude d’une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et photosynthese de Spirulina maxima Geitler. Ph.D. Thesis, University of Paris

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, B.K., Roy, A., Singh, S. et al. Eukaryotes in acidic mine drainage environments: potential applications in bioremediation. Rev Environ Sci Biotechnol 8, 257–274 (2009). https://doi.org/10.1007/s11157-009-9161-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-009-9161-3

Keywords

Navigation