Advertisement

Interactions of aqueous U(VI) with soil minerals in slightly alkaline natural systems

  • Nikolla P. QafokuEmail author
  • Jonathan P. Icenhower
Review Paper

Abstract

Uranium (U) is a common contaminant at numerous surface and subsurface sites in proximity to areas involved with weapons manufacturing and atomic energy related activities. This paper covers some important aspects of the aqueous hexavalent uranium [U(VI)] interactions with soil minerals that are present in contaminated soils and sediments. The retention of U via interactions with soil minerals has significant consequences for the prediction of its short- and long-term behavior in soils and geological systems. Studies of the nature and type of these interactions have provided the necessary evidence for assessing the geochemical behavior of U in natural systems under different physical, biogeochemical, hydrological, and reducing or oxidizing conditions. Over the last 20 years, aqueous U(VI): soil mineral interactions have been studied by geochemists, soil chemists, clay and soil mineralogists, and the progress in some areas is remarkable. Although a mechanistic description and understanding of the complex interactions involving U and soil minerals in natural systems is currently difficult, results from carefully designed and executed field and laboratory experiments with these materials have improved our understanding of the heterogeneous system’s behavior and U contaminant mobility and transport. There are, however, areas that warrant further exploration and study. Numerous research publications were reviewed in this paper to present recent important findings to reveal the current level of the understanding of the U(VI) interactions with soil minerals, and to provide ideas for future needs and research directions.

Keywords

Uranium U(VI) U(IV) Adsorption Desorption Redox reactions Soils Sediments Heterogeneous natural media Soil minerals Fe oxides Phyllosilicates Calcite 

Notes

Acknowledgments

This work was partially supported by the U.S. Department of Energy (DOE)––Environmental Remediation Sciences Program (ERSP), through Dr. Philip E. Long (Pricipal Investigator) IFC project, Rifle, Colorado, USA. Pacific Northwest National Laboratory is operated for the DOE by Battelle Memorial Institute under Contract DE-AC06-76RLO 1830.

References

  1. Allison JD, Brown DS, Novo-Gradac KJ (1991) MINTEQA2/PRODEFA2, A geochemical assessment model for environmental systems: version 3.0 user’s manual. Environmental Protection Agency, AthensGoogle Scholar
  2. Allison JD, Brown DS, Novo-Gradac KJ (1998) MINTEQA2/PRODEFA2, A geochemical assessment model for environmental systems: user manual supplement for version 4.0. Environmental Protection Agency, AthensGoogle Scholar
  3. Ames LL, McGarrah JE, Walker BA (1983) Sorption of uranium and radium by biotite, muscovite, and phlogopite. Clays Clay Miner 31:343–351. doi: 10.1346/CCMN.1983.0310503 Google Scholar
  4. Anderson LD, Kent DB, Davis JA (1994) Batch experiments characterizing the reduction of Cr(VI) using suboxic material from a mildly reducing sand and gravel aquifer. Environ Sci Technol 28:178–185. doi: 10.1021/es00050a025 Google Scholar
  5. Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R et al (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891. doi: 10.1128/AEM.69.10.5884-5891.2003 Google Scholar
  6. Arai Y, McBeath M, Bargar JR, Joye J, Davis JA (2006) Uranyl adsorption and surface speciation at the imogolite-water interface: self-consistent spectroscopic and surface complexation models. Geochim Cosmochim Acta 70:2492–2509. doi: 10.1016/j.gca.2006.02.013 Google Scholar
  7. Arai Y, Marcus MK, Tamura N, Davis JA, Zachara JM (2007) Spectroscopic evidence for uranium bearing precipitates in vadose zone sediments at the Hanford 300-area site. Environ Sci Technol 41:4633–4639. doi: 10.1021/es062196u Google Scholar
  8. Arnold T, Zorn T, Benhard G, Nitsche H (1998) Sorption of uranium(VI) onto phyllite. Chem Geol 151:129–141. doi: 10.1016/S0009-2541(98)00075-8 Google Scholar
  9. Arnold T, Zorn T, Zanker H, Bernhard G, Nitsche H (2001) Sorption behavior of U(VI) on phyllite: experiments and modeling. J Contam Hydrol 47:219–231. doi: 10.1016/S0169-7722(00)00151-0 Google Scholar
  10. Arnold T, Utsunomiya S, Geipel G, Ewing RC, Baumann N, Brendler V (2006) Adsorbed U(VI) surface species on muscovite identified by laser fluorescence spectroscopy and transmission electron microscopy. Environ Sci Technol 40:4646–4652. doi: 10.1021/es052507l Google Scholar
  11. Baik MH, Cho WJ, Han PS (2004a) Sorption of U(VI) onto granite surfaces: a kinetic approach. J Radioanal Nucl Chem 260:495–502. doi: 10.1023/B:JRNC.0000028207.55356.ec Google Scholar
  12. Baik MH, Hyun SP, Cho WJ, Hahn PS (2004b) Contribution of minerals to the sorption of U(VI) on granite. Radiochim Acta 92:663–669. doi: 10.1524/ract.92.9.663.54980 Google Scholar
  13. Bargar JR, Reitmeyer R, Davis JA (1999) Spectroscopic confirmation of uranium(VI)-carbonato adsorption complexes on hematite. Environ Sci Technol 33:2481–2484. doi: 10.1021/es990048g Google Scholar
  14. Bargar JR, Reitmeyer R, Lenhart JJ, Davis JA (2000) Characterization of U(VI)-carbonate ternary complexes on hematite: EXAFS and electrophoretic mobility measurements. Geochim Cosmochim Acta 64:2737–2749. doi: 10.1016/S0016-7037(00)00398-7 Google Scholar
  15. Baumann N, Brendler V, Arnold T, Geipel G, Bernhard G (2005) Uranyl sorption onto gibbsite studied by time-resolved laser-induced fluorescence spectroscopy (TRUS). J Coll Inter Sci 290:318–324Google Scholar
  16. Benes P, Kratzer K, Vlckova S, Sebestova E (1998) Adsorption of uranium on clay and the effect of humic substances. Radiochim Acta 82:367–373Google Scholar
  17. Bernhard G, Geipel G, Reich T, Brendler V, Amayri S, Nitsche H (2001) Uranyl(VI) carbonate complex formation: validation of the Ca2UO2(CO3)3 (aq.) species. Radiochim Acta 89:511–518. doi: 10.1524/ract.2001.89.8.511 Google Scholar
  18. Bigham JM, Fitzpatrick RW, Schulze DG (2002) Iron oxides. In: Dixon JB, Schulze DG (eds) Soil mineralogy with environmental applications, vol SSSA Book Series No. 7. Soil Science Society of America, Inc., Madison, WI, pp 323–366Google Scholar
  19. Bond DL, Davis JA, Zachara JM (2007) Uranium(VI) release from contaminated vadose zone sediments: estimation of potential contributions from dissolution and desorption. In: Barnett MO, Kent DB (eds) Adsorption of metals by Geomedia II. Academic Press, San Diego, pp 379–420Google Scholar
  20. Bostick BC, Fendorf S, Barnett MO, Jardine PM, Brooks SC (2002) Uranyl surface complexes formed on subsurface media from DOE facilities. Soil Sci Soc Am J 66:99–108Google Scholar
  21. Boyanov MI, O’Loughlin EJ, Roden EE, Fein JB, Kemner KM (2007) Adsorption of Fe(II) and U(VI) to carboxyl-functionalized microspheres: the influence of speciation on uranyl reduction studied by titration and XAFS. Geochim Cosmochim Acta 71:1898–1912. doi: 10.1016/j.gca.2007.01.025 Google Scholar
  22. Braithwaite A, Livens FR, Richardson S, Howe MT, Goulding KWT (1997) Kinetically controlled release of uranium from soils. Eur J Soil Sci 48:661–673. doi: 10.1046/j.1365-2389.1997.00121.x Google Scholar
  23. Braithwaite A, Richardson S, Moyes LN, Livens FR, Bunker DJ, Hughes CR (2000) Sorption kinetics of uranium-238 and neptunium-237 on glacial sediment. Czech J Phys 50:265–269. doi: 10.1023/A:1022842808820 Google Scholar
  24. Brooks SC, Fredrickson JK, Carroll SL, Kennedy DW, Zachara JM, Plymale AE et al (2003) Inhibition of bacterial U(VI) reduction by calcium. Environ Sci Technol 37:1850–1858. doi: 10.1021/es0210042 Google Scholar
  25. Carroll SA, Bruno J (1991) Mineral-solution interactions in the U(VI)-CO2-H2O system. Radiochim Acta 52(53):187–193Google Scholar
  26. Carroll SA, Bruno J, Petit J-C, Dran J-C (1992) Interactions of U(VI), Nd, and Th(IV) at the calcite-solution interface. Radiochim Acta 58(59):245–252Google Scholar
  27. Catalano JG, Brown GE (2004) Analysis of uranyl-bearing phases by EXAFS spectroscopy: interferences, multiple scattering, accuracy of structural parameters, and spectral differences. Am Min 89:1004–1021Google Scholar
  28. Catalano JG, Brown GE (2005) Uranyl adsorption onto montmorillonite: evaluation of binding sites and carbonate complexation. Geochim Cosmochim Acta 69:2995–3005. doi: 10.1016/j.gca.2005.01.025 Google Scholar
  29. Catalano JG, McKinley JP, Zachara JM, Heald SM, Smith SC, Brown GE (2006) Changes in uranium speciation through a depth sequence of contaminated Hanford sediments. Environ Sci Technol 40:2517–2524. doi: 10.1021/es0520969 Google Scholar
  30. Chadwick O, Nettleton WD (1990) Micromorphologic evidence of adhesive and cohesive forces in soil cementation. Soil Sci 19:207–212. doi: 10.1016/S0166-2481(08)70332-5 Google Scholar
  31. Charlet L, Silvester E, Liger E (1998) N-compound reduction and actinide immobilization in surfacial fluids by Fe(II):the surface =FeIIOFeIIOH0 species, as major reductant. Chem Geol 151:85–93. doi: 10.1016/S0009-2541(98)00072-2 Google Scholar
  32. Cheng T, Barnett MO, Roden EE, Zhuang JL (2006) Effects of solid-to-solution ratio on uranium(VI) adsorption and its implications. Environ Sci Technol 40:3243–3247. doi: 10.1021/es051771b Google Scholar
  33. Clark DL, Hobart DE, Neu MP (1995) Actinide carbonate complexes and their importance in actinide environmental chemistry. Chem Rev 95:25–48. doi: 10.1021/cr00033a002 Google Scholar
  34. Cornell RM, Schwertmann U (1996) The iron oxides. VCH Publ, WeinheimGoogle Scholar
  35. Cornell RM, Schwertmann U (2003) The iron oxides. Structure, properties, reactions, occurrences and uses, 2nd edn. WILEY-VCHGoogle Scholar
  36. Culver TB, Hallisey SP, Sahoo D, Deitsch JJ, Smith JA (1997) Modeling the desorption of organic contaminants from long-term contaminated soil using distributed mass transfer rates. Environ Sci Technol 31:1581–1588. doi: 10.1021/es9600946 Google Scholar
  37. Curtis GP, Fox P, Kohler M, Davis JA (2004) Comparison of in situ uranium Kd values with a laboratory determined surface complexation model. Appl Geochem 19:1643–1653. doi: 10.1016/j.apgeochem.2004.03.004 Google Scholar
  38. Curtis GP, Davis JA, Naftz DL (2006) Simulation of reactive transport of uranium(VI) in groundwater with variable chemical conditions. Water Resour Res 42:W04404. doi: 10.1029/2005WR003979 Google Scholar
  39. Davis JA (2001) Surface complexation modeling of uranium(VI) adsorption on natural mineral assemblages. U.S. Geological Survey, NUREG/CR–6708Google Scholar
  40. Davis JA, Curtis GP (2003) Application of surface complexation modeling to describe uranium(VI) adsorption and retardation at the uranium mill tailings site at Naturita, Colorado. NUREG Report CR-6820. U.S. Nuclear Regulatory Commission, RockvilleGoogle Scholar
  41. Davis JA, Meece DE, Kohler M, Curtis GP (2004) Approaches to surface complexation modeling of Uranium(VI) adsorption on aquifer sediments. Geochim Cosmochim Acta 68:3621–3641. doi: 10.1016/j.gca.2004.03.003 Google Scholar
  42. Davis JA, Curtis GP, Wilkins MJ, Kohler M, Fox P, Naftz DL et al (2006) Processes affecting transport of uranium in a suboxic aquifer. Phys Chem Earth 31:548–555Google Scholar
  43. de Jong WA, Apra E, Windus TL, Nichols JA, Harrison RJ, Gutowski KE et al (2005) Complexation of the carbonate, nitrate, and acetate anions with the uranyl dication: density functional studies with relativistic effective core potentials. J Phys Chem A 109:11568–11577. doi: 10.1021/jp0541462 Google Scholar
  44. Dodge CJ, Francis AJ, Gillow JB, Halada GP, Eng C, Clayton CR (2002) Association of uranium with iron oxides typically formed on corroding steel surfaces. Environ Sci Technol 36:3504–3511. doi: 10.1021/es011450+ Google Scholar
  45. Dong WM, Brooks SC (2006) Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metals (Mg2+, Ca2+, Sr2+, and Ba2+) using anion exchange method. Environ Sci Technol 40:4689–4695. doi: 10.1021/es0606327 Google Scholar
  46. Dong W, Ball WP, Liu C, Wang Z, Stone AT, Bai J et al (2005) Influence of calcite and dissolved calcium on uranium(VI) sorption to a Hanford subsurface sediment. Environ Sci Technol 39:7949–7955. doi: 10.1021/es0505088 Google Scholar
  47. Dong WM, Xie GB, Miller TR, Franklin MP, Oxenberg TP, Bouwer EJ et al (2006) Sorption and bioreduction of hexavalent uranium at a military facility by the Chesapeake Bay. Environ Pollut 142:132–142. doi: 10.1016/j.envpol.2005.09.008 Google Scholar
  48. Duff MC, Amrhein C (1996) Uranium(VI) adsorption on goethite and soil in carbonate solutions. Soil Sci Soc Am J 60:1393–1400Google Scholar
  49. Duff MC, Hunter DB, Bertsch PM, Amrhein C (1999) Factors influencing uranium reduction and solubility in evaporation pond sediments. Biogeochem 45:95–114Google Scholar
  50. Duff MC, Coughlin JU, Hunter DB (2002) Uranium co-precipitation with iron oxide minerals. Geochim Cosmochim Acta 66:3533–3547. doi: 10.1016/S0016-7037(02)00953-5 Google Scholar
  51. Elsner M, Schwarzenbach RP, Haderlein SB (2004a) Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants. Environ Sci Technol 38:799–807. doi: 10.1021/es0345569 Google Scholar
  52. Elsner M, Haderlein SB, Kellerhais T et al (2004b) Mechanisms and products of surface-mediated reductive dehalogenation of carbon tetrachloride by Fe(II) on goethite. Environ Sci Technol 38:2058–2066. doi: 10.1021/es034741m Google Scholar
  53. Elzinga EJ, Tait CD, Reeder RJ, Rector KD, Donohoe RJ, Morris DE (2004) Spectroscopic investigation of U(VI) sorption at the calcite-water interface. Geochim Cosmochim Acta 68:2437–2448. doi: 10.1016/j.gca.2003.09.023 Google Scholar
  54. Finch RJ, Murakami T (1999) Systematics, Paragenesis of U Minerals. In: Burns PC, Finch RJ (eds) Uranium: mineralogy, geochemistry and the environment, vol 38. Mineralogical Society of America, Washington, pp 91–179Google Scholar
  55. Fox PM, Davis JA, Zachara JM (2006) The effect of calcium on aqueous uranium(VI) speciation and adsorption to ferrihydrite and quartz. Geochim Cosmochim Acta 70:1379–1387. doi: 10.1016/j.gca.2005.11.027 Google Scholar
  56. Fredrickson JK, Zachara JM, Kennedy DW, Duff MC, Gorby YA, Li SMW et al (2000) Reduction of U(VI) in goethite (alpha-FeOOH) suspensions by a dissimilatory metal-reducing bacterium. Geochim Cosmochim Acta 64:3085–3098. doi: 10.1016/S0016-7037(00)00397-5 Google Scholar
  57. Fredrickson JK, Zachara JM, Kennedy DW, Kukkadapu R, McKinley JP, Heald SM et al (2004) Reduction of TcO4 by sediment-associated biogenic Fe(II). Geochim Cosmochim Acta 68:3171–3187. doi: 10.1016/j.gca.2003.10.024 Google Scholar
  58. Froideval A, Del Nero M, Barillon R, Hommet J, Mignot G (2003) pH dependence of uranyl retention in a quartz/solution system: an XPS study. J Coll Inter Sci 266:221–235. doi: 10.1016/S0021-9797(03)00528-9 Google Scholar
  59. Fuller CC, Bargar JR, Davis JA, Piana MJ (2002) Mechanisms of uranium interactions with hydroxyapatite: implications for groundwater remediation. Environ Sci Technol 36:158–165. doi: 10.1021/es0108483 Google Scholar
  60. Fuller CC, Bargar JR, Davis JA (2003) Molecular-scale characterization of uranium sorption by bone apatite materials for a permeable reactive barrier demonstration. Environ Sci Technol 37:4642–4649. doi: 10.1021/es0343959 Google Scholar
  61. Gabriel U, Gaudet JP, Spadini L, Charlet L (1998) Reactive transport of uranyl in a goethite column: an experimental and modeling study. Chem Geol 151:107–128. doi: 10.1016/S0009-2541(98)00074-6 Google Scholar
  62. Gamerdinger AP, Kaplan DI (2000) Application of a continuous-flow centrifugation method for solute transport in disturbed, unsaturated sediments and illustration of mobile-immobile water. Water Resour Res 36:1747–1755. doi: 10.1029/2000WR900063 Google Scholar
  63. Gamerdinger AP, Kaplan DI, Wellman DM, Serne JN (2001a) Two-region flow and decreased sorption of uranium(VI) during transport in Hanford groundwater and unsaturated sands. Water Resour Res 37:3155–3162. doi: 10.1029/2001WR000247 Google Scholar
  64. Gamerdinger AP, Kaplan DI, Wellman DM, Serne JN (2001b) Two-region flow and rate-limited sorption of uranium(VI) during transport in an unsaturated silt loam. Water Resour Res 37:3147–3153. doi: 10.1029/2001WR000244 Google Scholar
  65. Geipel G, Reich T, Brendler V, Bernhard G, Nitsche H (1997) Laser and X-ray spectroscopic studies of uranium-calcite interface phenomena. J Nucl Mater 248:408–411. doi: 10.1016/S0022-3115(97)00136-0 Google Scholar
  66. Giammar DE, Hering JG (2001) Time scales for sorption-desorption and surface precipitation of uranyl on goethite. Environ Sci Technol 35:3332–3337. doi: 10.1021/es0019981 Google Scholar
  67. Giaquinta DM, Soderholm L, Yuchs SE, Wasserman SR (1997) The speciation of uranium in a smectite clay: evidence for catalysed uranyl reduction. Radiochim Acta 76:113–121Google Scholar
  68. Gorby YA, Lovley DR (1992) Enzymatic uranium precipitation. Environ Sci Technol 26:205–207. doi: 10.1021/es00025a026 Google Scholar
  69. Gorman-Lewis D, Elias PE, Fein JB (2005) Adsorption of aqueous uranyl complexes onto Bacillus subtilis cells. Environ Sci Technol 39:4906–4912. doi: 10.1021/es047957c Google Scholar
  70. Greathouse JA, Cygan RT (2005) Molecular dynamics simulation of uranyl(VI) adsorption equilibria onto an external montmorillonite surface. Phys Chem Chem Phys 7:3580–3586. doi: 10.1039/b509307d Google Scholar
  71. Greathouse JA, Cygan RT (2006) Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations. Environ Sci Technol 40:3865–3871. doi: 10.1021/es052522q Google Scholar
  72. Greathouse JA, O’Brien RJ, Bemis G, Pabalan RT (2002) Molecular dynamics study of aqueous uranyl interactions with quartz(010). J Phys Chem B 106:1646–1655. doi: 10.1021/jp013250q Google Scholar
  73. Grenthe I, Fuger J, Konings RJM, Lemire RJ, Muller AB, Nguyen-Trung C et al (1992) Chemical thermodynamics of uranium. North Holland, AmsterdamGoogle Scholar
  74. Haggerty R, Gorelick SM (1995) Multiple-rate mass transfer for modeling diffusion and surface reactions in media with pore-scale heterogeneity. Water Resour Res 31:2383–2400Google Scholar
  75. Haggerty R, Gorelick SM (1998) Modeling mass transfer processes in soil column with pore-scale heterogeneity. Soil Sci Soc Am J 62:62–74Google Scholar
  76. Haggerty R, Harvey CF, von Schwerin CF, Meigs LC (2004) What controls the apparent timescale of solute mass transfer in aquifers and soils? A comparison of experimental results. Water Resour Res 40:W01510. doi: 10.1029/2002WR001716 Google Scholar
  77. Harvey CF, Gorelick SM (1995) Temporal moment-generating equations: modeling transport and mass transfer in heterogeneous aquifers. Water Resour Res 31:1895–1911. doi: 10.1029/95WR01231 Google Scholar
  78. Harvey JW, Saiers JE, Newlin JT (2005) Solute transport and storage mechanisms in wetlands of the Everglades, south Florida. Water Resour Res 41(W05009):1–14. doi:  10.1029/2004WR003507 Google Scholar
  79. Hemond HF, Fechner-Levy EJ (2000) Chemical fate and transport in the environment. Academic Press, San DiegoGoogle Scholar
  80. Ho CH, Miller NH (1986) Adsorption of uranyl species from bicarbonate solution onto hematite particles. J Colloid Interface Sci 110:165–171. doi: 10.1016/0021-9797(86)90365-6 Google Scholar
  81. Hollenbeck KJ, Harvey CF, Haggerty R, Werth CJ (1999) A method for estimating distribution of mass transfer rate coefficients with application to purging and batch experiments. J Contam Hydrol 37:367–388. doi: 10.1016/S0169-7722(98)00165-X Google Scholar
  82. Hsi CD, Langmuir D (1985) Adsorption of uranyl onto ferric oxyhydroxides: application of the surface complexation site-binding model. Geochim Cosmochim Acta 49:1931–1941. doi: 10.1016/0016-7037(85)90088-2 Google Scholar
  83. Hyun SP, Cho YH, Hahn PS, Kim SJ (2001) Sorption mechanism of U(VI) on a reference montmorillonite: binding to the internal and external surfaces. J Radioanal Nucl Chem 250:55–62. doi: 10.1023/A:1013212130177 Google Scholar
  84. Ilton ES, Haiduc A, Moses CO, Heald SM, Elbert DC, Veblen DR (2004) Heterogeneous reduction of uranyl by micas: crystal chemical and solution controls. Geochim Cosmochim Acta 68:2417–2435. doi: 10.1016/j.gca.2003.08.010 Google Scholar
  85. Ilton ES, Qafoku NP, Liu CX, Moore DA, Zachara JM (2008) Advective removal of intraparticle uranium from contaminated Vadose zone sediments, Hanford, US. Environ Sci Technol 42:1565–1571. doi: 10.1021/es071113m Google Scholar
  86. Jang JH, Dempsey BA, Burgos WD (2007) A model-based evaluation of sorptive reactivities of hydrous ferric oxide and hematite for U(VI). Environ Sci Technol 41:4305–4310. doi: 10.1021/es070068f Google Scholar
  87. Jordan RB (1998) Reaction mechanisms of inorganic and organometallic systems, 2nd edn. Oxford University Press Oxford, New YorkGoogle Scholar
  88. Kalmykov SN, Choppin GR (2000) Mixed Ca2+/UO2 2+/CO3 2− complex formation at different ionic strengths. Radiochim Acta 88:603–606. doi: 10.1524/ract.2000.88.9-11.603 Google Scholar
  89. Kampf N, Scheinost AC, Schulze DG (2000) Oxide minerals. In: Sumner ME (ed) Handbook of soil science. CRC Press, Boca RatonGoogle Scholar
  90. Kaplan DI, Gervais TL, Krupka KM (1998) Uranium(VI) sorption to sediments under high pH and ionic strength conditions. Radiochim Acta 80:201–211Google Scholar
  91. Kelly SD, Newville M, Cheng L, Kemner KM, Sutton SR, Fenter P et al (2003) Uranyl incorporation in natural calcite. Environ Sci Technol 37:1284–1287. doi: 10.1021/es025962f Google Scholar
  92. Kelly SD, Kemner KM, Brooks SC (2007) X-ray absorption spectroscopy identifies calcium-uranyl-carbonate complexes at environmental concentrations. Geochim Cosmochim Acta 71:821–834. doi: 10.1016/j.gca.2006.10.013 Google Scholar
  93. Kilislioglu A, Bilgin B (2002) Adsorption of uranium on halloysite. Radiochim Acta 90:155–160. doi: 10.1524/ract.2002.90.3_2002.155 Google Scholar
  94. Klupinski TP, Chin YP, Traina SJ (2004) Abiotic degradation of pentachloronitrobenzene by Fe(II): reaction on goethite and iron oxide nanoparticles. Environ Sci Technol 38:4353–4360. doi: 10.1021/es035434j Google Scholar
  95. Kohler M, Curtis GP, Kent DB, Davis JA (1996) Experimental investigation and modeling of uranium(VI) transport under variable chemical conditions. Water Resour Res 32:3539–3551CrossRefGoogle Scholar
  96. Kohler M, Curtis GP, Meece DE, Davis JA (2004) Methods for estimating adsorbed uranium(VI) and distribution coefficients of contaminated sediments. Environ Sci Technol 38:240–247. doi: 10.1021/es0341236 Google Scholar
  97. Kohut CK, Warren CJ (2002) Chlorites. In: Dixon JB, Schulze DG (eds) Soil minerals with environmental applications. Soil Science Society of America, Inc., Madison, pp 531–584Google Scholar
  98. Kowal-Fouchard A, Drot R, Simoni E, Ehrhardt JJ (2004) Use of spectroscopic techniques for uranium(VI)/montmorillonite interaction modeling. Environ Sci Technol 38:1399–1407. doi: 10.1021/es0348344 Google Scholar
  99. Krepelova A, Sachs S, Bernhard G (2006) Uranium(VI) sorption onto kaolinite in the presence and absence of humic acid. Radiochim Acta 94:825–833. doi: 10.1524/ract.2006.94.12.825 Google Scholar
  100. Krepelova A, Brendler V, Sachs S, Baumann N, Bernhard G (2007) U(VI)-kaolinite surface complexation in absence and presence of humic acid studied by TRLFS. Environ Sci Technol 41:6142–6147. doi: 10.1021/es070419q Google Scholar
  101. Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Upper Saddle RiverGoogle Scholar
  102. Larese-Casanova P, Scherrer MM (2007) Fe(II) sorption on hematite: new insights based on spectroscopic measurements. Environ Sci Technol 41:471–477. doi: 10.1021/es0617035 Google Scholar
  103. Lefevre G, Noinville S, Fedoroff M (2006) Study of uranyl sorption onto hematite by in situ attenuated total reflection-infrared spectroscopy. J Coll Inter Sci 296:608–613. doi: 10.1016/j.jcis.2005.09.016 Google Scholar
  104. Li Z, Brusseau ML (2000) Nonideal transport of reactive solutes in heterogeneous porous media. 6. Microscopic and macroscopic approaches for incorporating heterogeneous rate-limited mass transfer. Water Resour Res 36:2853–2867. doi: 10.1029/2000WR900089 Google Scholar
  105. Li Z, Barry DA, Culligan-Hensley PJ, Bajracharya K (1994) Mass transfer in soils with local stratification of hydraulic conductivity. Water Resour Res 30:2891–2900. doi: 10.1029/94WR01218 Google Scholar
  106. Lichtner PC (1993) Scaling properties of time-space kinetic mass-transport equations and the local equilibrium limit. Am J Sci 293:257–296Google Scholar
  107. Lichtner PC (1996) Continuum formulation of multicomponent-multiphase reactive transport. Reactive transport in porous media, vol 34. pp 1–81Google Scholar
  108. Lichtner PC, Carey JW (2006) Incorporating solid solutions in reactive transport equations using a kinetic discrete-composition approach. Geochim Cosmochim Acta 70:1356–1378. doi: 10.1016/j.gca.2005.11.028 Google Scholar
  109. Liger E, Charlet L, Van Cappellen P (1999) Surface catalysis of uranium(VI) reduction by iron(II). Geochim Cosmochim Acta 63:2939–2955. doi: 10.1016/S0016-7037(99)00265-3 Google Scholar
  110. Lindberg JW, Peterson RE (2004) 300-FF-5 operable unit, Chapter 1.12 PNNL-14548. Pacific Northwest National Laboratory, RichlandGoogle Scholar
  111. Liu CX (2007) An ion diffusion model in semi-permeable clay materials. Environ Sci Technol 41:5403–5409. doi: 10.1021/es0624117 Google Scholar
  112. Liu C, Zachara JM, Qafoku OS, McKinley JP, Heald SM, Wang Z (2004a) Dissolution of uranyl microprecipitates in subsurface sediments at Hanford Site, WA. Geochim Cosmochim Acta 68:4519–4537. doi: 10.1016/j.gca.2004.04.017 Google Scholar
  113. Liu CX, Zachara JM, Felmy A, Gorby Y (2004b) An electrodynamics-based model for ion diffusion in microbial polysaccharides. Colloids Surf B Biointerfaces 38:55–65. doi: 10.1016/j.colsurfb.2004.08.003 Google Scholar
  114. Liu C, Zachara JM, Yantasee W, Majors PD, McKinley JP (2006) Microscopic reactive diffusion of uranium in the contaminated sediments at the Hanford site, USA: characterization and modeling. Water Resour Res 42(12):W12420. doi: 10.1029/2006WR005031 Google Scholar
  115. Livens FR, Jones MJ, Hynes AJ, Charnock JM, Mosselmans JFW, Hennig C et al (2004) X-ray absorption spectroscopy studies of reactions of technetium, uranium, and neptunium with mackinawite. J Environ Radioact 74:211–219. doi: 10.1016/j.jenvrad.2004.01.012 Google Scholar
  116. Lovley DR, Phillips EJP (1992) Bioremediation of uranium contamination with enzymatic uranium reduction. Environ Sci Technol 26:2228–2234. doi: 10.1021/es00035a023 Google Scholar
  117. Mason CFV, Turney WRJR, Thomson BM, Lu N, Longmire PA, Chisholm-Brause CJ (1997) Carbonate leaching of uranium from contaminated soils. Environ Sci Technol 31:2707–2711. doi: 10.1021/es960843j Google Scholar
  118. McKinley JP, Zachara JM, Liu CX, Heald SC, Prenitzer BI, Kempshall BW (2006) Microscale controls on the fate of contaminant uranium in the vadose zone, Hanford Site, Washington. Geochim Cosmochim Acta 70:1873–1887. doi: 10.1016/j.gca.2005.10.037 Google Scholar
  119. Meece DE, Benninger LK (1993) The coprecipitation of Pu and other radionuclides with CaCO3. Geochim Cosmochim Acta 57:1447–1458. doi: 10.1016/0016-7037(93)90005-H Google Scholar
  120. Missana T, Maffiotte C, Garcia-Gutierrez M (2003) Surface reactions kinetics between nanocrystalline magnetite and uranyl. J Coll Inter Sci 261:154–160. doi: 10.1016/S0021-9797(02)00227-8 Google Scholar
  121. Monger HC, Kelly EE (2002) Silica minerals. In: Dixon JB, Schulze DG (eds) Soil mineralogy with environmental applications. Soil Science Society of America, Inc., Madison, pp 611–636Google Scholar
  122. Moon HS, Komlos J, Jaffe PR (2007) Uranium reoxidation in previously bioreduced sediment by dissolved oxygen and nitrate. Environ Sci Technol 41:4587–4592. doi: 10.1021/es063063b Google Scholar
  123. Morel FMM, Hering JG (1993) Principles and applications of aquatic chemistry. Wiley, New YorkGoogle Scholar
  124. Morris DE (2002) Redox energetics and kinetics of uranyl coordination complexes in aqueous solution. Inorg Chem 41:3542–3547. doi: 10.1021/ic0201708 Google Scholar
  125. Morse JW, Shanbbag PM, Saito A, Choppin GR (1984) Interaction of uranyl ions in carbonate media. Chem Geol 42:85–99. doi: 10.1016/0009-2541(84)90007-X Google Scholar
  126. Moyes LN, Parkman RH, Charnock JM, Vaughan DJ, Livens FR, Hughes CR et al (2000) Uranium uptake from aqueous solution by interaction with goethite, lepidocrocite, muscovite, and maskinawite: an X-ray absorption spectroscopy study. Environ Sci Technol 34:1062–1068. doi: 10.1021/es990703k Google Scholar
  127. Muckett C, Sherman D, Rognarsdottir V (1998) The adsorption of uranium onto goethite and clinochlore, pp 118–119. The Synchrotron Radiation Source Scientific Reports, Geology and Mineralogy: http://srs.dl.ac.uk/Annual_Reports/AnRep97_98/Annexe/118_Muskett.pdf
  128. Murakami T, Sato T, Ohnuki T, Isobe H (2005) Field evidence for uranium nanocrystallization and its implications for uranium transport. Chem Geol 221:117. doi: 10.1016/j.chemgeo.2005.04.004 Google Scholar
  129. Neal AL, Amonette JE, Peyton BM, Geesey GG (2004) Uranium complexes formed at hematite surfaces colonized by sulfate-reducing bacteria. Environ Sci Technol 38:3019–3027. doi: 10.1021/es030648m Google Scholar
  130. Newton TW (1975) The kinetics of the oxidation-reduction reactions of uranium, neptunium, plutonium, and americium in aqueous solutions. ERDA Critical Review Series (TID-26506), NTIS, Springfield, Virginia, ERDA Critical Review Series (TID-26506), NTIS, Springfield, VirginiaGoogle Scholar
  131. Noubactep C (2005) Effect of selected ligands on the U(VI) immobilization by zerovalent iron. J Radioanal Nucl Chem 267:13–19. doi: 10.1007/s10967-006-0003-2 Google Scholar
  132. Noubactep C, Meinrath G, Dietrich P, Merkel B (2003) Mitigating uranium in groundwater: prospects and limitations. Environ Sci Technol 37:4304–4308. doi: 10.1021/es034296v Google Scholar
  133. Noubactep C, Meinrath G, Merkel BJ (2005) Investigating the mechanism of uranium removal by zerovalent iron. Environ Chem 2:235–242. doi: 10.1071/EN05003 Google Scholar
  134. Noubactep C, Sonnefeld J, Sauter M (2006) Uranium release from a natural rock under near-natural oxidizing conditions. J Radioanal Nucl Chem 267:591–602. doi: 10.1007/s10967-006-0092-y Google Scholar
  135. O’Loughlin EJ, Kelly SD, Cook RE, Csencsits R, Kemner KM (2003) Reduction of uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of UO2 nanoparticles. Environ Sci Technol 37:721–727. doi: 10.1021/es0208409 Google Scholar
  136. Pabalan RT, Turner DR (1997) Uranium(+6) sorption on montmorillonite: experimental and surface complexation modeling study. Aquat Geochem 2:203–226. doi: 10.1007/BF00119855 Google Scholar
  137. Pabalan RT, Turner DR, Bertetti FP, Prikryl JD (1998) Uranium(VI) sorption onto selected mineral surfaces. In: Jenne EA (ed) Adsorption of metals by geomedia. Academic Press, San Diego, pp 99–130Google Scholar
  138. Payne TE, Airey PL (2006) Radionuclide migration at the Koongarra uranium deposit, Northern Australia––Lessons from the Alligator Rivers analogue project. Phys Chem Earth 31:572–586Google Scholar
  139. Payne TE, Lumpkin GR, Waite TD (1998) Uranium(VI) adsorption on model minerals. In: Jenne EA (ed) Adsorption of metals by geomedia. Academic Press, San Diego, pp 75–99Google Scholar
  140. Payne TE, Davis JA, Lumpkin GR, Chisari R, Waite TD (2004) Surface complexation model of uranyl sorption on Georgia kaolinite. Appl Clay Sci 26:151–162. doi: 10.1016/j.clay.2003.08.013 Google Scholar
  141. Pecher K, Haderlein SB, Schwarzenbach RP (2002) Reduction of polyhalogenated methanes by surface-bound Fe(II) in aqueous suspensions of iron oxides. Environ Sci Technol 36:1734–1741. doi: 10.1021/es011191o Google Scholar
  142. Phillippi JM, Loganathan VA, McIndoe MJ, Barnett MO, Clement TP, Roden EE (2007) Theoretical solid/solution ratio effects on adsorption and transport: uranium(VI) and carbonate. Soil Sci Soc Am J 71:329–335. doi: 10.2136/sssaj2006.0159 Google Scholar
  143. Prikryl JD, Jain A, Turner DR, Pabalan RT (2001) Uranium(VI) sorption behavior on silicate mineral mixtures. J Contam Hydrol 47:241–253. doi: 10.1016/S0169-7722(00)00153-4 Google Scholar
  144. Qafoku NP, Amonette JE (2003) Iron oxides. In: Lal R (ed) Encyclopedia of soil science, vol. Marcel Dekker, Inc., New York. doi: 10.1081/E-ESS 120006595
  145. Qafoku NP, Ainsworth CC, Szecsody JE, Bish DL, Young JS, McCready DE et al (2003) Aluminum effect on dissolution and precipitation under hyperalkaline conditions: II. Solid phase transformations. J Environ Qual 32:2364–2372Google Scholar
  146. Qafoku NP, Zachara JM, Liu C, Gassman PL, Qafoku OS, Smith SC (2005) Kinetic desorption and sorption of U(VI) during reactive transport in a contaminated Hanford sediment. Environ Sci Technol 39:3157–3165. doi: 10.1021/es048462q Google Scholar
  147. Qafoku NP, Zachara JM, Liu C, Smith SC, Kukkadapu R, Gassman P et al (2008a) Factors controlling U(VI) adsorption and desorption rate and extent in two subsurface sediments of common provenance. Geochim Cosmochim Acta (to be submitted)Google Scholar
  148. Qafoku NP, Zachara JM, Liu C, Wang Z, Arey B, Gassman P et al (2008b) Evaluation of U(VI) mobility in advancing and retreating zones of a deep vadose zone plume: the role of natural calcite. Geochim Cosmochim Acta (to be submitted)Google Scholar
  149. Read D, Lawless TA, Sims RJ, Butter KR (1993) Uranium migration through intact sandstone cores. J Contam Hydrol 13:277–289. doi: 10.1016/0169-7722(93)90066-2 Google Scholar
  150. Reeder RJ, Nugent M, Lamble GM, Tait CD, Morris DE (2000) Uranyl incorporation into calcite and aragonite: XAFS and luminescence studies. Environ Sci Technol 34:638–644. doi: 10.1021/es990981j Google Scholar
  151. Reeder RJ, Nugent M, Tait CD, Morris DE, Heald SM, Beck KM et al (2001) Coprecipitation of uranium(VI) with calcite: XAFS, micro-XAS, and luminescence characterization. Geochim Cosmochim Acta 65:3491–3503. doi: 10.1016/S0016-7037(01)00647-0 Google Scholar
  152. Reeder RJ, Elzinga EJ, Tait CD, Rector KD, Donohoe RJ, Morris DE (2004) Site-specific incorporation of uranyl carbonate species at the calcite surface. Geochim Cosmochim Acta 68:4799–4808. doi: 10.1016/j.gca.2004.05.031 Google Scholar
  153. Reedy OC, Jardine PM, Wilson GV, Selim HM (1996) Quantifying the diffuse mass transfer of nonreactive solute in columns of fractured saprolite using flow interruption. Soil Sci Soc Am J 60:1376–1384Google Scholar
  154. Reich T, Moll H, Arnold T, Denecke MA, Henning C, Geipel G et al (1998) An EXAFS study of uranium(VI) sorption onto silica gel and ferrihydrite. J Electron Spectrosc Relat Phenom 96:237–243. doi: 10.1016/S0368-2048(98)00242-4 Google Scholar
  155. Riley RG, Zachara JM, Wobber FJ (1992) Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research; DOE/ER-0547T DOE/ER-0547T. U.S. Department of Energy, Office of Energy Research, Washington, DCGoogle Scholar
  156. Rosentreter JJ, Quarder HS, Smith RW, McLing T (1998) Uranium sorption onto natural sands as a function of sediment characteristics and solution pH. In: Jenne EA (ed) Adsorption of metals by geomedia. Academic Press, San Diego, pp 181–208Google Scholar
  157. Rovira M, El Aamrani FZ, Duro L, Casas I, de Pablo J, Brouno J et al (2000) Experimental study and modeling of uranium(VI) transport through ferrous olivine rock columns. Radiochim Acta 88:6665–6671. doi: 10.1524/ract.2000.88.9-11.665 Google Scholar
  158. Rovira M, El Aamrani S, Duro L, Gimenez J, de Pablo J, Bruno J (2007) Interaction of uranium with in situ anoxically generated magnetite on steel. J Hazard Mater 147:726–731. doi: 10.1016/j.jhazmat.2007.01.067 Google Scholar
  159. Savenko AV (2001) Sorption of UO2 2+ on calcium carbonate. Radiochemistry 43:193–196. doi: 10.1023/A:1012827617901 Google Scholar
  160. Schulze DG (2002) An introduction of soil mineralogy. In: Dixon JB, Schulze DG (eds) Soil mineralogy with environmental applications. Soil Science Society of America, Inc., Madison, pp 1–36Google Scholar
  161. Schwertmann U, Taylor RM (1989) Iron oxides. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Science Society of America, MadisonGoogle Scholar
  162. Serne RJ, Schaef HT, Bjornstad BN, Williams BA, Lanigan DC, Horton DG et al (2001) Characterization of uncontaminated sediments from the Hanford Reservation-RCRA borehole core and composite samples PNNL-2001-1. Pacific Northwest National Laboratory, RichlandGoogle Scholar
  163. Serne JN, Brown CF, Schaef HT, Pierce EM, Lindberg MJ, Wang Z et al (2002) 300 Area uranium leach and adsorption project PNNL-14022. Pacific Northwest National Laboratory, RichlandGoogle Scholar
  164. Serne JN, Bjornstad BN, Horton DG, Lanigan DC, Lindenmeier CW, Lindberg JW et al (2004) Characterization of vadose zone sediments below the TX Tank Farm: Boreholes C3830, C3831, C3832 and RCRA borehole 299-W10-27. Report Number PNNL-14594. Pacific Northwest National Laboratory, Richland, WAGoogle Scholar
  165. Sposito G (1984) The surface chemistry of soils. Oxford University Press, New YorkGoogle Scholar
  166. Sposito G (1989) The chemistry of soils. Oxford University Press, New YorkGoogle Scholar
  167. Sposito G (2004) The surface chemistry of natural particles. Oxford University Press, New YorkGoogle Scholar
  168. Steefel CI, Van Cappellen P (1998) Reactive transport modeling of natural systems––Preface. J Hydrol (Amst) 209:1–7. doi: 10.1016/S0022-1694(98)00182-6 CrossRefGoogle Scholar
  169. Steefel CI, DePaolo DJ, Lichtner PC (2005) Reactive transport modeling: an essential tool and a new research approach for the Earth sciences. Earth Planet Sci Lett 240:539–558. doi: 10.1016/j.epsl.2005.09.017 Google Scholar
  170. Strathmann TJ, Stone AT (2003) Mineral surface catalysis of reactions between Fe-II and oxime carbamate pesticides. Geochim Cosmochim Acta 67:2775–2791. doi: 10.1016/S0016-7037(03)00088-7 Google Scholar
  171. Stumm W (1992) Chemistry of the solid-water interface. Processes at the mineral-water and particle-water interface in natural systems. Wiley, New YorkGoogle Scholar
  172. Stumm W, Morgan JJ (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd edn. Wiley, New YorkGoogle Scholar
  173. Sylwester ER, Hudson EA, Allen PG (2000) The structure of uranium(VI) sorption complexes on silica, alumina, and montmorillonite. Geochim Cosmochim Acta 64:2431–2438. doi: 10.1016/S0016-7037(00)00376-8 Google Scholar
  174. Szecsody JE, Cantrell KJ, Krupka KM, Resch CT, Williams MD, Fruchter JS (1998) Uranium mobility during in situ redox manipulation of the 100 area of the Hanford site. PNNL-12048-UC-2000. Pacific Northwest National Laboratory, Richland, WAGoogle Scholar
  175. Todorov PT, Ilieva EN (2006) Contamination with uranium from natural and anthropological sources. Rom J Phys 51:27–34Google Scholar
  176. Tripathi VS (1983) Uranium transport modeling: geochemical data and sub-models. Stanford University, StanfordGoogle Scholar
  177. Ulrich KU, Rossberg A, Foerstendorf H, Zanker H, Scheinost AC (2006) Molecular characterization of uranium(VI) sorption complexes on iron(III)-rich acid mine water colloids. Geochim Cosmochim Acta 70:5469–5487. doi: 10.1016/j.gca.2006.08.031 Google Scholar
  178. Um W, Serne RJ, Brown CF, Last GV (2007a) U(VI) adsorption on aquifer sediments at the Hanford Site. J Contam Hydrol 93:255–269. doi: 10.1016/j.jconhyd.2007.03.002 Google Scholar
  179. Um W, Mattigod S, Serne RJ, Fryxell GE, Kim DH, Troyer LD (2007b) Synthesis of nanoporous zirconium oxophosphate and application for removal of U(VI). Water Res 41:3217–3226. doi: 10.1016/j.watres.2007.05.030 Google Scholar
  180. van Geen A, Robertson AP, Leckie JO (1994) Complexation of carbonate species at the goethite surface: implications for adsorption of metal ions in natural waters. Geochim Cosmochim Acta 58:2073–2086. doi: 10.1016/0016-7037(94)90286-0 Google Scholar
  181. van Genuchten MT, Wierenga PJ (1976) Mass transfer studies in sorbing porous media: I. Analytical solutions. Soil Sci Soc Am J 40:473–480Google Scholar
  182. van Genuchten MT, Wierenga PJ (1977) Mass transfer studies in sorbing porous media. II. Experimental evaluation with tritium-labeled water. Soil Sci Soc Am J 41:272–278Google Scholar
  183. Villalobos M, Trotz MA, Leckie JO (2001) Surface complexation modeling of carbonate effects on the adsorption of Cr(VI), Pb(II) and U(VI) on goethite. Environ Sci Technol 35:3849–3856. doi: 10.1021/es001748k Google Scholar
  184. Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Uranium(VI) adsorption to ferrihydrite: application of a surface complexation model. Geochim Cosmochim Acta 58:5465–5478. doi: 10.1016/0016-7037(94)90243-7 Google Scholar
  185. Waite TD, Davis JA, Fenton BR, Payne TE (2000) Approaches to modelling uranium(VI) adsorption on natural mineral assemblages. Radiochim Acta 88:687–693. doi: 10.1524/ract.2000.88.9-11.687 Google Scholar
  186. Wang S, Jaffe PR, Li G, Wang SW, Rabitz HA (2003) Simulating bioremediation of uranium-contaminated aquifers; uncertainty assessment of model parameters. J Contam Hydrol 64:283–307. doi: 10.1016/S0169-7722(02)00230-9 Google Scholar
  187. Wang Z, Zachara JM, Yantasee W, Gassman PL, Liu C, Joly AG (2004) Cryogenic laser induced fluorescence characterization of U(VI) in Hanford vadose zone pore waters. Environ Sci Technol 38:5591–5597. doi: 10.1021/es049512u Google Scholar
  188. Wang Z, Zachara JM, McKinley JP, Smith SC (2005) Cryogenic laser induced U(VI) fluorescence studies of the U(VI) substituted natural calcite: implications to U(VI) speciation in contaminated Hanford sediments. Environ Sci Technol 39:2651–2659. doi: 10.1021/es048448d Google Scholar
  189. Wazne M, Korfiatis GP, Meng XG (2003) Carbonate effects on hexavalent uranium adsorption by iron oxyhydroxide. Environ Sci Technol 37:3619–3624. doi: 10.1021/es034166m Google Scholar
  190. Wazne M, Meng XG, Korfiatis GP, Christodoulatos C (2006) Carbonate effects on hexavalent uranium removal from water by nanocrystalline titanium dioxide. J Hazard Mater 136:47–52. doi: 10.1016/j.jhazmat.2005.11.010 Google Scholar
  191. Webb SM, Fuller CC, Tebo BM, Bargar JR (2006) Determination of uranyl incorporation into biogenic manganese oxides using X-ray absorption spectroscopy and scattering. Environ Sci Technol 40:771–777. doi: 10.1021/es051679f Google Scholar
  192. Williams AGB, Scherrer MM (2004) Spectroscopic evidence for Fe(II)–Fe(III) electron transfer at the iron oxide–water interface. Environ Sci Technol 38:4782–4790. doi: 10.1021/es049373g Google Scholar
  193. Yabusaki SB, Fang Y, Long PE, Resch CT, Peacock AD, Komlos J et al (2007) Uranium removal from groundwater via in situ biostimulation: field-scale modeling of transport and biological processes. J Contam Hydrol 93:216–235. doi: 10.1016/j.jconhyd.2007.02.005 Google Scholar
  194. Zachara JM, Davis JA, Liu C, McKinley JP, Qafoku NP, Wellman DM, Yabusaki SB (2005) Uranium geochemistry in vadose zone and aquifer sediments from the 300 Area uranium plume PNNL-15121Google Scholar
  195. Zheng Z, Tokunaga TK, Wan J (2003) Influence of calcium carbonate on U(VI) sorption to soils. Environ Sci Technol 37:5603–5608. doi: 10.1021/es0304897 Google Scholar
  196. Zinn B, Harvey CF (2003) When good statistical models of aquifer heterogeneity go bad: a comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields. Water Resour Res 39:1051. doi: 10.1029/2001WR001146 Google Scholar

Copyright information

© Battelle Memorial Institute 2008

Authors and Affiliations

  1. 1.Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations