Skip to main content

Managing water quality with aquatic macrophytes

Abstract

The principal sources of water for human use are lakes, rivers, soil moisture and relatively shallow groundwater basins. Water quality in lakes and reservoirs is subjected to the natural degradation, processes of eutrophication and the impacts of human activities. Water quality problems can often be as severe as those of water availability but less attention has been paid to them, particularly in developing countries. Currently additional sustainable ways to mitigate the degradation of water quality are being researched all over the world. Phytoremediation is one of the serious efforts towards the sustainability. Most of the aquatic macrophytes are naturally occurring and well adapted for their surroundings. Aquatic macrophytes have the capability to remove excessive nutrient load from the water that otherwise cause eutrophication of the water body. Aquatic macrophytes absorb nutrient mineral ions from water column and influence metal retention indirectly by acting as traps for particulate matter, by slowing the water current and favoring sedimentation of suspended particles. Aquatic macrophytes also reduce sediment resuspension by offering wind protection. The use of aquatic macrophyte for treatment of wastewater to mitigate variety of pollution level is one of the most researched issues all over the world. Aquatic plant species are very specific for the uptake of nutrients. Owing to this specificity, the selection of the aquatic plant species is one of the skilled tasks prior to the design of a water treatment facility. An effort has been made in this review to cover the most researched aquatic flora for mitigation purposes and their possible use in a mesocosm as the selection of an appropriate aquatic plant specie reduce the time and cost of the treatment processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Al-Nozaily F, Alaerts G, Veenstra S (2000a) Performance of duckweed-covered sewage lagoons—I. Oxygen balance and COD removal. Water Res 34(10):2727–2733

    Article  CAS  Google Scholar 

  • Al-Nozaily F, Alaerts G, Veenstra S (2000b) Performance of duckweed-covered sewage lagoons—II. Nitrogen and phosphorus balance and plant productivity. Water Res 34(10):2734–2741

    Article  CAS  Google Scholar 

  • Aoi T, Hayashi T (1996) Nutrient removal by water lettuce (Pistia stratiotes). Water Sci Technol 34(7–8):407–412

    Article  CAS  Google Scholar 

  • Aoi T, Ohba E (1995). Rates of nutrient removal and growth of the water lettuce (Pistia stratiotes). In: 6th International conference (book) on the conservation and management of lakes Kasumigaura’ 95

  • Barko JM, Smart RM (1980) Mobilization of sediment phosphorus by submerged freshwater macrophytes. Freshw Biol 10:229–238

    Article  CAS  Google Scholar 

  • Bennicelli R, Stezpniewska Z, Banach A, Szajnocha K, Ostrowski J (2004) The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere 55:141–146

    Google Scholar 

  • Boening DW (2000) Ecological effects, transport and fate of mercury: a general review. Chemosphere 40:1335–1351

    Article  CAS  Google Scholar 

  • Boyd CE (1974) Utilization of aquatic plants. In: Mitchell DS (ed) Aquatic vegetation and its use and control. UNESCO, Paris, pp 107–115

    Google Scholar 

  • Brix H (1997) Do macrophytes play a role in constructed treatment wetlands? Water Sci Technol 35:11–17

    Article  CAS  Google Scholar 

  • Brix H, Sheirup HH (1989) The use of aquatic macrophytes in water pollution control. AMBIO 18:100–107

    Google Scholar 

  • Caffrey JM, Kemp WM (1990) Nitrogen cycling in sediments with estuarine populations of Potamogeton perfoliatus and Zostera marina. Mar Ecol Program Surveill 66:147–160

  • Cheng S, Cifrek VZ, Grosse W, Karrenbrock F (2002a) Xenobiotics removal from polluted water by a multifunctional constructed wetland. Chemosphere 48:415–418

    Article  CAS  Google Scholar 

  • Cheng J, Bergmann BA, Classen JJ, Stomp AM, Howard JW (2002b) Nutrient recovery from swine lagoon water by Spirodela punctata. Bioresour Technol 81(1):81–85

    Article  CAS  Google Scholar 

  • Clarkson TW (1994) The toxicology of mercury and its compounds. In: Watras C, Huckabee J (eds) Mercury pollution: integration and synthesis. Lewis Publishers, pp 631–642

  • Cole S (1998) The emergence of treatment wetlands. Environ Sci Technol News 1:218–223

    Google Scholar 

  • Cooper P, Green B (1995) Reed bed treatment systems for sewage treatment in the United Kingdom—the first 10 years experience. Water Sci Technol 32(3):317–327

    Article  CAS  Google Scholar 

  • Corradi M, Copelli M, Ghetti PF (1981) Duckweed culture in animal waste water. Inquinamento 23:49–54

    CAS  Google Scholar 

  • Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Quality 27:261–266

    CAS  Article  Google Scholar 

  • Culley DD, Epps AA (1973) Use of duckweed for water treatment and animal feed. J Water Pollut Control Fed 45:337–347

    Google Scholar 

  • Deaver E, Moore MT, Cooper CM, Knight SS (2005) Efficiency of three aquatic macrophytes in mitigating nutrient run-off. Int J Ecol Environ Sci 31(1):1–7

    Google Scholar 

  • DeBusk TA, Reddy KR (1987) Wastewater treatment using aquatic macrophytes: contaminant removal processes and management strategies. In: Reddy KR, Smith WH (eds) Aquatic plants for water treatment and resource recovery. Mongolia publishing Inc., Orlando

    Google Scholar 

  • DeBusk TA, Peterson JE, Reddy KR, Graetz DA, Clough KS (1989) Optimization of the vegetative uptake of phosphorus from dairy wastewater. Final report, Contract No. 88-009-0625, South Florida Water Management District, West Palm Beach, FL, 250 pp

  • DeBusk TA, Peterson JE, Reddy KR (1995) Use of aquatic and terrestrial plants for removing phosphorous from dairy waste waters. Ecol Eng 5:371–390

    Google Scholar 

  • Devi M, Thomas DA, Barber JT, Fingerman M (1996) Accumulation and physiological and biochemical effects of cadmium in a simple aquatic food chain. Ecotoxicol Environ Safety 33:38–43

    Article  CAS  Google Scholar 

  • Dierberg FE, Brezonik PL (1983) Tertiary treatment of municipal wastewater by cypress domes. Water Res 17:1027–1040

    Article  CAS  Google Scholar 

  • Dierberg FE, DeBusk TA, Jackson SD, Chimney MJ, Pietro K (2002) Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading Water Res 36:1409–1422

    Google Scholar 

  • Doyle RD, Francis MD, Smart RM (2003) Interference competition between Ludwigia repens and Hygrophila polysperma: two morphologically similar aquatic plant species. Aquat Bot 77:223–234

    Article  Google Scholar 

  • El-Shafai SA, El-Gohary FA, Nasr FA, Van der Steen NP, Gijzen HJ (2004) Chronic ammonia toxicity to duckweed-fed tilapia (Oreochromis niloticus). Aquaculture 232:117–127

    Article  CAS  Google Scholar 

  • Eriksson PG, Weisner SEB (1997) Nitrogen removal in a wastewater reservoir: the importance of denitrification by epiphytic biofilms on submersed vegetation. J Environ Qual 26:905–910

    Google Scholar 

  • Everard M, Denny P (1985) Flux of lead in submerged plants and its relevance to a freshwater system. Aquat Bot 21(2):181–193

    Article  CAS  Google Scholar 

  • Forsberg C (1964) Phosphorus, a maximum factor in the growth of Characeae. Nature 201:517–518

    Article  CAS  Google Scholar 

  • Fritioff A, Kautsky L, Greger M (2005) Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ Pollut 133:265–274

    Article  CAS  Google Scholar 

  • Gazi NWR, Steven PKS (1999) Bioremoval of lead from water using Lemna minor. Bioresour Technol 70:225–230

    Article  Google Scholar 

  • Ghosh M, Singh SP (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133:365–371

    Article  CAS  Google Scholar 

  • Godfrey PJ, Kaynor ER, Pelzarski S, Benforado J (eds) (1985) Ecological considerations in wetland treatment of municipal wastewaters. Von Nostrand, Reinhold, New York

    Google Scholar 

  • Gonzalez-Davila M, Santana-Casiano JM, Perez-Peña J, Millero FJ (1995) The binding of Cu (II) to the surface and exudates of the alga Dunaliella tertiolecta in seawater. Environ Sci Technol 29(2):289–301

  • Gopal B (1987) Water hyacinth. Elsevier, Amsterdam, 471 pp

  • Göthberg A, Greger M, Bengtsson B-E (2002) Accumulation of heavy metals in Water Spinach (Ipomoea aquatica) cultivated in the Bangkok region, Thailand. Environ Toxicol Chem 21(9):1934–1939

    Article  Google Scholar 

  • Goulet RR, Lalonde JD, Munger C, Dupuis S, Dumont G, Pre´ mont S, Campbell PGC (2005) Phytoremediation of effluents from aluminum smelters: a study of Al retention in mesocosms containing aquatic plants. Water Res 39:2291–2300

    Article  CAS  Google Scholar 

  • Hadad HR, Maine MA, Bonetto CA (2006) Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment. Chemosphere 63:1744–1753

    Google Scholar 

  • Haller WT, Sutton DL, Barlowe WC (1974) Effects of salinity on growth of several aquatic macrophytes. Ecology 55(4):891–894

    Article  Google Scholar 

  • Hamersley MR, Howes BL, White DS, Johnke S, Young D, Peterson SB, Teal JM (2001) Nitrogen balance and cycling in an ecologically engineered septage treatment system. Ecol Eng 18:61–75

    Article  Google Scholar 

  • Haslam SM (1978) River plants. Cambridge University Press, Cambridge, 396 pp

  • Hutchinson GE (1975) A treatise on limnology. Limnological botany, vol 3. Wiley, New York, 660 pp

  • Imaoka T, Teranishi S (1988) Rates of nutrient uptake and growth or the water hyacinth [Eichhornia crassipes (Mart.) Solm]. Wat Res 22(8):943–951

    Article  CAS  Google Scholar 

  • Jackson LJ (1998) Paradigms of metal accumulation in rooted aquatic vascular plants. Sci Total Environ 21:223–231

    Google Scholar 

  • Jain S, Valsudevan P, Jha N (1990) Azolla pinnata R. Br. and Lemna minor for removal of lead and cadmium from polluted water. Water Res 24:177–183

    Article  CAS  Google Scholar 

  • Johnson D, Kershaw L, MacKinnon A, Pojar J (1995) Plants of Western Boreal forest and Aspen Parkland. Lone Pine publishing, Vancouver

    Google Scholar 

  • Kadlec RH (2000) The inadequacy of first-order removal models. Ecol Eng 15:105–119

    Article  Google Scholar 

  • Kadlec R, Knight R (1996) Treatment wetlands. Lewis Publishers, Boca Raton

    Google Scholar 

  • Kamal M, Ghalya AE, Mahmouda N, Cote R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039

    Article  CAS  Google Scholar 

  • Kasselmann C (1995) Aquarienpflanzen. Egen Ulmer GMBH & Co., Stuttgart, 472 pp (in German)

  • Khan AG, Kuck C, Chaudhary TM, Khoo CS, Hayes WJ (2000) Role of mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    Article  CAS  Google Scholar 

  • Khatiwada NR, Polprasert C (1999) Assessment of effective specific surface area for free water surface wetlands. Water Sci Technol 40:83–89

    Article  CAS  Google Scholar 

  • Keskinkan O, Goksu MZL, Basibuyuk M, Forster CF (2004) Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresour Technol 92:197–200

    Article  CAS  Google Scholar 

  • Klapper H (1991) Control of eutrophication in inland waters. Prentice Hall, Chechester

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Eng 16:199–204

    Article  Google Scholar 

  • Kufel L, Kufel I (2002) Chara beds acting as nutrient sinks in shallow lakes—a review. Aquat Bot 72:249–260

    Article  Google Scholar 

  • LaMontagne JM, Jackson LJ, Barclay RMR (2003) Compensatory growth responses of Potamogeton pectinatus to foraging by migrating trumpeter swans in spring stop over areas. Aquat Bot 76:235–244

    Article  Google Scholar 

  • Lee B, Scholz M (2007) What is the role of Phragmites australis in experimental constructed wetland filters treating urban runoff? Ecol Eng 29:87–95

    Article  Google Scholar 

  • Lejeune A, Cagauan A, van Hove C (1999) Azolla research and development: recent trends and priorities. Symbiosis 27:333–351

    Google Scholar 

  • Lin Y, Jing S, Lee D, Wang T (2002) Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture 209:169–184

    Article  CAS  Google Scholar 

  • Mahujchariyawong J, Ikeda S (2001) Modelling of environmental phytoremediation in eutrophic river—the case of water hyacinth harvest in Tha—chin river, Thailand. Ecol Model 142:121–134

    Article  CAS  Google Scholar 

  • Maine M, Duarte M, Suñé N (2001) Cadmium uptake by floating macrophytes. Water Resour 35:2629–2634

    Article  CAS  Google Scholar 

  • Maine MA, Suné NL, Lagger SC (2004) Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes. Water Res 38:1494–1501

    Article  CAS  Google Scholar 

  • McConnaughey TA, LaBaugh JW, Rosenberry DO, Striegl RG, Reddy MM, Schuster PF, Carter V (1994) Carbon budget for a groundwater fed lake: calcification supports summer photosynthesis. Limnol Oceanogr 39:1319–1332

    CAS  Google Scholar 

  • Miretzky P, Saralegui A, Cirelli AF (2006) Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere 62(2):247–254

    Article  CAS  Google Scholar 

  • Mitsch WJ, Gosselink JG (1993) Wetlands, 2nd edn. Van Nostrand Reinhold, New York

    Google Scholar 

  • Nahlik AM, Mitsch WJ (2006) Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecol Eng 28:246–257

    Article  Google Scholar 

  • Nasu Y, Kugimoto M (1981) Duckweed as an indicator of water pollution. I. The sensitivity of Lemna pancicostata to heavy metals. Arch Environ Contam Toxicol 10:159–169

    Article  CAS  Google Scholar 

  • Noraho N, Gaur JP (1995) Effect of cations, including heavy metals, on cadmium uptake by Lemna polyrhiza L. Biometals 8:95–98

    Article  CAS  Google Scholar 

  • Odum EP (ed) (1996) Fundamentals of ecology. Harcourt Brace & Company, USA (First Indian Edition), pp 304–305

  • Ozimek T, Van Donk E, Gulati RD (1993) Growth and nutrient uptake by two species of Elodea in experimental conditions and their role in nutrient accumulation in a macrophyte-dominated lake. Hydrobiologia 251:13–18

    Google Scholar 

  • Pace ML, Funke E (1991) Regulation of planktonic microbial communities by nutrients and herbivores. Ecology 72:1904–1914

    Article  Google Scholar 

  • Pieczynska E (1990) Lentic aquatic terrestrial ecotones: their structure functions and importance. In: Naiman RJ, Decamps H (eds) The ecology and management of aquatic terrestrial ecotones. Man and the biosphere series. The Parthenon publishing group, Paris, pp 103–140

    Google Scholar 

  • Pieterse AH, JAC Verkleij PM Staphorst (1985) A comparative study of isoenzyme patterns, morphology, and chromosome number of Hydrilla verticillata (L.f.) Royle in Africa. J Aquat Plant Manage 23:72–76

    Google Scholar 

  • Pilon-Smits E, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21(5):439–456

    Article  CAS  Google Scholar 

  • Pinto CLR, Caconia A, Souza MM (1987) Utilization of water hyacinth for removal and recovery of silver from industrial waste water. Water Sci Technol 19(10):89–101

    CAS  Google Scholar 

  • Prakash O, Mehroira I, Kumar P (1987) Removal of cadmium from water by water hyacinth. J Environ Eng 113:352–365

    CAS  Google Scholar 

  • Qui D, Wu Z, Liu B, Deng J, Fu G, He F (2001) The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China. Ecol Eng 18:147–156

    Article  Google Scholar 

  • Rai UN, Sinha S, Triphati RD, Chandra P (1995) Waste water treatability potential of some aquatic macrophytes: removal of heavy metals. Ecol Eng 5(1):5–12

    Article  Google Scholar 

  • Reddy KR (1984) Water hyacinth (Eichhornia crassipes) biomass production in Florida. Biomass 6:167–181

    Article  Google Scholar 

  • Reddy KR, DeBusk WF (1985) Nutrient removal potential of selected aquatic macrophytes. J Environ Qual 14:459–462

    CAS  Google Scholar 

  • Reddy KR, Smith WH (1987) Aquatic plants for water treatment and resource recovery. Mangolia Publishing Inc., Orlando, 1032 pp

  • Reddy KR, Sutton DL, Bowes G (1983) Freshwater aquatic plant biomass production in Florida. Soil Crop Sci Soc F Proc 42:28–40

    Google Scholar 

  • Reddy KR, Agami M, Tucker JC (1990) Influence of phosphorus on growth and nutrient storage by water hyacinth (Eichhornia crassipes (Mart.) Solms) plants. Aquat Bot 37:355–365

    Article  CAS  Google Scholar 

  • Reed SC, Crites RW, Middlebrooks EJ (1995) Natural systems for water management and treatment. McGraw Hill, New York

    Google Scholar 

  • Rosemond AD, Pringle CM, Ramfrez A, Paul MJ, Meyer JL (2002) Landscape variation in phosphorus concentration and effects on detritus based tropical streams. Limnol Oceanogr 47:278–289

    CAS  Google Scholar 

  • Rysgaard S, Risgaard-Petersen N, Sloth NP, Jensen K, Nielsen LP (1994) Oxygen regulation of nitrification and denitrification in sediments. Limnol Oceanogr 39(7):1643–1652

    CAS  Google Scholar 

  • Sahu RK, Naraian R, Chandra V (2007) Accumulation of metals in naturally grown weeds (aquatic macrophytes) grown on an industrial effluent channel. Clean 35(3):261–265

    CAS  Google Scholar 

  • Salvucci ME, G Bowes (1983) Two photosynthetic mechanisms mediating the low photorespiratory state in submersed aquatic angiosperms. Plant Physiol 73:488–496

    CAS  Google Scholar 

  • Sampat P (2000) Groundwater shock: the polluting of the world’s major freshwater stores. World Watch 13(1):13–22

    Google Scholar 

  • Schneider IAH, Rubio J, Smith RW (1999) Effect of some mining chemicals on biosorption of Cu(II) by the non-living biomass of the freshwater macrophyte Potamogeton lucens. Miner Engng 12:255–260

    Article  CAS  Google Scholar 

  • Scholz M (2006) Wetland Systems to control urban runoff. Elsevier, Amsterdam

    Google Scholar 

  • Schwarz A, Haves I (1997) Effect of changing water clarity on characean biomass and species composition in a large oligotrophic lake. Aquat Bot 56:169–181

    Article  Google Scholar 

  • Scinto LJ, Reddy KR (2003) Biotic and abiotic uptake of phosphorus by periphyton in a subtropical freshwater wetland. Aquat Bot 77:203–222

    Article  CAS  Google Scholar 

  • Serra T, Fernando HJS, Rodriguez RV (2004) Effects of emergent vegetation on lateral diffusion in wetlands. Water Res 38:139–147

    Article  CAS  Google Scholar 

  • Simon O, Boudou A (2001) Direct and trophic contamination of the herbivorous carp Ctenopharyngodon idella by inorganic mercury and methyl-mercury. Ecotoxicol Environ Safety 50:48–59

    Article  CAS  Google Scholar 

  • Sinha S, Rai UN, Chandra P (1996) Metal contamination in aquatic etables Trapa natans L. and Ipomea aquatica Forsk. In: Proceedings of conference on progress in crop sciences from plant breeding to growth regulation, 17–19 June, Mosonmagyarovar, Hungary

  • Smith VH (1998) Cultural eutrophication of inland, estuarine, and coastal waters. In: Pace ML, Groffman PM (eds) Success, limitations and frontiers in ecosystem science. Springer, New York, pp 7–49

    Google Scholar 

  • Sooknah RD, Wilkie AC (2004) Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol Eng 22(1):27–42

    Article  Google Scholar 

  • Sridahar M (1986) Trace element composition of Pistia stratiotes in a polluted lake in Nigeria. Hydrobiologia 131:273–276

    Article  Google Scholar 

  • Sternberg SPK, Rahmani GNH (1999) Bioremoval of lead from water using Lemna minor. Bioresour Technol 70:225–230. Re: from Lemna Corporation (1992) Harvesting equipment makes the difference. Lemna Corporation’s Retention Times

  • Suberkropp K, Chauvet E (1995) “Regulation of leaf breakdown by fungi in streams: influences of water chemistry. Ecology 76:1433–1445

    Google Scholar 

  • Sutton DL (1999) Replacement of problems caused by Hydrilla (Hydrilla verticillata) in south Florida with Hygrophila (Hygrophila polysperma), vol 39. Abstract. Weed Science Society of America, San Diego, 110 pp

  • Tchobanoglous G, Schroeder ED (1985) Water quality. Addison-Wesley Publishing Company, USA

  • Tracy M, Montante JM, Allenson TE, Hough RA (2003) Long-term responses of aquatic macrophyte diversity and community structure to variation in nitrogen loading. Aquat Bot 77: 43–52

    Article  CAS  Google Scholar 

  • Tripathi RD, Rai UN, Gupta M, Yunus M, Chandra P (1995) Cadmium transport in submerged macrophyte Ceratophyllum demersum L. in presence of various metabolic inhibitors and calcium channel blockers. Chemosphere 31(7):3783–3791

    Article  CAS  Google Scholar 

  • UNDP. Human Development Report (2006) Beyond scarcity, power, poverty and the global water crisis. http://hdr.undp.org/hdr2006

  • Varjo E, Liikanen A, Salonen P, Martikainen PJ (2003) A new gypsum-based technique to reduce methane and phosphorus release from sediment of eutrophied lakes: (gypsum treatment to reduce internal loading). Water Res 37:1–10

    Article  CAS  Google Scholar 

  • Verkleij JAC, Pieterse AH, Horneman GJT, Torenbeek M (1983) A comparative study of the morphology and isoenzyme patterns of Hydrilla verticillata (L.f.) Royle. Aquat Bot 17:43–59

    Article  CAS  Google Scholar 

  • Vermeer CP, Escher M, Portielje R, de Klein JJM (2003) Nitrogen uptake and translocation by Chara. Aquat Bot 76:245–258

    Article  CAS  Google Scholar 

  • Vesk PA, Allaway WG (1997) Spatial variation of copper and lead concentration of water hyacinth plant in a wetland receiving urban run-off. Aquat Bot 59:546–553

    Article  Google Scholar 

  • Vymazal J (2002) The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecol Eng 18:633–646

    Article  Google Scholar 

  • Vymazal J, Brix H, Cooper PF, Haberl R, Perfler R, Laber J (1998) Removal mechanisms and types of constructed wetlands. In: Vymazal J, Brix H, Cooper PF, Green MB, Haberl R (Eds) Constructed wetlands for wastewater treatment in Europe. Backhuys Publishers, Leiden, 17–66

    Google Scholar 

  • Wahaab A, Lubberding H, Alaerts G (1995) Copper and chromium (III) uptake bay duckweed. Water Sci Technol 32:105–110

    Google Scholar 

  • Wagner GM (1997) Azolla: a review of its biology and utilization. Bot Rev 63:1–26

    Article  Google Scholar 

  • Wang W (1990) Literature review on duckweed toxicity testing. Environ Res 52:7–22

    Article  CAS  Google Scholar 

  • Xie Y, Yu D (2003) The significance of lateral roots in phosphorus (P) acquisition of water hyacinth (Eichhornia crassipes). Aquat Bot 75:311–321

    Article  Google Scholar 

  • Zaranyika MF, Ndapwadza T (1995) Uptake of Ni, Zn, Fe, Co, Cr, Pb, Cu, and Cd by water hyacinth (Eichhornia crassipes) in Mukuvisi and Manyamerivers, Zimbabwe. J Env Sci Heal A 30:157–169

    Article  Google Scholar 

  • Zhou Q, Gibson CE, Zhu YM (2001) Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere 42:221–225

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jatin Srivastava.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Srivastava, J., Gupta, A. & Chandra, H. Managing water quality with aquatic macrophytes. Rev Environ Sci Biotechnol 7, 255–266 (2008). https://doi.org/10.1007/s11157-008-9135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-008-9135-x

Keywords

  • Aquatic macrophytes
  • Water quality
  • Nutrient ions
  • Metals mesocosm
  • Selection of species