Adaptations to hypoxia in hydrothermal-vent and cold-seep invertebrates

  • Stéphane HourdezEmail author
  • François H. Lallier
Review Paper


The deep sea harbors very unusual environments, such as hydrothermal vents and cold seeps, that illustrate an apparent paradox: the environmental conditions are very challenging and yet they display a high biomass when compared to the surrounding environment at similar depth. Hypoxia is one of the challenges that these species face to live there. Here, we review specific adaptations of their respiratory system that the species have developed to cope with hypoxia, at the morphological, physiological, and biochemical levels. Most studies to date deal with annelids and crustaceans, and trends can be drawn: development of ventilation and branchial surfaces to help with oxygen extraction, and an increase in finely tuned oxygen binding proteins to help with oxygen storage and transport. Beside these respiratory adaptations most animals have developed enhanced anaerobic capacities and specific ways to deal with sulfide.


Hypoxia Invertebrates Annelids Crustacea Mollusks Hemocyanin Hemoglobin Respiration Oxygen Sulfide 


  1. Andersen AC, Jolivet S, Claudinot S, Lallier FH (2002) Biometry of the branchial plume in the hydrothermal vent tubeworm Riftia pachyptila (Vestimentifera; Annelida). Can J Zool 80:320–332Google Scholar
  2. Arndt C, Schiedek D, Felbeck H (1998) Metabolic response of the hydrothermal vent tubeworm Riftia pachyptila to severe hypoxia. Mar Ecol Prog Ser 174:151–158Google Scholar
  3. Arp AJ, Childress JJ (1981) Blood function in the hydrothermal vent Vestimentiferan tube worm. Science 213:342–344Google Scholar
  4. Arp AJ, Childress JJ (1983) Sulfide binding by the blood of the hydrothermal vent tube worm Riftia pachyptila. Science 219:295–297Google Scholar
  5. Arp AJ, Childress JJ, Fisher CR Jr (1984) Metabolic and blood gas transport characteristics of the hydrothermal vent bivalve, Calyptogena magnifica. Physiol Zool 57:648–662Google Scholar
  6. Arp AJ, Doyle ML, Di Cera E, Gill SJ (1990) Oxygenation properties of the two co-occurring hemoglobins of the tube worm Riftia pachyptila. Resp Physiol 80:323–334Google Scholar
  7. Ballard RD, Grassle JF (1979) Return to oases of the deep (strange world without a sun). Natl Geogr 156(5):680–703Google Scholar
  8. Belman BW, Childress JJ (1976) Circulatory adaptations to the oxygen minimum layer in the Bathypelagic Mysid Gnathophausia ingens. Biol Bull 150(1):15–37Google Scholar
  9. Bridges CR, Hupperts V, Eshky AA, Taylor AC (1997) Haemocyanin oxygen transport in Ocypode spp.: modulation of oxygen affinity? J Mar Biol Ass U K 77:145–158Google Scholar
  10. Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube-worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–342Google Scholar
  11. Chausson F, Bridges CR, Sarradin PM, Green BN, Riso R, Caprais JC, Lallier FH (2001) Structural and functional properties of hemocyanin from Cyanagraea praedator, a deep-sea hydrothermal vent crab. Proteins 45:351–359Google Scholar
  12. Chausson F, Sanglier S, Leize E, Hagège A, Bridges CR, Sarradin, P-M, Shillito B, Lallier FH, Zal F (2004) Respiratory adaptations to the deep-sea hydrothermal vent environment: the case of Segonzacia mesatlantica, a crab from the Mid-Atlantic Ridge. Micron 35:31–41Google Scholar
  13. Chevaldonné P (1986) Ecologie des cheminées actives. Ph.D. thesis. Université de Méditerranée, Marseille. 257 ppGoogle Scholar
  14. Chevaldonné P, Desbruyères D, Le Haitre M (1991) Time-series of temperature from three deep-sea hydrothermal vent sites. Deep-Sea Res I 38(11):1417–1430Google Scholar
  15. Chevaldonné P, Desbruyères D, Childress JJ (1992) Some like it hot ... and some even hotter. Nature 359:593–594Google Scholar
  16. Childress JJ (1975) The respiratory rates of midwater crustaceans as a function of depth of occurrence and relation to the minimum layer off Southern California. Comp Biochem Physiol 50A:787–799Google Scholar
  17. Childress JJ, Arp AJ, Fisher CR (1984) Metabolic and respiratory characteristics of the hydrothermal vent tube worm Riftia pachyptila. Mar Biol 83:109–124Google Scholar
  18. Childress JJ, Mickel TJ (1985) Metabolic rates of animals from hydrothermal vents and other deep-sea habitats. Biol Soc Wash Bull 6:249–260Google Scholar
  19. Childress JJ, Fischer CR (1992) The biology of hydrothermal vent animals: physiology, biochemistry and autotrophic symbioses. Oceanogr Mar Biol Annu Rev 30:337–441Google Scholar
  20. Childress JJ, Seibel BA (1998) Life at stable oxygen levels: adaptations of animals to oceanic oxygen minimum layers. J Exp Biol 201:1223–1232Google Scholar
  21. Cordes EE, Hourdez S, Predmore BL, Redding ML, Fisher CR (2005) Succession of hydrocarbon seep communities associated with the long-lived foundation species Lamellibrachia luymesi. Mar Ecol Prog Ser 305:17–29Google Scholar
  22. Corliss JB, Ballard RD (1977) Oases of life in the cold Abyss. Natl Geogr 152(4):441–454Google Scholar
  23. Corliss JB, Dymond J, Gordon LI, Edmond JM, Herzen RPV, Ballard RD, Green K, Williams D, Bainbridge A, Crane K, van Andel TH (1979) Submarine thermal springs on the Galápagos Rift. Science 203:1073–1083Google Scholar
  24. Desbruyères D, Chevaldonné P, Alayse A-M, Jollivet D, Lallier FH, Jouin-Toulmond C, Zal F, Sarradin P-M, Cosson R, Caprais J-C, Arndt C, O’Brien J, Guezennec J, Hourdez S, Riso R, Gaill F, Laubier L, Toulmond A (1998) Biology and ecology of the pompei worm (Alvinella Pompejana Desbruyères and Laubier), a normal dweller on an extreme deep-sea environment: a synthesis of current knowledge and recent developments. Deep-Sea Res Part II 45:383–422Google Scholar
  25. Doeller JE, Grieshaber MK, Kraus DW (2001) Chemolithoheterotrophy in a metazoan tissue: thiosulfate production matches ATP demand in ciliated mussel gills. J Exp Biol 204:3755–3764Google Scholar
  26. Felbeck H (1981) Chemoautotrophic potential of the hydrothermal vent tubeworm, Riftia Pachyptila Jones (Vestimentifera). Science 213:336–338Google Scholar
  27. Felbeck H, Somero GN, Childress JJ (1981) Calvin-Benson cycle and sulfide oxidation enzymes in animals from sulfide-rich habitats. Nature 293:291–293Google Scholar
  28. Fisher CR, Childress JJ, Arp AJ, Brooks JM, Distel D, Favuzzi JA, Felbeck H, Hessler R, Johnson KS, Kennicutt MC, Macko SA, Newton A, Powell MA, Somero GN, Soto T (1988) Microhabitat variation in the hydrothermal vent mussel Bathymodiolus thermophilus, at Rose Garden vent on the Galapagos Rift. Deep-Sea Res 35(10/11):1769–1792Google Scholar
  29. Fisher CR (1995) Toward an appreciation of hydrothermal-vent animals: their environment, physiological ecology, and tissue stable isotope values. In: Humphris SE et al. (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. American Geophysical Union, Washington DC, pp 297–316Google Scholar
  30. Fisher CR (1996) Ecophysiology of primary production at deep-sea vents and seeps. In: Deep-sea and extreme shallow-water habitats: affinities and adaptations. Austrian Academy of Sciences Press, Vienna, pp 313–336Google Scholar
  31. Fisher CR, MacDonald IR, Sassen R, Young CM, Macko SA, Hourdez S, Carney RS, Joye S, McMullin E (2000) Methane ice worms: Hesiocaeca methanicola colonizing fossil fuel reserves. Naturwissenschaften 87:184–187Google Scholar
  32. Flores JF, Fisher CR, Carney SL, Green BN, Freytag JK, Schaeffer SW, Royer WE (2005) Sulfide binding is mediated by zinc ions discovered in the crystal structure of a hydrothermal vent tubeworm hemoglobin. Proc Natl Acad Sci USA 102(8):2713–2718Google Scholar
  33. Flores JF, Hourdez S The zinc-mediated sulfide-binding mechanism of hydrothermal vent tubeworm 400-Kda hemoglobin. Cah Biol Mar 47(4), (in press)Google Scholar
  34. Fox HM, Gilchrist BM, Phear EA (1951) Functions of haemoglobin in Daphnia. Proc R Soc B 138:514–528CrossRefGoogle Scholar
  35. Fox HM (1957) Haemoglobin in the crustacea. Nature 179:148Google Scholar
  36. Greaves J, Rainer JS, Mangum CP (1992) Size-exclusion high performance liquid chromatography of the Dodecameric and Hexameric forms of hemocyanin from Callinectes sapidus. Mar Biol 113:33–36Google Scholar
  37. Grieshaber MK, Hardewig I, Kreutzer U, Pörtner H-O (1994) Physiological and metabolic responses to hypoxia in invertebrates. Rev Physiol Biochem Pharmacol 125:43–147CrossRefGoogle Scholar
  38. Grieshaber MK, Völkel S (1998) Animal adaptations for tolerance and exploitation of poisonous sulfide. Ann Rev Physiol 60:33–53Google Scholar
  39. Hand SC, Somero GN (1983) Energy metabolism pathways of hydrothermal vent animals: adaptations to a food-rich and sulfide-rich deep-sea environment. Biol Bull 165:167–181Google Scholar
  40. Hessler RR, Jumars PA (1974) Abyssal community analysis from replicate box cores in the Central North Pacific. Deep-sea Res 21:185–209Google Scholar
  41. Hourdez S, JouinToulmond C (1998) Functional anatomy of the respiratory system of Branchipolynoe species (Polychaeta, Polynoidae), commensal with Bathymodiolus species (Bivalvia, Mytilidae) from deep sea hydrothermal vents. Zoomorphology 118(4):225–233Google Scholar
  42. Hourdez S, Lallier FH, Green BN, Toulmond A (1999a) Hemoglobins from deep-sea hydrothermal vent scaleworms of the genus Branchipolynoe: a new type of quaternary structure. Proteins 34:427–434Google Scholar
  43. Hourdez S, Lallier FH, Martin-Jezequel V, Weber RE, Toulmond A (1999b) Characterization and functional properties of the extracellular coelomic hemoglobins from the deep-sea, hydrothermal vent scaleworm Branchipolynoe symmytilida. Proteins 34(4):435–442Google Scholar
  44. Hourdez S, Lallier FH, De Cian M-C, Green BN, Weber RE, Toulmond A (2000a) Gas transfer system in Alvinella pompejana (Annelida Polychaeta, Terebellida): functional properties of intracellular and extracellular hemoglobins. Phys Biochem Zool 73(3):365–373Google Scholar
  45. Hourdez S, Lamontagne J, Peterson P, Weber RE, Fisher CR (2000b) Hemoglobin from a deep-sea hydrothermal-vent copepod. Biol Bull 199(2):95–99Google Scholar
  46. Hourdez S, Frederick L-A, Schernecke A, Fisher CR (2001) Functional respiratory anatomy of a deep-sea Orbiniid Polychaete from the Brine Pool Nr-1 in the Gulf of Mexico. Inv Biol 120(1):29–40CrossRefGoogle Scholar
  47. Hourdez S, Weber RE, Green BN, Kenney JM, Fisher CR (2002) Respiratory adaptations in a deep-sea Orbiniid Polychaete from Gulf of Mexico Brine Pool NR-1: metabolic rates and hemoglobin structure/function relationships. J Exp Biol 205:1669–1681Google Scholar
  48. Hourdez S, Weber RE (2005) Molecular and functional adaptations in deep-sea hemoglobins. J Inorg Biochem 99:130–141Google Scholar
  49. Johnson KS, Childress JJ, Beehler CL (1988) Short-term temperature variability in the Rose Garden hydrothermal vent field: an unstable deep-sea environment. Deep-Sea Res 35(10/11):1711–1721Google Scholar
  50. Johnson L, Rees CJC (1988) Oxygen consumption and gill surface area in relation to habitat and lifestyle of four crab species. Comp Biochem Physiol 89A:243–246Google Scholar
  51. Jokumsen A, Weber RE (1982) Hemocyanin–oxygen affinity in hermit crab blood is temperature independent. J Exp Zool 221:389–394Google Scholar
  52. Jones ML (1981) Riftia pachyptila Jones: observations on the Vestimentiferan worm from the Galápagos Rift. Science 213:333–336Google Scholar
  53. Jones ML (1988) The Vestimentifera, their biology, systematic and evolutionary patterns. Oceanol Acta Spec 8:69–82Google Scholar
  54. Jouin C, Toulmond A (1989) The ultrastructure of the gill of the lugworm Arenicola marina (L) (Annelida, Polychaeta). Acta Zool Stockh 70(2):121–129CrossRefGoogle Scholar
  55. Jouin C, Gaill F (1990) Gills of hydrothermal vent annelids : structure, ultrastructure and functionnal implications in two Alvinellid species. Prog Oceanogr 24:59–69Google Scholar
  56. Jouin-Toulmond C, Augustin D, Desbruyeres D, Toulmond A (1996) The gas transfer system in Alvinellids (Annelida Polychaeta, Terebellida). Anatomy and ultrastructure of the anterior circulatory system and characterization of a coelomic, intracellular, haemoglobin. Cah Biol Mar 37(2):135–151Google Scholar
  57. Jouin-Toulmond C, Hourdez S (2006) Morphology, ultrastructure and functional anatomy of the branchial organ of Terebellides stroemii (Polychaeta: Trichobranchidae), with remarks on the systematic position of the genus Terebellides. Cah Biol Mar 47(3):287–299Google Scholar
  58. Kennicutt MC II, Brooks JM, Bidigare RR, Fay RR, Wade TL, McDonald TJ (1985) Vent-type taxa in a hydrocarbon seep region on the Louisiana slope. Nature 317:351–353Google Scholar
  59. Kennish MJ, Lutz RA (1992) The hydrothermal vent clam, Calyptogena magnifica (Boss and Turner 1980): a review of existing literature. Rev Aquat Sci 6(1):29–66Google Scholar
  60. Kimura HM, Sato Y, Sasayama Y, Naganuma T (2003) Molecular characterization and in situ localization of endosymbiotic 16s ribosomal RNA and Rubisco genes in the pogonophoran tissue. Mar Biotech 5:261–269Google Scholar
  61. Kobayashi M, Hoshi T (1982) Relationship between haemoglobin concentration of Daphnia magna and the ambient oxygen concentration. Comp Biochem Physiol 72:247–249Google Scholar
  62. Kobayashi M, Hoshi T (1984) Analysis of the respiratory role of haemoglobin in Daphnia magna. Zool Sci 1:523–532Google Scholar
  63. Kraus DW, Doeller JE (2004) Sulfide consumption by mussel gill mitochondria is not strictly tied to oxygen reduction: measurements using a novel polarographic sulfide sensor. J Exp Biol 207:3667–3679Google Scholar
  64. Lallier FH, Truchot JP (1997) Hemocyanin oxygen-binding properties of a deep-sea hydrothermal vent shrimp: evidence for a novel cofactor. J Exp Zool 277:357–364Google Scholar
  65. Lallier FH, Camus L, Chausson F, Truchot JP (1998) Structure and function of hydrothermal vent crustacean haemocyanin: an update. Cah Biol Mar 39(3–4):313–316Google Scholar
  66. Le Bris N, Sarradin PM, Caprais JC (2003) Contrasted sulphide chemistries in the environment of 13°N EPR vent fauna. Deep-Sea Res I 50:737–747Google Scholar
  67. Levin LA (2003) Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr Mar Biol Annu Rev 41:1–45Google Scholar
  68. Magenheim AJ, Gieskes JM (1992) Hydrothermal discharge and alteration in near-surface sediments from the Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 56:2329–2338Google Scholar
  69. McMahon BR (2001) Respiratory and circulatory compensation to hypoxia in crustaceans. Respir Physiol 128:349–364Google Scholar
  70. Mickel TJ, Childress JJ (1982a) Effects of pressure and temperature on the EKG and heart rate of the hydrothermal vent crab Bythograea thermydron (Brachyura). Biol Bull 162:70–82Google Scholar
  71. Mickel TJ, Childress JJ (1982b) Effects of temperature, pressure, and oxygen concentration on the oxygen consumption rate of the hydrothermal vent crab Bythograea thermydron (Brachyura). Phys Zool 55(2):199–207Google Scholar
  72. Morris S, Bridges CR (1985) An investigation of haemocyanin oxygen affinity in the semi-terrestrial crab Ocypode saratan Forsk. J Exp Biol 117:119–132Google Scholar
  73. Morris S, Bridges CR, Grieshaber MK (1985) Respiratory properties of the haemolymph of the intertidal prawn Palaemon elegans (Rathke). J Exp Biol 233:175–186Google Scholar
  74. Morris S, Greenaway P, McMahon BR (1988) Adaptations to terrestrial existence by the robber crab, Birgus latro. I. An in vitro investigation of blood gas transport. J Exp Biol 140:477–491Google Scholar
  75. Numoto N, Nakagawa T, Kita A, Sasayama Y, Fukumori Y, Miki K (2005) Structure of an extracellular giant hemoglobin of the gutless beard worm Oligobrachia mashikoi. Proc Natl Acad Sci USA 102(41):14521–14526Google Scholar
  76. O’Brien J, Vetter RD (1990) Production of thiosulphate during sulphide oxidation by mitochondria of the symbiont-containing bivalve Solemya reidi. J Exp Biol 149:133–148Google Scholar
  77. Parrino V, Kraus DW, Doeller JE (2000) ATP production from the oxidation of sulfide in gill mitochondria of the ribbed mussel Geukensia demissa. J Exp Biol 203:2209–2218Google Scholar
  78. Paull CK, Hecker B, Commeau R, Freeman-Lynde RP, Neumann C, Corso WP, Golubic S, Hook JE, Sikes E, Curray J (1984) Biological communities at the Florida escarpment resemble hydrothermal vent taxa. Science 226:965–967Google Scholar
  79. Powell MA, Somero GN (1986) Adaptations to sulfide by hydrothermal vent animals: sites and mechanisms of detoxification and metabolism. Biol Bull 171:274–290Google Scholar
  80. Sanders NK (1989) Functional properties of hemocyanins from deep-sea crustaceans. PhD thesis. University of California, Santa Barbara USA. 209 ppGoogle Scholar
  81. Sanders NK, Arp AJ, Childress JJ (1988) Oxygen binding characteristics of the hemocyanins of two deep-sea hydrothermal vent crustaceans. Respir Physiol 71:57–68Google Scholar
  82. Segonzac M, Desaintlaurent M, Casanova B (1993) Enigma of the trophic adaptation of the shrimp Alvinocarididae in hydrothermal areas along the Mid-Atlantic Ridge. Cah Biol Mar 34(4):535–571Google Scholar
  83. Sell AF (2000) Life in the extreme environment at a hydrothermal vent: haemoglobin in a deep-sea copepod. Proc R Soc Lond B 267:2323–2326Google Scholar
  84. Sibuet M, Olu K (1998) Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Res II 45:517–567Google Scholar
  85. Smith EB, Scott KM, Nix ER, Korte C, Fisher CR (2000) Growth and condition of seep mussels (Bathymodiolus childressi) at a Gulf of Mexico Brine Pool. Ecology 81(9):2392–2403Google Scholar
  86. Terwilliger NB, Terwilliger RC (1984) Hemoglobin from the "Pompeii Worm", Alvinella pompejana, an annelid from a deep sea hot hydrothermal vent environment. Mar Biol Lett 5:191–201Google Scholar
  87. Terwilliger RC, Terwilliger NB, Arp AJ (1983) Thermal vent clam (Calyptogena magnifica) hemoglobin. Science 219:981–983Google Scholar
  88. Terwilliger RC, Terwilliger NB, Hughes GM, Southward AJ, Southward EC (1987) Studies on the haemoglobins of the small pogonophorans. J Mar Biol Ass U K 67:219–239CrossRefGoogle Scholar
  89. Toulmond A, El Idrissi Slitine F, De Frescheville J, Jouin C (1990) Extracellular hemoglobins of hydrothermal vent annelids: structural and functional characteristics in three Alvinellid species. Biol Bull 179:366–373Google Scholar
  90. Truchot J-P (1992) Respiratory function of arthropod hemocyanins. In: Mangum CP (ed) Blood and tissues oxygen carriers. Spinger Verlag, Berlin Heidelberg, pp 377–410Google Scholar
  91. Tunnicliffe V (1991) The biology of hydrothermal vents: ecology and evolution. Oceanogr Mar Biol Annu Rev 29:319–407Google Scholar
  92. Tyler PA, German CR, Ramirez-Llodra E, Van Dover CL (2003) Understanding the biogeography of chemosynthetic ecosystems. Oceanol Acta 25(5):227–241Google Scholar
  93. Vetter RD, Wells ME, Kurtsman AL, Somero GN (1987) Sulfide detoxification by the hydrothermal vent crab Bythograea thermydron and other decapod crustaceans. Physiol Zool 60:121–137Google Scholar
  94. Völkel S, Grieshaber MK (1997) Sulphide oxidation and oxidative phosphorylation in the mitochondria of the lugworm Arenicola marina. J Exp Biol 200:83–92Google Scholar
  95. Von Damm KL (1990) Seafloor hydrothermal activity: black smoker chemistry and chimneys. Ann Rev Earth Planet Sci 18:173–204Google Scholar
  96. Weber RE (1978) Respiratory pigments. In: Mills PJ (ed) Physiology of annelids. Academic Press, New York, pp 393–437Google Scholar
  97. Williams AB (1980) A new crab family from the vicinity of submarine thermal vents on the Galapagos Rift (Crustacea: Decapoda: Brachyura). Proc Biol Soc Wash 93(2):443–472Google Scholar
  98. Wittenberg JB (1985) Oxygen supply to intracellular bacterial symbionts. Bull Biol Soc Wash 6:301–310Google Scholar
  99. Wittenberg JB, Stein JL (1995) Hemoglobin in the symbiont-harboring gill of the marine gastropod Alviniconcha hessleri. Biol Bull 188:5–7Google Scholar
  100. Zal F, Lallier FH, Green BN, Vinogradov SN, Toulmond A (1996a) The multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila. 2. Complete polypeptide chain composition investigated by maximum entropy analysis of mass spectra. J Biol Chem 271(15):8875–8881Google Scholar
  101. Zal F, Lallier FH, Wall JS, Vinogradov SN, Toulmond A (1996b) The multi-hemoglobin system of the hydrothermal vent tube worm Riftia pachyptila. 1. Reexamination of the number and masses of its constituents. J Biol Chem 271(15):8869–8874Google Scholar
  102. Zal F, Green BN, Lallier FH, Toulmond A (1997) Investigation by electrospray ionization mass spectrometry of the extracellular hemoglobin from the polychaete annelid Alvinella pompejana: An unusual hexagonal bilayer hemoglobin. Biochemistry 36(39):11777–11786Google Scholar
  103. Zal F (1998) Sulphide-binding processes of Riftia pachyptila haemoglobins. Cah Biol Mar 39(3–4):327–328Google Scholar
  104. Zal F, Leize E, Lallier FH, Toulmond A, VanDorsselaer A, Childress JJ (1998) S-Sulfohemoglobin and disulfide exchange: the mechanisms of sulfide binding by Riftia pachyptila hemoglobins. Proc Natl Acad Sci USA 95(15):8997–9002Google Scholar
  105. Zal F, Green BN, Martineu P, Lallier FH, Toulmond A, Vinogradov SN, Childress JJ (2000a) Polypeptide chain composition difersity of hexagonal-bilayer haemoglobins within a single family of annelids, the Alvinellidae. Eur J Biochem 267:1–11Google Scholar
  106. Zal F, Leize E, Oros DR, Hourdez S, Van Dorsselaer A, Childress JJ (2000b) Haemoglobin structure and biochemical characteristics of the sulphide-binding component from the deep-sea clam Calyptogena magnifica. Cah Biol Mar 41(4):413–423Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Equipe Ecophysiologie: Adaptations et Evolution MoléculairesUMR 7144 CNRS-UPMCRoscoffFrance

Personalised recommendations