Advertisement

Fungi in Antarctica

  • Serena Ruisi
  • Donatella Barreca
  • Laura Selbmann
  • Laura Zucconi
  • Silvano OnofriEmail author
Reviews

Abstract

Fungi are generally easily dispersed and are able to colonize a very wide variety of different substrata and to withstand many different environmental conditions. Because of these characteristics they spread all over the world. The Antarctic mycoflora is quite diversified within the different climatic regions of the continent. Most Antarctic microfungi are cosmopolitan; some of them are propagules transported to Antarctica but unable to grow under the Antarctic conditions, while others, termed indigenous, are well adapted and able to grow and reproduce even at low temperatures, mostly as psychrotolerant, or fast sporulating forms, able to conclude their life-cycles in very short time. In the most extreme and isolated areas of the continent, such as the Antarctic Dry Valleys, endemic species showing physiological and morphological adaptations have locally evolved. Most Antarctic fungi, as well as fungi from other dry and cold habitats, are adapted to low temperatures, repeated freeze and thawing cycles, low water availability, osmotic stress, desiccation, low nutrients availability and high UV radiation. Sometimes single strategies are not specific for single stress factors and allow these microorganisms to cope with more than one unfavourable condition.

Keywords

Adaptation Antarctica Fungi Low temperature Osmotic stress UV radiation Water availability 

Notes

Acknowledgements

The authors thank the Italian National Program for Research in Antarctica (PNRA) and the European Commission’s Research Infrastructure (SYNTHESYS Project) for financial support.

References

  1. Abyzov SS (1993) Microorganisms in the Antarctic ice. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, Inc, New York, pp 265–285Google Scholar
  2. Ahmadjian V, Jacobs JB (1987) Studies on the development of synthetic lichens. Bibl Lichenol 25:47–58Google Scholar
  3. Arcangeli C, Cannistraro S (2000) In situ Raman microspectroscopic identification and localization of carotenoids; approach to monitoring of UV-B irradiation stress on Antarctic fungus. Biospectroscopy 57:178–186Google Scholar
  4. Arcangeli C, Zucconi L, Onofri S, Cannistraro S (1997) Fluoroscence study on whole Antarctic fungal spores under enhanced UV irradiation. J Photochem Photobiol B: Biol 39:258–264Google Scholar
  5. Azmi OR, Seppelt RD (1997) Fungi of the Windmill Islands, Continental Antarctica. Effect of temperature, pH and culture medium on the growth of selected microfungi. Polar Biol 18:128–134Google Scholar
  6. Baross JA, Morita RY (1978) Microbial life at low temperatures: ecological aspects. In: Kushner DJ (ed) Microbial life in extreme environments. Academic Press, London, pp 9–71Google Scholar
  7. Bell AA, Wheeler MH (1986) Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24:411–451Google Scholar
  8. Bergero R, Girlanda M, Varese GC, Intili D, Luppi AM (1999) Psychrooligotrophic fungi from Arctic soils of Franz Joseph Land. Polar Biol 21:361–368Google Scholar
  9. Blumthaler M, Ambach W (1990) Indication of increasing solar ultra-violet-B radiation flux in Alpine regions. Science 248:206–208Google Scholar
  10. Brewer MS (1999) Traditional preservatives-sodium chloride. In: Robinson RK, Blatt CA, Patel PD (eds) Encyclopaedia of food microbiology. Academic Press, London, pp 1723–1728Google Scholar
  11. Bridge PD, Worland MR (2004) First report of an entomophthoralean fungus on an arthropod host in Antarctica. Polar Biol 27:190–192Google Scholar
  12. Broady PA (1993) Soils heated by volcanism. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, Inc, New York, pp 413–432Google Scholar
  13. Broady PA (1996) Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers Conserv 5:1307–1335Google Scholar
  14. Brown AD (1978) Compatible solutes and extracellular water stress in eukaryotic microorganisms. Adv Microb Physiol 17:181–242CrossRefGoogle Scholar
  15. Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP (1998) Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc R Soc London B 265:1461–1465Google Scholar
  16. Butler MJ, Day AW (1998) Fungal melanins: a review. Can J Microbiol 44:1115–1113Google Scholar
  17. Caretta G, Del Frate G, Margiarotti AM (1994) A record of Arthrobotrys tortor Jarowaja and Engyodontium album (Limber) de Hoog from Antarctica. Bol Micol 9:9–13Google Scholar
  18. Cockell CS, Blaustein A (2001) Ecosystems, evolution and UV radiation. Springer, New YorkGoogle Scholar
  19. Cockell CS, Knowland J (1999) Ultraviolet radiation screening compounds. Biol Rev 74:311–345Google Scholar
  20. Crowe JH, Crowe LM, Chapman D (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–703Google Scholar
  21. Crowe LM, Womersley C, Crowe JH, Reid D, Appel L, Rudolph A (1986) Prevention of fusion and leakage in freeze-dried liposomes by carbohydrates. Biochem Biophys Acta 861:131–140Google Scholar
  22. Crowe JH, Crowe LM, Carpenter JF, Wistrom CA (1987) Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J 242:1–10Google Scholar
  23. Crowe JH, Hoekstra FA, Crowe LM (1992) Anhydrobiosis. Annu Rev Physiol 54:579–599Google Scholar
  24. D’Amore T, Crumplen R, Stewart GG (1991) The involvement of trehalose in yeast stress tolerance. J Ind Microbiol 7:191–196Google Scholar
  25. Del Frate G, Caretta G (1990) Fungi isolated from Antarctic material. Polar Biol 11:1–7Google Scholar
  26. de Hoog GS, Zalar P, Urzì F, de Leo F, Yurlova NA, Sterflinger K (1999) Relationships of dothideaceous black yeasts and meristematic fungi based on 5.8S and ITS2 rDNA sequence comparison. Stud Mycol 43:31–37Google Scholar
  27. de Hoog GS, Göttlich E, Platas G, Genilloud O, Leotta G, van Brummelen J (2005) Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud Mycol 51:33–76Google Scholar
  28. de los Ríos A, Wierzchos J, Sancho LG, Ascaso C (2003) Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems. Eviron Microbiol 5:231–237Google Scholar
  29. de los Ríos A, Sancho LG, Grube M, Wierzchos J, Ascaso C (2005) Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques. New Phytol 165:181–190Google Scholar
  30. Des Marais DJ (1995) The biogeochemistry of hypersaline microbial mats. Adv Microb Ecol 14:251–274Google Scholar
  31. Domsch KH, Gams W, Anderson TH (1980) Compendium of Soil Fungi, Vol 2. Academic Press, London. (reprint IHW – Verlag, Eching 1993)Google Scholar
  32. Ellis MB (1971) Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, England, 608ppGoogle Scholar
  33. Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315:207–210Google Scholar
  34. Fenice M, Selbmann L, Zucconi L, Onofri S (1997) Production of extracellular enzymes by Antarctic fungal strains. Polar Biol 17:275–280Google Scholar
  35. Fenice M, Selbmann L, Di Giambattista R, Federici F (1998) Chitinolytic activity at low temperature of an Antarctic strain (A3) of Verticillium lecanii. Res Microbiol 149:289–300Google Scholar
  36. Feofilova EP, Tereshina VM, Gorova IB (1994) Changes in carbohydrate composition of fungi during adaptation to thermostress. Microbiology 63:442–445Google Scholar
  37. Finotti E, Moretto D, Marsella R, Mercantini R (1993) Temperature effects and fatty acid patterns in Geomyces species isolated from Antarctic soil. Polar Biol 13:127–130Google Scholar
  38. Foissner W (2006) Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozool 45:111–136 Google Scholar
  39. Frederick JE, Snell HE (1988) Ultraviolet radiation levels during the Antarctic spring. Science 241:438–440Google Scholar
  40. Frederick JE, Snell HE, Haywood EK (1989) Solar ultraviolet radiation at the earth’s surface. Photochem Photobiol 50:443–450Google Scholar
  41. Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053Google Scholar
  42. Friedmann EI (1993) Antarctic microbiology. Wiley-Liss, New York, 634ppGoogle Scholar
  43. Friedmann EI, Koriem AM (1989) Life on Mars: how it disappeared (if it was ever there). Adv Space Res 9:167–172Google Scholar
  44. Friedmann EI, Ocampo R (1976) Endolithic blue-green algae in the dry valleys: primary producers in the Antarctic desert ecosystem. Science 193:1247–1249Google Scholar
  45. Friedmann EI, Hua M, Ocampo-Friedmann R (1988) Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung 58:251–259Google Scholar
  46. Friedmann EI, Druk AY, McKay CP (1994) Limits if life and microbial extinction in the Antarctic desert. Antarct JUS 29:176–179Google Scholar
  47. Gadd GM, Chalmers K, Reed RH (1987) The role of trehalose in dehydration resistance of Saccharomyces cerevisiae. FEMS Microbiol Lett 48:249–254Google Scholar
  48. Golubic S, Friedmann EI, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51:475–478Google Scholar
  49. Gorbushina AA, Krumbein WE, Panina L, Soukharjevsky S, Wollenzien U, Hamann KH (1993) On the role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiol J 11:205–221Google Scholar
  50. Gorbushina AA, Whitehead K, Dornieden T, Niesse A, Schulte A, Hedges JI (2003) Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock-dwelling microcolonial fungi. Can J Bot 81:131–138Google Scholar
  51. Gorbushina AA, Beck A, Schulte A (2005) Microcolonial rock inhabiting fungi and lichen photobionts: evidence for mutualistic interactions. Mycol Res 109(11): 1288–1296Google Scholar
  52. Grant WD (2004) Life at low water activity. Phil Trans R Soc London B 359:1249–1267Google Scholar
  53. Green TGA, Schroeter B, Sancho LG (1999) Plant life in Antarctica. In: Pugnaire FI, Valladares F (eds) Handbook of functional plant ecology. Marcel Dekker, Inc, New York, pp 495–543Google Scholar
  54. Grondona I, Monte E, Rives V, Vicente MA (1997) Lichenized association between Septonema tormes sp. nov., a coccoid cyanobacterium, and a green alga with an unforeseen biopreservation effect of Villamayor sandstone at ‘Casa lis’ of Salamanca, Spain. Mycol Res 101:1489–1495Google Scholar
  55. Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A (2000) Hypersaline waters in salterns-natural ecological niches for halophilic black yeast. FEMS Microbiol Ecol 32:235–240Google Scholar
  56. Gunde-Cimerman N, Sonjak S, Zalar P, Frisvad JC, Diderichsen B, Plemenitaš A (2003) Extremophilic fungi in arctic ice: a relationship between adaptation to low temperature and water activity. Phys Chem Earth 28:1273–1278Google Scholar
  57. Gunde-Cimerman N, Zalar P, Petrovič U, Turk M, Kogej T, de Hoog GS, Plemenitaš A (2004) Fungi in salterns. In: Ventosa A (Eds) Halophilic microorganisms. Springer-Verlag, Berlin pp 103–113Google Scholar
  58. Gunde-Cimerman N, Oren A, Plemenitaš A (2005) Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, The Netherlands, 577ppGoogle Scholar
  59. Han KH, Prade RA (2002) Osmotic stress-coupled maintenance of polar growth in Aspergillus nidulans. Mol Microbiol 43(5): 1065–1078Google Scholar
  60. Holdgate MV (1977) Terrestrial ecosystems in the Antarctic. Philos T Roy Soc B 279:5–25Google Scholar
  61. Horowitz NH, Cameron RE, Hubbard JS (1972) Microbiology of the Dry Valleys of Antarctica. Science 193:242–245Google Scholar
  62. Hottiger T, Boller T, Wiemken A (1987) Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS Lett 220:113–115Google Scholar
  63. Hughes KA, Lawley B (2003) A novel Antarctic microbial endolithic community within gypsum crusts. Environ Microbiol 69:1488–1491Google Scholar
  64. Hughes KA, Lawley B, Newsham KK (2003) Solar UV-B radiation inhibits the growth of Antarctic terrestrial fungi. Appl Environ Microbiol 69:1488–1491Google Scholar
  65. Jumpponen A, Newsham KK, Neises DJ (2003) Filamentous ascomycetes inhabiting the rhizoid environment of the liverwort Cephaloziella varians in Antarctica are assessed by direct PCR and cloning. Mycologia 95:457–466Google Scholar
  66. Kappen L (1974) Response to extreme environments. In: Ahmadjian V, Hale ME (eds) The lichens. Academic Press, New York, pp 311–380Google Scholar
  67. Kappen L (1993) Lichens in the Antarctic region. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 433–490Google Scholar
  68. Karentz D (1994) Ultraviolet tolerance mechanisms in Antarctic marine organisms. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union, Washington, DC, pp 92–110Google Scholar
  69. Kerr JB, McElroy CT (1993) Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science 262:1032–1034Google Scholar
  70. Kerry E (1990) Effects of temperature on growth rates of fungi from subantarctic Macquarie Island and Casey, Antarctica. Polar Biol 10:293–299Google Scholar
  71. Kis-Papo T, Kirzhner V, Wasser SP, Nevo E (2003) Evolution of genomic diversity and sex at extreme environments: fungal life under hypersaline Dead Sea stress. PNAS 100:14970–14975Google Scholar
  72. Kochkina GA, Ivanushkina NE, Karasev SG, Gavrish E Yu, Gurina LV, Evtushenko LI, Spirina EV, Vorob’eva EA, Gilichinskii DA, Ozerskaya SM (2001) Survival of micromycetes and actinobacteria under conditions of long term natural cryopreservation. Microbiology 70:356–364Google Scholar
  73. Kogej T, Wheeler MH, Rižner TL, Gunde-Cimerman N (2004) Evidence for 1,8–dihydroxynaphthalene melanin in three halophilic black yeasts grown under saline and non-saline conditions. FEMS Microbiol Lett 232:203–209Google Scholar
  74. Leotta GA, Paré JA, Sigler L, Montalti D, Vigo G, Petruccelli M, Reinoso EH (2002) Thelebolus microsporus mycelial mats in the trachea of wild brown skua (Catharacta antarctica lonnbergi) and South Polar skua (C. maccormicki) carcasses. J Wildlife Dis 38(2): 443–447Google Scholar
  75. Lewis JG, Learmonth RP, Watson K (1995) Induction of heat, freezing and salt tolerance by heat and salt shock in Saccharomyces cerevisiae. Microbiology 141:687–694CrossRefGoogle Scholar
  76. Ma L, Rogers SO, Catranis CM, Starmer TS (2000) Detection and charaterization of ancient fungi entrapped in glacial ice. Mycologia 92:286–295Google Scholar
  77. Madronich S, McKenzie RL, Björn LO, Caldwell MM (1998) Changes in biologically active ultraviolet radiation reaching the Earth’s surface. J Photochem Photobiol B: Biol 46:5–19Google Scholar
  78. Maggi O, Persiani AM, Fabbri AA, De Luca C, Lunghini D, Quadraccia L, Fanelli C (1991) Differenze nella composizione fosfolipidica di diversi taxa fungini. Giorn Bot Ital 125(3):259Google Scholar
  79. Méjanelle L, Lòpez JF, Gunde-Cimerman N, Grimalt JO (2001) Ergosterol biosynthesis in novel melanized fungi from hypersaline environments. J Lipid Res 42:352–358Google Scholar
  80. Mercantini R, Marsella R, Moretto D, Finotti E (1993) Keratinophilic fungi in the Antarctic environment. Mycopathalogia 122:169–175Google Scholar
  81. Montemartini Corte A (1991) Funghi di ambienti acquatici. In: Battaglia B, Bisol PM, Varotto V (eds) Proceedings of the 1st Meeting on ‘Biology in Antarctica’ (English summaries). Roma CNR 22–23 June 1989, Scienza e Cultura, Edizioni Universitarie Patavine, pp 67–76Google Scholar
  82. Montemartini Corte A, Caretta G, Del Frate G (1993) Notes on Thelebolus microsporus isolated in Antarctica. Mycotaxon 48:343–358Google Scholar
  83. Montiel PO (2000) Solubile carbohydrates (trehalose in particular) and cryoprotection in polar biota. Cryo-Lett 21:83–90 Google Scholar
  84. Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 343–412Google Scholar
  85. Nishiyama T (1977) Studies on evaporite minerals from Dry Valley, Victoria Land, Antarctica. Antarct Rec 58:171–185Google Scholar
  86. Ocampo-Friedmann R, Friedmann EI (1993). Biologically active substances produced by Antarctic cryptoendolithic fungi. Ant JUS 28:252–254Google Scholar
  87. Onofri S (1999) Antarctic microfungi. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer Academic publishers, Dordrecht, Boston, London, pp 323–336Google Scholar
  88. Onofri S, Friedmann EI (1998) Cryptoendolithic microorganisms in sandstone and pegmatite in the northern Victoria Land. In: Tamburrini M, D’Avino R (eds), Newsletter of the italian biological research in Antartica. Camerino University Press, Camerino, pp 45–51Google Scholar
  89. Onofri S, Tosi S (1992) Arthrobotrys ferox sp. nov. a springtail-capturing hyphomycete from Continental Antarctica. Mycotaxon 44:445–451Google Scholar
  90. Onofri S, Rambelli A, Maggi O, Persiani AM, Riess S, Tosi S, Grasselli E (1991) Micologia del suolo. In: Battaglia B, Bisol PM, Varotto V (eds) Proceedings of the 1st Meeting on ‘Biology in Antarctica’ (English summaries). Roma CNR 22–23 June 1989. Scienza e Cultura, Edizioni Universitarie Patavine, pp 55–65Google Scholar
  91. Onofri S, Tosi S, Persiani AM, Maggi O, Riess S, Zucconi L (1994) Mycological reserches in Victoria Land terrestrial ecosystem. Proceedings of the Second Meeting on “Antarctic Biology”, Padova, 26–28 February 1992. Scienza e cultura, Edizioni Universitarie Patavine, Padova, pp 19–32Google Scholar
  92. Onofri S, Pagano S, Zucconi L, Tosi S (1999) Friedmanniomyces endolithicus (Fungi, Hyphomycetes), anam.-gen. and sp. nov., from continental Antartica. Nova Hedwigia 68:175–181Google Scholar
  93. Onofri S, Fenice M, Cicalini AR, Tosi S, Magrino A, Pagano S, Selbmann L, Zucconi L, Vishniac HS, Ocampo-Friedmann R, Friedmann EI (2000) Ecology and biology of microfungi from Antarctic rocks and soil. Ital J Zool 67(suppl. 1):163–168CrossRefGoogle Scholar
  94. Onofri S, Selbmann L, Zucconi L, Pagano S (2004) Antarctic microfungi as models for exobiology. Planet Space Sci 52:229–237Google Scholar
  95. Onofri S, Selbmann L, Zucconi L, Tosi S, Fenice M, Barreca D, Ruisi S (2005a) Studies on Antarctic fungi. Polarnet Tech Rep.1:49–52Google Scholar
  96. Onofri S, Selbmann L, Zucconi L, Tosi S, de Hoog GS (2005b) The Mycota of Continental Antarctica. Terra Antart Rep 11:37–42Google Scholar
  97. Onofri S, Zucconi L, Tosi S (2006) Continental Antarctic Fungi. IHW-Verlag, Eching (in press)Google Scholar
  98. Øvstedal DO, Lewis Smith RI (2001) Lichens of Antarctica and South Georgia. In: Øvstedal DO, Lewis Smith RI (eds) A guide to their identification and ecology. Studies in Polar Research, University of Cambridge, pp 4–5Google Scholar
  99. Pascual S, Melgarejo P, Magan N (2002) Water availability affects the growth, accumulation of compatible solutes and the viability of the biocontrol agent Epicoccum nigrum. Mycopathologia 156:93–100Google Scholar
  100. Pickard J, Seppelt RD (1984) Phytogeography of Antarctica. J Biogeogr 11:83–102Google Scholar
  101. Rivkina E, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233Google Scholar
  102. Rivkina E, Laurinavichius K, McGrath J, Tiedje J, Shcherbakova V, Gilichinsky D (2004) Microbial life in permafrost. Adv Space Res 33:1215–1221Google Scholar
  103. Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353Google Scholar
  104. Ruibal C, Platas G, Bills GF (2005) Isolation and characterization of melanized fungi from limestone in Mallorca. Mycol Progr 4:23–38Google Scholar
  105. Russell NJ (1990) Cold adaptation of microorganisms. Philos Trans Roy Soc London Ser B 326:595–611Google Scholar
  106. Selbmann L, Onofri S, Fenice M, Federici F, Petruccioli M (2002) Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res Microbiol 153:585–592Google Scholar
  107. Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32Google Scholar
  108. Seymour FA, Crittenden PD, Dyer PS (2005) Sex in the extremes: lichen-forming fungi. Mycologist 19:51–58Google Scholar
  109. Staley JT, Palmer FE, Adams JB (1982) Microcolonial fungi: common inhabitants on desert rocks? Science 215:1093–1095Google Scholar
  110. Sterflinger K (1998) Temperature and NaCl-tolerance of rock inhabiting meristematic fungi. Antonie van Leeuwenhoek 74:271–281Google Scholar
  111. Sterflinger K (2005) Black yeasts and meristematic fungi: ecology, diversity and identification. In: Rosa C, Gabor P (eds) Yeast handbook: biodiversity and ecophysiology of yeasts. Springer, New York, pp 505–518Google Scholar
  112. Sterflinger K, de Hoog GS, Haase G (1999) Phylogeny and ecology of meristematic ascomycetes. Stud Mycol 43:5–22Google Scholar
  113. Thevelein JM (1984) Regulation of trehalose mobilization in fungi. Microbiol Rev 48:42–59Google Scholar
  114. Tosi S, Begoña C, Gerdol R, Caretta G (2002) Fungi isolated from Antarctic mosses. Polar Biol 25:262–268Google Scholar
  115. Tosi S, Onofri S, Brusoni M, Zucconi L, Vishniac H (2005) Response of Antarctic soil fungal assemblages to experimental warming and reduction of UV radiation. Polar Biol 28:470–482Google Scholar
  116. Turian G (1977) Coniosporium aeroalgicolum sp. nov. – a dematiaceous fungus living in balanced parasitism with aerial algae. B Soc Bot Suisse 87:19–24Google Scholar
  117. Urzì C, Realini M (1998) Colours changes of Noto’s calcareous sandstone as related to its colonization by microorganisms. Int Biodeter Biodegr 42:45–54Google Scholar
  118. Urzì C, Wollenzien U, Criseo G, Krumbein WE (1995) Biodiversity of the rock inhabiting microflora with special reference to black fungi and black yeasts. In: Allsopp D, Colwell RR, Hawksworth DL (eds) Microbial diversity and ecosystem function. CAB International, Wallingford, UK, pp 289–302Google Scholar
  119. van Laere A (1989) Trehalose, reserve and/or stress metabolite? FEMS Microbiol Rev 63:201–210Google Scholar
  120. van Uden N (1984) Temperature profiles of yeasts. Adv Microb Physiol 25:195–251Google Scholar
  121. Verona O, Firpi M (1971) Sui micromiceti carticoli dei generi Alternaria, Ulocladium, Stemphylium. Cell Carta 8:55–72Google Scholar
  122. Vincent WF (1988) Microbial ecosystems of Antartica. Cambridge University Press, Cambridge, 303ppGoogle Scholar
  123. Vincent WF (2000) Evolutionary origins of Antarctic microbiota: invasion, selection and endemism. Antarct Sci 12(3): 374–385Google Scholar
  124. Vishniac HS (1987) Psychrophily and systematics of yeast-like fungi. In: de Hoog GS, Smith MTh, Weijman ACM (eds) The expanding realm of yeast-like fungi. Stud. Mycol. 30:389–402Google Scholar
  125. Vishniac HS (1993) The microbiology of Antarctic soils. In: Friedmann EI (ed) Antarctic microbiology. Wiley-Liss, New York, pp 433–490Google Scholar
  126. Vishniac HS (2006) Yeast biodiversity in the Antarctic. In: Rosa CA, Gabor P (eds) Biodiversity and ecophysiology of Yeasts, Springer, pp 419–440Google Scholar
  127. Vishniac HS, Onofri S (2002) Cryptococcus antarcticus var. circumpolaris var. nov., a basidiomycetous yeast from Antarctica. Antonie van Leeuwenhoek 83:233–235Google Scholar
  128. Volkmann M, Whitehead K, Rüttgers H, Rullkötter J, Gorbushina AA (2003) Mycosporine-glutamicol-glucoside: a natural UV absorbing secondary metabolite of rock-inhabiting microcolonial fungi. Rapid Comm Mass Spectr 17:897–902Google Scholar
  129. Weinstein RN, Montiel PO, Johnstone K (2000) Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia 92:222–229Google Scholar
  130. Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie van Leeuwenhoek 58:209–217Google Scholar
  131. Wierzchos J, Ascaso C (2001) Life, decay and fossilisation of endolithic microorganisms from the Ross Desert, Antarctica: suggestions for in situ further research. Polar Biol 24:863–868Google Scholar
  132. Wierzchos J, Ascaso C (2002) Microbial fossil record of rocks from the Ross Desert, Antarctica: implications in the search for past life on Mars. Int J Astrobiol 1:51–59Google Scholar
  133. Wollenzien U, de Hoog GS, Krumbein WE, Urzì C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Total Environ 167:287–294Google Scholar
  134. Wynn-Williams DD (1990) Ecological aspects of Antarctic microbiology. Adv Microb Ecol 11:71–146Google Scholar
  135. Wynn-Williams DD, Edwards HGM (2000) Antarctic ecosystems as models for extraterrestrial surface habitats. Planet Space Sci 48:1065–1075Google Scholar
  136. Wynn-Williams DD, Edwards HGM (2001) In: Horneck G, Baumstark-Khan C (eds) Environmental UV radiation: biological strategies for protection and avoidance, in astrobiology: the quest for the conditions of life. Springer-Verlag, Berlin, pp 244–259Google Scholar
  137. Zalar P, de Hoog GS, Gunde-Cimerman N (1999a) Ecology of halotolerant dothideaceous black yeasts. Stud Mycol 43:38–48Google Scholar
  138. Zalar P, de Hoog GS, Gunde-Cimerman N (1999b) Taxonomy of the endoconidial black yeast genera Phaeotheca and Hyphospora. Stud Mycol 43:49–56Google Scholar
  139. Zalar P, de Hoog GS, Gunde-Cimerman N (1999c) Trimmatostroma salinum, a new species from hypersaline water. Stud Mycol 43:57–62Google Scholar
  140. Zucconi L, Pagano S, Fenice M, Selbmann L, Tosi S, Onofri S (1996) Growth temperature preferences of fungal strains from Victoria Land, Antarctica. Polar Biol 16:53–61Google Scholar
  141. Zucconi L, Ripa C, Selbmann L, Onofri S (2002) Effects of UV on the spores of the fungal species Arthrobotrys oligospora and A. ferox. Polar Biol 25:500–505Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • Serena Ruisi
    • 1
  • Donatella Barreca
    • 1
  • Laura Selbmann
    • 1
  • Laura Zucconi
    • 1
  • Silvano Onofri
    • 1
    Email author
  1. 1.Dipartimento di Scienze AmbientaliUniversità degli Studi della TusciaViterboItaly

Personalised recommendations