Skip to main content
Log in

Control of sulphide during anaerobic treatment of S-containing wastewaters by adding limited amounts of oxygen or nitrate

  • View Paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Sulphide generated during anaerobic treatment of S-containing wastewaters represents an environmental problem. Adding limited amounts of oxygen or nitrate (or nitrite) to biologically (or chemically) oxidise sulphide forms a simple process-level strategy to control this problem. This short review evaluates the feasibility and limitations of this strategy on the basis of the results of bioreactor studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akunna JC, Bizeau C, Moletta R (1992) Denitrification in anaerobic digesters: possibilities and influence of waste water COD/N-NOx ratio. Environ Technol 13(9):825–836

    CAS  Google Scholar 

  • Annachhatre AP, Suktrakoolvait S (2001) Biological sulphide oxidation in a fluidized bed reactor. Environ Technol 22(6):661–672

    CAS  Google Scholar 

  • Balderston WL, Payne WJ (1976) Inhibition of methanogenesis in salt marsh sediments and whole-cell suspensions of methanogenic bacteria by nitrogen oxides. Appl Environ Microbiol 32(2):264–269

    CAS  Google Scholar 

  • Basu SK, Mino T (1993) Domestic waste-water treatment using microaerophilic upflow sludge bed reactor. Environ Technol 14(5):413–422

    CAS  Google Scholar 

  • Basu SK, Mino T, Oleszkiewicz JA (1995) Novel application of sulphur metabolism in domestic wastewater treatment. Can J Civ Eng 22:1217–1223

    Article  Google Scholar 

  • Bentzen G, Smith AT, Bennett D, Webster NJ, Reinholt F, Sletholt E, Hobson J (1995) Controlled dosing of nitrate for prevention of H2S in a sewer network and the effects on the subsequent treatment processes. Water Sci Technol 31(7):293–302

    Article  CAS  Google Scholar 

  • Brüser T, Lens PNL, Trüper HG (2000) The biological sulphur cycle. In: Lens PNL, Hulshoff Pol LW (eds) Environmental technologies to treat sulfur pollution – principles and engineering. IWA Publishing, London, pp 47–85

    Google Scholar 

  • Buisman CJN, Lettinga G (1990) Sulphide removal from anaerobic waste treatment of a paper mill. Water Res 24(3):313–319

    Article  CAS  Google Scholar 

  • Buisman CJN, Geraats BG, Ijspeert P, Lettinga G (1990) Optimization of sulphur production in a biotechnological sulphide-removing reactor. Biotechnol Bioeng 35:50–56

    Article  CAS  Google Scholar 

  • Burgess JE, Parsons SA, Stuetz RM (2001) Developments in odour control and waste gas treatment biotechnology: a review. Biotechnol Adv 19:35–63

    Article  CAS  Google Scholar 

  • Cardoso RB, Sierra-Alvarez R, Rowlette P, Razo-Flores E, Gómez J, Field JA (2006) Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol Bioeng 95(6):1148–1157

    Article  CAS  Google Scholar 

  • Chen KC, Lin YF (1993) The relationship between denitrifying bacteria and methanogenic bacteria in a mixed culture system of acclimated sludges. Water Res 27(12):1749–1759

    Article  CAS  Google Scholar 

  • Chuang SH, Pai TY, Horng RY (2005) Biotreatment of sulfate-rich wastewater in an anaerobic/micro-aerobic bioreactor system. Environ Technol 26(9):993–1001

    CAS  Google Scholar 

  • Clancy PB, Venkataraman N, Lynd LR (1992) Biochemical inhibition of sulfate reduction in batch and continuous anaerobic digesters. Water Sci Technol 25(7):51–60

    CAS  Google Scholar 

  • Daniels L, Belay N, Rajagopal BS (1986) Assimilatory reduction of sulfate and sulfite by methanogenic bacteria. Appl Environ Microbiol 51:703–709

    CAS  Google Scholar 

  • Dannenberg S, Kroder M, Dilling W, Cypionka H (1992) Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch Microbiol 158:93–99

    Article  CAS  Google Scholar 

  • Dewaters JE, Zander AK, Grimberg SJ (1999) The use of ferric salts for controlling sulfide odors in high-strength pulp and paper manufacturing wastes. Environ Eng Sci 16(6):441–450

    Article  CAS  Google Scholar 

  • Fox P, Venkatasubbiah V (1996) Couple anaerobic/aerobic treatment of high-sulfate wastewater with sulfate reduction and biological sulfide oxidation. Water Sci Technol 34(5–6):359–366

    Article  CAS  Google Scholar 

  • Gadekar S, Nemati M, Hill GA (2006) Batch and continuous biooxidation of sulphide by Thimicrospira sp. CVO: reaction kinetics and stoichiometry. Water Res 40(12):2436–2446

    Article  CAS  Google Scholar 

  • Garuti A, Giordano A, Pirozzi F (2001) Full-scale ANANOX® system performance. Water SA 27(2):189–198

    CAS  Google Scholar 

  • Gommers PJF, Bijleveld W, Kuenen JG (1988) Simultaneous sulphide and acetate oxidation in a denitrifying fluidized bed reactor-I start-up and reactor performance. Water Res 22(9):1075–1083

    Article  CAS  Google Scholar 

  • González-Sanchéz A, Revah S (2007) The effect of chemical oxidation on the biological sulfide oxidation by an alkaliphilic sulfoxidizing bacterial consortium. Enzyme Microb Technol 40:292–298

    Article  CAS  Google Scholar 

  • Hagen CE, Hartung RW (1997) New chemical treatment method controls wastewater system odor. Pulp Pap 71(11):81–89

    CAS  Google Scholar 

  • Hanselmann KW (1991) Microbial energetics applied to waste repositories. Experientia 47:645–687

    Article  CAS  Google Scholar 

  • Hendriksen HV, Ahring BK (1996) Integrated removal of nitrate and carbon in an upflow anaerobic sludge blanket (UASB) reactor: operating performance. Water Res 30(6):1451–1458

    Article  CAS  Google Scholar 

  • Hossain F (2004) Activated sludge bulking: a review of causes and control strategies. J Instn Engrs (India) 85:1–6

    Google Scholar 

  • Hulshoff Pol LW, Lens PNL, Stams AJM, Lettinga G (1998) Anaerobic treatment of sulphate-rich wastewaters. Biodegradation 9:213–224

    Article  CAS  Google Scholar 

  • Im J-H, Woo H-J, Choi M-W, Han K-B, Kim C-W (2001) Simultaneous organic and nitrogen removal from municipal landfill leachate using an anaerobic-aerobic system. Water Res 35(10):2403–2410

    Article  CAS  Google Scholar 

  • Isa MH, Anderson GK (2005) Molybdate inhibition of sulphate reduction in two-phase anaerobic digestion. Process Biochem 40(6):2079–2089

    Article  CAS  Google Scholar 

  • Jacksonmoss CA, Duncan JR (1990) Anaerobic-digestion at high sulphate concentrations. J Am Leather Chem As 85(10):376–382

    CAS  Google Scholar 

  • Janssen AJH, Sleyster R, van der Kaa C, Jochemsen A, Bontsema J, Lettinga G (1995) Biological sulphide oxidation in a fed-batch reactor. Biotechnol Bioeng 47:327–333

    Article  CAS  Google Scholar 

  • Janssen AJH, Meijer S, Bontsema J, Lettinga G (1998) Application of the redox potential for controlling a sulfide oxidizing bioreactor. Biotechnol Bioeng 60(2):147–155

    Article  CAS  Google Scholar 

  • Jin P, Bhattacharya SK, Williams CJ, Zhang C (1998) Effects of sulphide addition on copper inhibition in methanogenic systems. Water Res 32(4):977–988

    Article  CAS  Google Scholar 

  • Kalyuzhnyi S, Gladchenko M, Mulder A, Versprille B (2006a) DEAMOX – new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite. Water Res 40(19):3637–3645

    Article  CAS  Google Scholar 

  • Kalyuzhnyi S, Gladchenko M, Mulder A, Versprille B (2006b) DEAMOX – new anaerobic process of nitrogen removal. Water Sci Technol 54(8):163–170

    Article  CAS  Google Scholar 

  • Kalyuzhnyi S, Gladchenko M, Mulder A, Versprille B (2007) Comparison of quasisteady-state performance of the DEAMOX process under intermittent and continuous feeding and different nitrogen loading rates. Biotechnol J 2:894–900

    Article  CAS  Google Scholar 

  • Kaspar HF, Tiedje JM, Firestone RB (1981) Denitrification and dissimilatory nitrate reduction to ammonium in digested sludge. Can J Microbiol 27(9):878–885

    Article  CAS  Google Scholar 

  • Kato MT, Field JA, Lettinga G (1993) High tolerance of methanogens in granular sludge to oxygen. Biotechnol Bioeng 42(11):1360–1366

    Article  CAS  Google Scholar 

  • Khanal SK, Huang JC (2003a) Anaerobic treatment of high sulfate wastewater with oxygenation to control sulfide toxicity. J Environ Eng 129(12):1104–1111

    Article  CAS  Google Scholar 

  • Khanal SK, Huang JC (2003b) ORP-based oxigenation for sulfide control in anaerobic treatment of high sulfate wastewater. Water Res 37:2053–2062

    Article  CAS  Google Scholar 

  • Khanal SK, Huang JC (2006) Online oxygen control for sulfide oxidation in anaerobic treatment of high-sulfate wastewater. Water Environ Res 78(4):397–308

    Article  CAS  Google Scholar 

  • Kleerebezem R, Mendez R (2002) Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification. Water Sci Technol 45(10):349–356

    CAS  Google Scholar 

  • Koster IW, Rinzema A, de Vegt AL, Lettinga G (1986) Sulfide inhibition of the methanogenic activity of granular sludge at different pH levels. Water Res 21(12):1561–1567

    Article  Google Scholar 

  • Krishnakumar B, Manilal VB (1999) Bacterial oxidation of sulphide under denitrifying conditions. Biotechnol Lett 21(5):437–440

    Article  CAS  Google Scholar 

  • Lau GN, Sharma KR, Chen GH, van Loosdrecht MCM (2006) Integration of sulphate reduction, autotrophic denitrification and nitrification to achieve low-cost excess sludge minimisation for Hong Kong sewage. Water Sci Technol 53(3):227–325

    Article  CAS  Google Scholar 

  • Lens PNL, Visser ANL, Janssen AJH, Hulshoff Pol LW, Lettinga G (1998) Biotechnological treatment of sulfate-rich wastewaters. Crit Rev Environ Sci Technol 28(1):41–88

    Article  CAS  Google Scholar 

  • Lens PNL, Sipma J, Hulshoff Pol LW, Lettinga G (2000) Effect of nitrate on acetate degradation in a sulfidogenic staged reactor. Water Res 34(1):31–42

    Article  CAS  Google Scholar 

  • Little BJ, Ray RI, Pope RK (2000) Corrosion and sulfur bacteria. In: Lens PNL, Hulshoff Pol LW (eds) Environmental technologies to treat sulfur pollution – principles and engineering, 1st edn. IWA Publishing, London, pp 491–513

    Google Scholar 

  • Mahmood Q, Zheng P, Cai J, Wu D, Hu B, Li J (2007) Anoxic sulphide biooxidation using nitrite as electron acceptor. J Hazard Mater (in press), corrected proof

  • Mathioudakis VL, Vaiopoulou E, Aivasidis A (2006) Addition of nitrate for odor control in sewer networks: laboratory and field experiments. Global NEST J 8(1):37–42

    Google Scholar 

  • Noyola A, Morgan-Sagastume JM, López-Hernández JE (2006) Treatment of biogas produced in anaerobic reactors for domestic wastewater: odor control and energy/resource recovery. Rev Environ Sci Biotechnol 5(1):93–114

    Article  CAS  Google Scholar 

  • Núñez LA, Martínez B (2001) Evaluation of an anaerobic/aerobic system for carbon and nitrogen removal in slaughterhouse wastewater. Water Sci Technol 44(4):271–277

    Google Scholar 

  • Ochi T, Kitagawa M, Tanaka S (1998) Controlling sulphide generation in force mains by air injection. Water Sci Technol 37(1):87–95

    Article  Google Scholar 

  • O’Reilly C, Colleran E (2005) Toxicity of nitrite toward mesophilic and thermophilic sulphate-reducing, methanogenic and syntrophic populations in anaerobic sludge. J Ind Microbiol Biotechnol 32(2):46–52

    Article  CAS  Google Scholar 

  • Oude Elferink SJWH, Visser A, Hulshoff Pol LW, Stams AJM (1994) Sulfate reduction in methanogenic bioreactors. FEMS Microbiol Rev 15:119–136

    Article  CAS  Google Scholar 

  • Peddie CC, Maviniv DS, Jenkins DJ (1990) Use of ORP for monitoring and control of aerobic sludge digestion. J Environ Eng 116(3):461–471

    Article  CAS  Google Scholar 

  • Percheron G, Michaud S, Bernet N, Moletta R (1998) Nitrate and nitrite reduction of a sulphide-rich environment. J Chem Technol Biotechnol 72:213–220

    Article  CAS  Google Scholar 

  • Pott BM, Mattiasson B (2004) Separation of heavy metals from water solutions at the laboratory scale. Biotechnol Lett 26(5):451–456

    Article  CAS  Google Scholar 

  • Reyes-Avila J, Razo-Flores E, Gomez J (2004) Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification. Water Res 38(14–15):3313–3321

    Article  CAS  Google Scholar 

  • Rinzema A (1988) Anaerobic treatment of wastewater with high concentrations of lipid or sulphate. PhD thesis, Wageningen Agricultural University, the Netherlands

  • Rittmann BE, McCarty PL (eds) (2000) Environmental biotechnology principles and application. McGraw-Hill Companies Inc., New York, pp 340–347

    Google Scholar 

  • Roy R, Conrad R (1999) Effect of methanogenic precursors (acetate, hydrogen, propionate) on the suppression of methane production by nitrate in anoxic rice field soil. FEMS Microbiol Ecol 28(1):49–61

    Article  CAS  Google Scholar 

  • Sierra-Alvarez R, Guerrero F, Rowlette P, Freeman S, Field JA (2005) Comparison of chemo-, hetero- and mixotrophic denitrification in laboratory-scale UASBs. Water Sci Technol 52(1–2):337–342

    CAS  Google Scholar 

  • Shin HS, Jung JY, Bae BU, Paik BC (1995) Phase-separated anaerobic toxicity assays for sulfate and sulfide. Water Environ Res 67:802–806

    Article  CAS  Google Scholar 

  • Smet E, Lens P, Van Langenhove H (1998) Treatment of waste gases contaminated with odorous sulfur compounds. Crit Rev Environ Sci Technol 28(1):89–117

    Article  CAS  Google Scholar 

  • Steudel R (1996) Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes. Ind Eng Chem Res 35:1417–1423

    Article  CAS  Google Scholar 

  • Tai CS, Singh KS, Grant SR (2006) Combined removal of carbon and nitrogen in an integrated UASB-jet loop reactor bioreactor system. J Environ Eng 132(6):624–637

    Article  CAS  Google Scholar 

  • Tanimoto Y, Tasaki M, Okamura K, Yamaguchi M, Minami K (1989) Screening growth inhibitors of sulfate-reducing bacteria and their effects on methane fermentation. J Ferment Bioeng 68(5):353–359

    Article  CAS  Google Scholar 

  • Tilche A, Bortone G, Forner G, Indulti M, Stante L, Tesini O (1994) Combination of anaerobic digestion and denitrification in a hybrid upflow anaerobic filter integrated in a nutrient removal treatment plant. Water Sci Technol 30(12):405–414

    CAS  Google Scholar 

  • Tugtas AE, Pavlostathis SG (2007) Inhibitory effects of nitrogen oxides on a mixed methanogenic culture. Biotechnol Bioeng 96(3):444–455

    Article  CAS  Google Scholar 

  • Tursman JF, Cork DJ (1989) Influence of sulphate and sulfite-reducing bacteria on anaerobic digestion technology. In: Biological waste treatment. Alan R Liss Inc., New York, pp 273–281

  • Vaiopoulou E, Melidis P, Aivasidis A (2005) Sulphide removal in wastewater from petrochemical industries by autotrophic denitrification. Water Res 39(17):4101–4109

    Article  CAS  Google Scholar 

  • van der Zee FP, Villaverde S, Garcia PA, Fdz-Polanco F (2007) Sulfide removal by moderate oxygenation of anaerobic sludge environments. Bioresour Technol 98:518–524

    Article  CAS  Google Scholar 

  • Van Haandel AC, Monroy O, Celis B, Rustrian E, Cervantes FJ (2006) Principles and process design for industrial wastewater treatment systems. In: Cervantes FJ, Pavlostathis SG, van Haandel AC (eds) Advanced biological treatment processes for industrial wastewaters – principles and applications. IWA Publishing, London, pp 118–132

    Google Scholar 

  • Visser A, Hulshoff Pol LW, Lettinga G (1996) Competition of methanogenic and sulfidogenic bacteria. Water Sci Technol 33(3):99–110

    Article  CAS  Google Scholar 

  • Wang Z, Banks CJ (2006) Anaerobic digestion of a sulphate-rich high-strength landfill leachate: the effect of differential dosing with FeCl3. Waste Manag Res 24:289–293

    Article  CAS  Google Scholar 

  • Wellinger A, Lindeberg A (eds) (1999) Biogas upgrading and utilization. Task 24: energy from biological conversion of organic wastes. IEA Bioenergy, Winterthur, pp 1–19

    Google Scholar 

  • Yadav VK, Archer DB (1989) Sodium molybdate inhibits sulphate reduction in the anaerobic treatment of high-sulphate molasses wastewater. Appl Microbiol Biotechnol 31(1):103–106

    Article  CAS  Google Scholar 

  • Zhang D, Verstraete W (2001) The anaerobic treatment of nitrite containing wastewater using an expanded granular sludge bed (EGSB) reactor. Environ Technol 22(8):905–913

    CAS  Google Scholar 

  • Zhou W, Imai T, Ukita M, Li F, Yuasa A (2007) Effect of limited aeration on the anaerobic treatment of evaporator condensate from a sulfite pulp mill. Chemosphere 66:924–929

    Article  CAS  Google Scholar 

  • Zitomer DH, Shrout JD (2000) High-sulfate, high-chemical oxygen demand wastewater treatment using aerated methanogenic fluidised beds. Water Environ Res 72(1):90–97

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Spanish Ministry of Education and Science (project CTM 2005-02967/TECNO) for financial support and P. Wheeler, AEA Technology Environment, A. Wellinger, Nova Energie, O. Jönsson, The Swedish Gas Centre and T. Al Seadi, University of Southern Denmark, for their help with the implementation in practice of micro-aerobic conditions in anaerobic bioreactors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dores G. Cirne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cirne, D.G., van der Zee, F.P., Fernandez-Polanco, M. et al. Control of sulphide during anaerobic treatment of S-containing wastewaters by adding limited amounts of oxygen or nitrate. Rev Environ Sci Biotechnol 7, 93–105 (2008). https://doi.org/10.1007/s11157-008-9128-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-008-9128-9

Keywords

Navigation