Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency

Abstract

The complex and diverse structural configurations of polycyclic aromatic hydrocarbons (PAHs), combined with their low bioavailability, hydrophobic nature, strong sorption phenomena, and high persistence in soil makes the design of effective bioremediation methodologies a challenge. The multi-phasic nature of the bioremediation process, restricted mass transfer and non-availability of degrading soil microflora further compound the problem. In this direction, this communication presents a focused review of bioremediation technologies used recently for the treatment of PAH-contaminated soils. The specific roles of important factors affecting bioremediation process efficiency are discussed. Finally some of the recently used strategies to enhance bioremediation process efficiency, including bioaugmentation, biostimulation, rhizoremediation, the use of chemotaxins, the biomimetic catalytic system approach, and integrated techniques, are reviewed.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Ahn Y, Jung H, Tatavarty R, Choi H, Yang J, Kim IS (2005) Monitoring of petroleum hydrocarbon degradative potential of indigenous microorganisms in ozonated soil. Biodegradation 16:45–56

    CAS  Article  Google Scholar 

  2. Alexander M (1999) Biodegradation and bioremediation. Academic Press, San Diego

    Google Scholar 

  3. Alexander M (2000) How toxic are toxic chemicals in soil? Enviro Sci Technol 34: 4259–4265

    CAS  Article  Google Scholar 

  4. Ambrosoli R, Petruzzelli L, Minati JL, Marsan FA (2005) Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions. Chemosphere 60:1231–1236

    CAS  Article  Google Scholar 

  5. Antizar-Ladislao A, Lopez-Real JM, Beck AJ (2004) Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated waste using composting approaches. Crit Rev Environ Sci Technol 34:249–289

    CAS  Article  Google Scholar 

  6. Antizar-Ladislao B, Lopez-Real J, Beck AJ (2005a) In-vessel composting bioremediation of aged coal tar soil: effect of temperature and soil/green waste amendment ratio. Environ Int 31:173–178

    CAS  Article  Google Scholar 

  7. Antizar-Ladislao B, Lopez-Real J, Beck AJ (2005b) Laboratory studies of the remediation of polycyclic aromatic hydrocarbon contaminated soil by in-vessel composting. Waste Manag 25:281–289

    CAS  Article  Google Scholar 

  8. Antizar-Ladislao B, Lopez-Real J, Beck AJ (2006) Degradation of polycyclic aromatic hydrocarbons (PAHs) in an aged coal tar contaminated soil under in-vessel composting conditions. Environ Pollut 141:459–468

    CAS  Article  Google Scholar 

  9. Aprill W, Sims RC (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 20:253–265

    CAS  Article  Google Scholar 

  10. Baptista SJ, Cammarota MC, Freire DDC (2005) Production of CO2 in crude oil bioremediation in clay soil. Braz Arch Biol Technol 48:249–255

    Google Scholar 

  11. Baraniecki C, Aislabie J, Foght J (2002) Characterization of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microb Ecol 43:44–54

    CAS  Article  Google Scholar 

  12. Bento FM, Camargo FAO, Okeke BC, Frankenberger WT (2005) Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation. Bioresource Technol 96:1049–1055

    CAS  Article  Google Scholar 

  13. Betancur-Galvis LA, Alvarez-Bernal D, Ramos-Valdivia AC, Dendooven L (2006) Bioremediation of polycyclic aromatic hydrocarbon-contaminated saline–alkaline soils of the former Lake Texcoco. Chemosphere 62:1749–1760

    CAS  Article  Google Scholar 

  14. Biswas SSK, Chaudhari S, Mukherji S (2005) Microbial uptake of diesel oil sorbed on soil and oil spill clean-up sorbents. J Chem Technol Biotechnol 80:587–593

    CAS  Article  Google Scholar 

  15. Bogan BW, Sullivan WR, Cruz KH, Paterek JR, Ravikovitch PI, Neimark AV (2003) Humic coverage index as a determining factor governing strain-specific hydrocarbon availability to contaminant degrading bacteria in soils. Environ Sci Technol 37:5168–5174

    CAS  Article  Google Scholar 

  16. Bollag JM (1992) Decontaminating soil with enzymes. Environ Sci Technol 26:1876–1881

    CAS  Article  Google Scholar 

  17. Boonchan S, Britz ML, Stanley GL (2000) Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal–bacterial cocultures. Appl Environ Microbiol 66:1007–1019

    CAS  Article  Google Scholar 

  18. Boopathy R (2003) Anaerobic degradation of No. 2 diesel fuel in the wetland sediments of Barataria-Terrebonne estuary under various electron acceptor conditions. Bioresource Technol 86:171–175

    CAS  Article  Google Scholar 

  19. Boopathy R (2004) Anaerobic biodegradation of No. 2 diesel fuel in soil: a soil column study. Bioresource Technol 94:143–151

    CAS  Article  Google Scholar 

  20. Bordas F, Lafrance P, Villemur R (2005) Conditions for effective removal of pyrene from an artificially contaminated soil using Pseudomonas aeruginosa 57SJ rhamnolipids. Environ Pollut 138:69–76

    CAS  Article  Google Scholar 

  21. Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31:248–252

    CAS  Article  Google Scholar 

  22. Bouchez M, Blanchet D, Bardin V, Haeseler F, Vandecasteele JP (1999) Efficiency of defined strains and of soil consortia in the biodegradation of polycyclic aromatic hydrocarbon (PAH) mixtures. Biodegradation 10:429–435

    CAS  Article  Google Scholar 

  23. Breedveld GD, Sparrevik M (2000) Nutrient-limited biodegradation of PAH in various soil strata at a creosote contaminated site. Biodegradation 11:391–399

    CAS  Article  Google Scholar 

  24. Canet R, Birnstingl JG, Malcolm DG, Lopez-Real JM, Beck AJ (2001) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil. Bioresource Technol 76:113–117

    CAS  Article  Google Scholar 

  25. Cassidy DP, Irvine RL (1997) Biological treatment of a soil contaminated with diesel fuel using periodically operated slurry and solid phase reactors. Water Sci Technol 35:185–192

    CAS  Google Scholar 

  26. Cerniglia CE (1984) Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol 30:31–71

    CAS  Article  Google Scholar 

  27. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    CAS  Article  Google Scholar 

  28. Chang BV, Shiung LC, Yuan SY (2002) Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere 48:717–724

    CAS  Article  Google Scholar 

  29. Choi H, Kim YY, Lim H, Cho J, Kang JW, Kim KS (2001) Oxidation of polycyclic aromatic hydrocarbons by ozone in the presence of sand. Water Sci Technol 43:349–356

    CAS  Google Scholar 

  30. Chung N, Alexander M (1999) Effect of concentration on sequestration and bioavailability of two polycyclic aromatic hydrocarbon. Environ Sci Technol 33:3605–3608

    CAS  Article  Google Scholar 

  31. Coulon F, Pelletier E, Gourhant L, Delille D (2005) Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil. Chemosphere 58:1439–1448

    CAS  Article  Google Scholar 

  32. Cunningham CJ, Ivshina IB, Lozinsky VI, Kuyukina MS, Philp JC (2004) Bioremediation of diesel-contaminated soil by microorganisms immobilised in polyvinyl alcohol. Int Biodeter Biodegradation 54:167–174

    CAS  Article  Google Scholar 

  33. Cuypers A, Vangronsveld J, Clijsters H (2002) Peroxidases in roots and primary leaves of Phaseolus vulgaris: copper and zinc phytotoxicity: a comparison. J Plant Physiol 159:869–876

    CAS  Article  Google Scholar 

  34. Damaj M, Ahmad D (1996) Biodegradation of polychlorinated biphenyls by rhizobia: a novel finding. Biochem Biophys Res Commun 218:908–915

    CAS  Article  Google Scholar 

  35. Davis JW, Madsen S (1996) Factors affecting the biodegradation of toluene in soil. Chemosphere 33:107–130

    CAS  Article  Google Scholar 

  36. Delille D, Delille B (2000) Field observations on the variability of crude oil impact on indigenous hydrocarbon-degrading bacteria from sub-antarctic intertidal sediments. Mar Environ Res 49:403–417

    CAS  Article  Google Scholar 

  37. Delille D, Coulon F, Pelletier E (2004) Biostimulation of natural microbial assemblages in oil-amended vegetated and desert sub-Antarctic. Microb Ecol 47:407–415

    CAS  Article  Google Scholar 

  38. Doick KJ, Semple KT (2003) The effect of soil:water ratios on the mineralisation of phenanthrene: LNAPL mixtures in soil. FEMS Microbiol Lett 220:29–33

    Google Scholar 

  39. Eckford RF, Cook DD, Aislabie SJ, Foght J (2002) Free-living heterotrophic nitrogen-fixing bacteria isolated from fuel-contaminated Antarctic soils. Appl Environ Microbiol 68:5181–5185

    CAS  Article  Google Scholar 

  40. Egli T (2002) Microbial degradation of pollutants at low concentrations and in the presence of alternative carbon substrates: emerging patterns. In: Agathos SN, Reineke W (eds) Focus on biotechnology. Biotechnology for the environment: strategy and fundamentals, vol 3A. Kluwer Academic Publishers, Dordrecht, pp 131–139

    Google Scholar 

  41. Ehlers LJ, Luthy RG (2003) Contaminant bioavailability in soil and sediment. Environ Sci Technol 37:295A–302A

    CAS  Article  Google Scholar 

  42. Eriksson M, Ka JP, Mohn WW (2001) Effects of low temperature and freeze–thaw cycles on hydrocarbon biodegradation in Arctic tundra soil. Appl Environ Microbiol 67:5107–5112

    CAS  Article  Google Scholar 

  43. Eweis BJ, Ergas JS, Chang PYD, Schroeder DE (1998) Bioremediation principles. WCB McGraw-Hill, Malaysia

    Google Scholar 

  44. Fava F, Berselli S, Conte P, Piccolo A, Marchetti L (2004) Effects of humic substances and soya lecithin on the aerobic bioremediation of a soil historically contaminated by polycyclic aromatic hydrocarbons (PAHs). Biotechnol Bioeng 88:214–223

    CAS  Article  Google Scholar 

  45. Feitkenhauer H, Muller R, Markl H (2003) Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60–70°C by Thermus and Bacillus spp. Biodegradation 14:367–372

    CAS  Article  Google Scholar 

  46. Ferro AM, Sims RC, Bugbee B (1994) Hycrest crested wheatgrass accelerates the degradation of pentachlorophenol in soil. J Environ Qual 23:272–279

    CAS  Article  Google Scholar 

  47. Fukushima M, Tatsumi K (2001) Degradation pathways of pentachlorophenol by photo-fenton systems in the presence of iron(III), humic acid and hydrogen peroxide. Environ Sci Technol 35:1771–1778

    CAS  Article  Google Scholar 

  48. Fukushima M, Sawada A, Kawasaki M, Ichikawa H, Morimoto K, Tatsumi K, Aoyama M (2003) Influence of humic substances on the removal of pentachlorophenol by a biomimetic catalytic system with a water-soluble iron(III)–porphyrin complex. Environ Sci Technol 37:1031–1036

    CAS  Article  Google Scholar 

  49. Gaffney JS, Marley NA, Clark SB (1996) Humic and fulvic acids: isolation, structure and environmental role. American Chemical Society Symposium Series 651

  50. Garcia JM, Wick LY, Harms H (2001) Influence of the nonionic surfactant Brij 35 on the bioavailability of solid and sorbed dibenzofuran. Environ Sci Technol 35:2033–2039

    CAS  Article  Google Scholar 

  51. Garon D, Sage L, Wouessidjewe D, Seigle-Murandi F (2004) Enhanced degradation of fluorine in soil slurry by Absidia cylindrospora and maltosyl-cyclodextrin. Chemosphere 56:159–166

    CAS  Article  Google Scholar 

  52. Gibb A, Chu A, Wong RCK, Goodman RH (2001) Bioremediation kinetics of crude oil at 5°C. J Environ Eng 127:818–824

    CAS  Article  Google Scholar 

  53. Gijs DB, Sparrevik M (2000). Nutrient-limited biodegradation of PAH in various soil strata at a creosote contaminated site. Biodegradation 11:391–399

    Article  Google Scholar 

  54. Gogoi BK, Dutta NN, Goswami P, Krishna Mohan TR (2003) A case study of bioremediation of petroleum-hydrocarbon contaminated soil at a crude oil spill site. Adv Environ Res 7:767–782

    CAS  Article  Google Scholar 

  55. Goi A, Trapido M (2004) Degradation of polycyclic aromatic hydrocarbons in soil: the Fenton reagent versus ozonation. Environ Technol 25:155–164

    CAS  Article  Google Scholar 

  56. Gong Z, Alef K, Wilke B, Mai M, Li P (2005) Assessment of microbial respiratory activity of a manufactured gas plant soil after remediation using sunflower oil. J Hazard Mater B124:217–223

    CAS  Article  Google Scholar 

  57. Guerin TF (1999) Bioremediation of phenols and polycyclic aromatic hydrocarbons in creosote contaminated soil using ex-situ land treatment. J Hazard Mater B65:305–315

    Article  Google Scholar 

  58. Guerin TF (2000) Long-term performance of a land treatment facility for the bioremediation of non-volatile oily wastes. Resour Conserv Recycl 28:105–120

    Article  Google Scholar 

  59. Guerin WF, Boyd SA (1997) Bioavailability of naphthalene associated with natural and synthetic sorbents. Water Res 31:1504–1512

    CAS  Article  Google Scholar 

  60. Guerin WF, Mueller SA, Boyd SA (1992) Quantitative assessment of sorbed substrate bioavailability using a mineralization kinetics approach. 84th Annual Meeting, Soil Science Society of America

  61. Haderlein A, Legros R, Ramsay BA (2005) Pyrene mineralization capacity increases with compost maturity. Biodegradation (in press)

  62. Hansen LD, Nestler C, Ringelberg D, Bajpai R (2004) Extended bioremediation of PAH/PCP contaminated soils from the POPILE wood treatment facility. Chemosphere 54:1481–1493

    CAS  Article  Google Scholar 

  63. Harayama S (1997) Polycyclic aromatic hydrocarbon bioremediation design. Curr Opin Biotechnol 8:268–273

    CAS  Article  Google Scholar 

  64. Harms H, Bosma TNP (1997) Mass transfer limitation of microbial growth and pollutant degradation. J Ind Microbiol18:97–105

    CAS  Article  Google Scholar 

  65. Harmsen J (2004) Landfarming of polycyclic aromatic hydrocarbons and mineral oil contaminated sediments. PhD Thesis, Wageningen University, Wageningen

  66. Hatzinger PB, Alexander M (1999) Effects of aging chemicals in soil and their biodegradability and extractability. Environ Sci Technol 29:537–545

    Article  Google Scholar 

  67. Heinaru E, Merimaa M, Viggor S, Lehiste M, Leito I, Truu J, Heinaru A (2005) Biodegradation efficiency of functionally important populations selected for bioaugmentation in phenol- and oil-polluted area. FEMS Microb Ecol 51:363–373

    CAS  Article  Google Scholar 

  68. Hoch JA (2000) Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3:165–170

    CAS  Article  Google Scholar 

  69. Huang X, Alawi YE, Penrose DM, Glick BR, Greenberg BM (2004) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    CAS  Article  Google Scholar 

  70. Huang XD, Glick BR, Greenberg MB (2001) Combining remediation technologies increases kinetics for removal of persistent organic contaminants from soil. In: Greenberg BM (eds) Environmental toxicology and risk assessment. ASTM

  71. Johnsen AR, Wickb LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    CAS  Article  Google Scholar 

  72. Johnsen AR, Winding A, Karlson U, Roslev P (2002) Linking of micro-organisms to phenanthrene metabolism in soil by analysis of 13C-labelled cell-lipids. Appl Environ Microbiol 68:6106–6113

    CAS  Article  Google Scholar 

  73. Johnson DL, Maguire KL, Anderson DR, McGrath SP (2004) Enhanced dissipation of chrysene in planted soil: the impact of a rhizobial inoculum. Soil Biol Biochem 3:33–38

    Article  CAS  Google Scholar 

  74. Johnson DL, Anderson DR, McGrath SP (2005) Soil microbial response during the phytoremediation of a PAH contaminated soil Soil Biology. Biochemistry 37:2334–2336

    CAS  Google Scholar 

  75. Joner EJ, Johansen A, Loibner AP, Cruz MA, Szolar OHJ, Portal JM, Leyval C (2001) Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil. Environ Sci Technol 35:2773–2777

    CAS  Article  Google Scholar 

  76. Joner EJ, Leyval C, Colpaert JV (2006) Ectomycorrhizas impede phytoremediation of polycyclic aromatic hydrocarbons (PAHs) both within and beyond the rhizosphere. Environ Pollut 142:34–38

    CAS  Article  Google Scholar 

  77. Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of Benzo[a]pyrene. Int Biodeterior Biodegradation 45:57–88

    CAS  Article  Google Scholar 

  78. Kaimi E, Mukaidani T, Miyoshi S, Tamaki M (2006) Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environ Exp Botany 55:110–119

    CAS  Article  Google Scholar 

  79. Kanaly RA, Bartha R, Fogel S, Findlay M (1997) Biodegradation of [14C]benzo[a]pyrene added in crude oil to uncontaminated soil. Appl Environ Microbiol 63:4511–4515

    CAS  Google Scholar 

  80. Kanaly RA, Bartha R (1999) Cometabolic mineralization of benzo[a]pyrene caused by hydrocarbon additions to soil. Environ Toxicol Chem 18:2186–2190

    CAS  Google Scholar 

  81. Kanaly RA, Harayama S (2000) Biodegradation of high molecular weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067

    CAS  Article  Google Scholar 

  82. Kasprzyk-Hordern B, Zio’Łek M, Nawrocki J (2003) Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl Catal B46:639–669

    Article  CAS  Google Scholar 

  83. Kim IS, Park J, Kim K (2001a) Enhanced biodegradation of polycyclic aromatic hydrocarbons using nonionic surfactants in soil slurry. Appl Geochem 16:1419–1428

    CAS  Article  Google Scholar 

  84. Kim J, Choi H (2002) Modeling in situ ozonation for the remediation of nonvolatile PAH-contaminated unsaturated soils. J Contam Hydrol 55:261–285

    CAS  Article  Google Scholar 

  85. Kim JH, Bae WK, Shim HJ, Shin HJ (2001b) PAH degradation characteristics under mixed conditions. Korean Groundwater and Soil Environment Society Meeting, Hanyang University, April 13–14

  86. Klausen J, Haderlein SB, Schwarzenbach RP (1997) Oxidation of substituted anilines by aqueous MnO2: effect of Co-solutes on initial and quasi-steady-state kinetics. Environ Sci Technol 31:2642–2649

    CAS  Article  Google Scholar 

  87. Koran KM, Suidan MT, Khodadoust AP, Sorial GA, Brenner RC (2001) Effectiveness of an anaerobic granular activated carbon fluidized-bed bioreactor to treat soil wash fluids: a proposed strategy for remediating PCP/PAH contaminated oil. Water Res 35:2363–2370

    CAS  Article  Google Scholar 

  88. Kulik N, Goi A, Trapido M, Tuhkanen T (2006) Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. J Environ Manag 78:382–391

    CAS  Article  Google Scholar 

  89. Kumada Y, Kisa T, Kuwano Y, Koshikawa H, Tashiro, Yasukagawa E, Shimizu Y (2005) Microbial community analysis of PAHs degradation in soil. Proc 5th Korea–Japan joint seminar on geo-environmental engineering, 4th July, Seoul National University, Seoul

  90. Kuwano Y, Shimizu Y (2006) Bioremediation of coal contaminated soil under sulfate-reducing condition. Environ Technol 27:95–102

    CAS  Article  Google Scholar 

  91. Lau KL, Tsang YY, Chiu SW (2003) Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52:1539–1546

    CAS  Article  Google Scholar 

  92. Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev54 (3):305–315

    CAS  Google Scholar 

  93. Lee P, Ong S, Golchin J, Nelson GL (2001) Use of solvents to enhance PAH biodegradation of coal tar-contaminated soils. Water Res 16:3941–3949

    Article  Google Scholar 

  94. Lee PH, Doick KJ, Semple KT (2003) The development of phenanthrene catabolism in soil amended with transformer oil. FEMS Microbiol Lett 228:217–223

    CAS  Article  Google Scholar 

  95. Lei L, Khodadoust AP, Suidan MT, Tabak HH (2005) Biodegradation of sediment-bound PAHs in field contaminated Sediment. Water Res 39:349–361

    CAS  Article  Google Scholar 

  96. Liste H, Alexander M (2000) Plant-promoted pyrene degradation in soil. Chemosphere 40:7–10

    CAS  Article  Google Scholar 

  97. Liste HH, Prutz I (2006) Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil. Chemosphere 62:1411–1420

    CAS  Article  Google Scholar 

  98. Luthy RG, Aiken GR, Brusseau ML, Cunningham SD, Gschwend PM, Pignatello JJ, Reinhard M, Traina SJ, Weber Jr W, Westall JC (1997) Sequestration of hydrophobic organic contaminants by geosorbents. Environ Sci Technol 31:3341–3347

    CAS  Article  Google Scholar 

  99. Macleod CJA, Semple KT (2005) The influence of single and multiple applications of pyrene on the evolution of pyrene catabolism in soil. Environ Pollut 139:455–460

    Article  CAS  Google Scholar 

  100. Macleod CJA, Semple KT (2002) Evolution of pyrene catabolic ability in similar soils with different organic matter contents. Environ Pollut 119:357–364

    CAS  Article  Google Scholar 

  101. Maliszewska-Kordybach B, Smreczak B (2000) Ecotoxicological activity of soils polluted with polycyclic aromatic hydrocarbons (PAHs) – effect on plants. Environ Technol 21:1099–1110

    CAS  Article  Google Scholar 

  102. Mallakin A, Dixon DG, Greenberg BM (2000) Pathway of anthracene modification under simulated solar radiation. Chemosphere 40:1435–1441

    CAS  Article  Google Scholar 

  103. Maruya KA Risebrough RW, Horne AJ (1996) Partitioning of polynuclear aromatic hydrocarbons between sediments from San Francisco Bay and their pore waters. Environ Sci Technol 30:2942–2947

    CAS  Article  Google Scholar 

  104. Meckenstock RU, Annweiler E, Michaelis W, Richnow HH, Schink B (2000) Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl Environ Microbiol 66:2743–2747

    CAS  Article  Google Scholar 

  105. Meckenstock RU, Safinowski M, Griebler C (2004) Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 49:27–36

    CAS  Article  Google Scholar 

  106. Moretto LM, Silvestri S, Ugo P, Zorzi G, Abbondanzi F, Baiocchi C, Iacondini B (2005) Polycyclic aromatic hydrocarbons degradation by composting in a soot-contaminated alkaline soil. J Hazard Mater 126:141–148

    CAS  Article  Google Scholar 

  107. Morimoto K, Tatsumi K (1997) Effect of humic substances on the enzymatic formation of OCDD from PCP. Chemosphere 34:1277–1283

    CAS  Article  Google Scholar 

  108. Mulder H, Breure AM, Van Andel JG, Grotenhuis JTC, Rulkens WH (1998) Influence of hydrodynamic conditions on naphthalene dissolution and subsequent biodegradation. Biotechnol Bioeng 57:145–154

    CAS  Article  Google Scholar 

  109. Namkoong W, Hwang E, Park J, Choi J (2002) Bioremediation of diesel-contaminated soil with composting. Environ Pollut 119:23–31

    CAS  Article  Google Scholar 

  110. Nedwell DB (1999) Effect of low temperature on microbial growth: lowered affinity for substrates limits growth at low temperature. FEMS Microbiol Ecol 30:101–111

    CAS  Article  Google Scholar 

  111. Niehaus F, Bertoldo C, Kähler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729

    CAS  Article  Google Scholar 

  112. Northcott GL, Jones KC (2001) Partitioning, extractability, and formation of non-extractable PAH residues in soil: compound differences in aging and sequestration. Environ Sci Technol 35:1103–1110

    CAS  Article  Google Scholar 

  113. Ohkuma T, Kisa T, Kumada Y, Kuwano Y, Venkata Mohan S, Tanaka H, Shimizu Y (2006) Surfactant enhanced bioremediation of the soil contaminated by coal derived hydrocarbons Proc Geo-environmental Engineering 2006 (sixth Japanese–Korean–France joint seminar on geoenvironmental engineering), April 3–4, Kyoto University

  114. Oleszczuk P, Baran S (2003) Degradation of individual polycyclic aromatic hydrocarbons (PAHs) in soil polluted with aircraft fuel Polish. J Environ Stud 12:431–437

    CAS  Google Scholar 

  115. O’Mahony MM, Dobson ADW, Barnes JD, Singleton I (2006) The use of ozone in the remediation of polycyclic aromatic hydrocarbon contaminated soil. Chemosphere 63:307–314

    CAS  Article  Google Scholar 

  116. Ortega-Calvo J, Saiz-Jimenez C (1998) Effect of humic fractions and clay on biodegradation of phenanthrene by a Pseudomonas fluorescens strain isolated from soil. Appl Environ Microbiol 64:3123–3126

    CAS  Google Scholar 

  117. Ortega-Calvo JJ, Marchenko AI, Vorobyov AV, Borovick RV (2003) Chemotaxis in polycyclic aromatic hydrocarbon-degrading bacteria isolated from coal tar- and oil-polluted rhizospheres. FEMS Microbiol Ecol 44:373–381

    CAS  Article  Google Scholar 

  118. Pan B, Xing BS, Liu WX, Tao S, Lin XM, Zhang XM, Zhang YX, Xiao Y, Dai HC, Yuan HS (2006) Distribution of sorbed phenanthrene and pyrene in different humic fractions of soils and importance of humin. Environ Pollut 143:24–33

    Article  CAS  Google Scholar 

  119. Pandey GR, K Jain (2002) bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68:5789–5795

    CAS  Article  Google Scholar 

  120. Parales RE, Harwood CS (2002) Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr Opin Microbiol 5:266–273

    CAS  Article  Google Scholar 

  121. Parales RE, Haddock JD (2004) Biocatalytic degradation of pollutants. Curr Opin Biotechnol 15:374–379

    CAS  Article  Google Scholar 

  122. Park JS, Wade TL, Sweet S (2001) Atmospheric distribution of polycyclic aromatic hydrocarbons and deposition to Galveston Bay, Texas, USA. Atmos Environ 35:3241–3249

    CAS  Article  Google Scholar 

  123. Park JY, Cho HJ, Yang JW (2000) Effects of surfactant on electrokinetic remediation of soil contaminated by phenanthrene. Taejon/Chungnam-Kyushu, Serial 13, Fukuoka, Japan, pp 267–268

  124. Park KS, Sims RC, Dupont RR, Doucette WJ, Matthews JE (1990) Fate of PAH compounds in two soil types: influence of volatilisation, abiotic loss and biological activity. Environ Toxicol Chem 9:187–195

    CAS  Article  Google Scholar 

  125. Parrish ZD, Banks MK, Schwab AP (2004) Effect of root death and decay on dissipation of PAHs in the rhizosphere of yellow sweet clover and Tall Fescue. J Environ Qual 34:207–216

    Article  Google Scholar 

  126. Parrish ZD, Banks MK, Schwab AP (2005) Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environ Pollut 137:187–197

    CAS  Article  Google Scholar 

  127. Phillips DA, Streit WR (1996) Legume signals to rhizobial symbionts: a new approach for defining rhizosphere colonization. In: Stacey G, Keen NT (eds) Plant–microbe interactions. Chapman Hall, New York, pp 236–271

    Google Scholar 

  128. Pignatello JJ, Xing B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ Sci Technol 30:1–11

    CAS  Article  Google Scholar 

  129. Postma J, van Veen JA (1990) Habitable pore space and survival of Rhizobium leguminosarum biovar trifolii introduced into soil. Microb Ecol 19:149–161

    Article  Google Scholar 

  130. Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments perspective on mechanisms, consequences and assessment. Environ Pollut 108:103–112

    CAS  Article  Google Scholar 

  131. Reid BJ, Fermor TR, Semple KT (2002) Feasibility of using mushroom compost for the bioremediation of PAH-contaminated soil. Environ Pollut 118:65–73

    CAS  Article  Google Scholar 

  132. Rentz JA, Alvarez PJJ, Schnoor JL (2005) Benzo[a]pyrene co-metabolism in the presence of plant root extracts and excudates: implications for phytoremediation. Environ Pollut 136:477–484

    CAS  Article  Google Scholar 

  133. Reilley MR, Muzzio FJ, Buettner HM, Reyes SC (1996) A simple correlation for predicting effective diffusivities in immobilized cell systems. Biotechnol Bioeng 49:223–227

    Article  Google Scholar 

  134. Rowland AP, Lindley DK, Hall MJ, Rossall MJ, Wilson DR, Benham DG, Harrison AF, Daniels RE (2000) Effects of beach sand properties, temperature and rainfall on the degradation rates of oil in buried oil/ beach sand mixtures. Environ Pollut 109:109–118

    CAS  Article  Google Scholar 

  135. Sabate J, Vinas M, Solanas AM (2006) Bioavailability assessment and environmental fate of polycyclic aromatic hydrocarbons in biostimulated creosote-contaminated soil. Chemosphere 63:1648–1659

    CAS  Article  Google Scholar 

  136. Salanitro JP, Dorn PB, Huesemann MH, Moore KO, Rhodes IA, Jackson LM, Vipond TE, Western MM, Wisniewski HL (1997) Crude oil hydrocarbon bioremediation and soil ecotoxicity assessment. Environ Sci Technol 31:1769–1776

    CAS  Article  Google Scholar 

  137. Samanta SK, Singh OV, Jain RK (2002) Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248

    CAS  Article  Google Scholar 

  138. Sartoros C, Yerushalmi L, Beron P, Guiott SR (2005) Effects of surfactant and temperature on biotransformation kinetics of anthracene and pyrene. Chemosphere 61:1042–1050

    CAS  Article  Google Scholar 

  139. Sela R, Goldrat T, Avnimelech Y (1998) Determining optimal maturity of compost used for land application. Compost Sci Util 6:83–88

    Google Scholar 

  140. Semple KT, Dew NM, Doick KJ, Rhodes AH (2006) Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil? Environ Pollut 140:164–172

    CAS  Article  Google Scholar 

  141. Semple KT, Jones KC, Craven A (2005) Introductory remarks to the Special Issue. Environ Pollut 133:1–2

    CAS  Article  Google Scholar 

  142. Semple KT, Doick KJ, Burauel P, Craven A, Harms H, Jones KC (2004) Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol 38:228A–231A

    CAS  Article  Google Scholar 

  143. Seung HW, Jeon CO, Park JM (2004a) Phenanthrene biodegradation in soil slurry systems: influence of salicylate and Triton X-100. Korean J Chem Eng 21(2):412–418

    Article  Google Scholar 

  144. Seung HW, Lee MW, Park JM (2004b) Biodegradation of phenanthrene in soil-slurry systems with different mass transfer regimes and soil contents. J Biotechnol 110:235–250

    Article  CAS  Google Scholar 

  145. Shimp JF, Tracy JC, Davis LC, Lee E, Huang W, Erikson LE, Schnoor JL ( 1993) Beneficial effects of plants in the remediation of soil and groundwater contaminated with organic materials. Crit Rev Environ Sci and Technol 23:41−77

    CAS  Article  Google Scholar 

  146. Siciliano SD, Germida JJ (1998) Mechanisms of phytoremediation: biochemical and ecological interactions between plants and bacteria. Environ Rev 6:65–79

    CAS  Article  Google Scholar 

  147. Sijm D, Kraaij R, Belfroid A (2000) Bioavailability in soil or sediment: exposure of different organisms and approaches to study it. Environ Pollut 108:113–119

    CAS  Article  Google Scholar 

  148. Spain JC, Pritchard PH, Bourquin AW (1980) Effects of adaptation on biodegradation rates in sediment/water cores from estuarine and freshwater environments. Appl Environ Microbiol 40:726–734

    CAS  Google Scholar 

  149. Spain JC, Van Veld PA (1983) Adaptation of natural microbial communities to degradation of xenobiotic compounds: effects of concentration, exposure time, inoculum and chemical structure. Appl Environ Microbiol 45:428–435

    CAS  Google Scholar 

  150. Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  151. Suthersan SS (2002) Natural and enhanced remediation systems. CRC Press LLC

  152. Tang J, Carroquino MJ, Robertson BK, Alexander M (1998) Combined effect of sequestration and bioremediation in reducing the bioavailability of polycyclic aromatic hydrocarbons in soil. Environ Sci Technol 32:3586–3590

    CAS  Article  Google Scholar 

  153. Tang Y, Qi JL, Krieger-Brockett B (2005) Evaluating factors that influence microbial henanthrene biodegradation rates by regression with categorical variables. Chemosphere 59:729–741

    CAS  Article  Google Scholar 

  154. Taylor LT, Jones DM (2001) Bioremediation of coal tar PAH in soils using biodiesel. Chemosphere 44:1131–1136

    CAS  Article  Google Scholar 

  155. Trindade PVO, Sobral LG, Rizzo ACL, Leite SGF, Soriano AU (2005) Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study. Chemosphere 58:515–522

    CAS  Article  Google Scholar 

  156. USEPA (1995) Cost and performance report: slurry phase bioremediation application at the Southeastern Wood Preserving Superfund Site Canton, Mississippi. Report contract Number: 68-W3-0001

  157. USEPA (2003) Pilot scale demonstration of a slurry phase biological reactor for creosote contaminated soil application – analysis report, EPA/540/A5–91/009, USEPA, Ohio

  158. Van Limbergen H, Top EM, Verstraete W (1998) Bioaugmentation in activated sludge: current features and future perspectives. Appl Microbiol Biotechnol 50:16–23

    Article  Google Scholar 

  159. Venkata Mohan S, Krishna Prasad K, Sarma PN (2004b) Oxidative enzyme catalyzed transformation of PAH in soil to enhance biodegradation. Proc international conference on soil and ground water contamination, risk assessment and remedial measures, NGRI, Hyderabad, December 8–11

  160. Venkata Mohan S, Nancharaiah YV, Flankentof FC, Wattiau P, Wuertz S, Wilderer PA (2002) Monitoring the conjugal transfer of plasmid PWWO from Pseudomonas putida in sequencing batch biofilm reactor. In: Proceedings of VAAM conference, Gottingen

  161. Venkata Mohan S, Shailaja S, Ramakrishna M, Reddy KB, Sarma PN (2006) Bioslurry phase degradation of DEP contaminated soil in periodic discontinuous mode operation: influence of augmentation and substrate partition. Process Biochem 41:644–652

    Article  CAS  Google Scholar 

  162. Venkata Mohan S, Sirisha R, Sarma PN, Reddy SJ (2004a) Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode-bioprocess monitoring. J Hazard Mater 116:39–48

    Article  CAS  Google Scholar 

  163. Vervaeke P, Luyssaert S, Mertens J, Meers E, Tack FM, Lust N (2003), Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environ Pollut 126:275–282

    CAS  Article  Google Scholar 

  164. Villemur R, Deziel E, Benachenhou A, Marcoux J, Gauthier E, Lepine F, Beaudet R, Comeau Y (2000) Two liquid phase slurry bioreactors to enhance the degradation of high molecular weight polycyclic aromatic hydrocarbons in soil. Biotechnol Prog 16:966–972

    CAS  Article  Google Scholar 

  165. Weber WJ, Huang W (1996) A distributed reactivity model for sorption by soils and sediments – intraparticle heterogeneity and phase-distribution relationships under non-equilibrium conditions. Environ Sci Technol 30:881–888

    CAS  Article  Google Scholar 

  166. White JC, Kelsey JW, Hatzinger PB, Alexander M (1997) Factors affecting sequestration and bioavailability of phenenthrene in soils. Environ Toxicol Chem 16:2040–2045

    CAS  Article  Google Scholar 

  167. White JC, Alexander M, Pignatello JJ (1999) Enhancing the bioavailability of compounds sequestered in soil and aquifer solids. Environ Toxicol Chem 182:182–187

    Article  Google Scholar 

  168. Whyte LG, Bourbonniere L, Bellerose C, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64:2578–2584

    CAS  Google Scholar 

  169. Wilderer PA, Irvine RL, Goronszy MC (2001) Sequencing batch reactor technology. Scientific and Technical Report. IWA Publishing

  170. Willumsen PA, Karlson U (1997) Screening of bacteria, isolated from PAH contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7:415–423

    Article  Google Scholar 

  171. Woo SH, Park JM (1999) Evaluation of drum bioreactor performance used for decontamination of soil polluted with polycyclic aromatic hydrocarbons. J Chem Tech Biotechnol 74:937–939

    CAS  Article  Google Scholar 

  172. Woo SH, Park JM, Rittmann RE (2001) Evaluation of the interaction between biodegradation and sorption of phenanthrene in soil slurry systems. Biotechnol Bioeng 73:11–24

    Article  Google Scholar 

  173. Woo Y, Affourtit J, Daigle S (2004) A comparison of cDNA, oligonucleotide, and Affymetrix GeneChip gene expression microarray platforms. J Biomol Tech 15(4):276–284

    Google Scholar 

  174. Wrenn BA Sarnecki KL, Kohar ES, Lee K, Venosa AD (2006) effects of nutrient source and supply on crude oil biodegradation in continuous-flow beach microcosms. J Environ Eng 132:75–84

    CAS  Article  Google Scholar 

  175. Xu R, Obbard JP (2003) Effect of nutrient amendments on indigenous hydrocarbon biodegradation in oil-contaminated beach sediments. J Environ Qual 32:1234–1243

    CAS  Article  Google Scholar 

  176. Xu R, Lau NL, Lim YG, Obbard JP (2005a) Bioremediation of oil-contaminated sediments on an inter-tidal shoreline using a slow-release fertilizer and chitosan. Mar Pollut Bull 51:1062–1070

    CAS  Article  Google Scholar 

  177. Xu R, Yong LC, Lim YG, Obbard JP (2005b) Use of slow-release fertilizer and biopolymers for stimulating hydrocarbon biodegradation in oil-contaminated beach sediments. Mar Pollut Bull 51:1101–1110

    CAS  Article  Google Scholar 

  178. Xu SY,Chen YX, Wu WX, Wang KX, Lin Q, Liang XQ (2006) Enhanced dissipation of phenanthrene and pyrene in spiked soils by combined plants cultivation. Sci Total Environ 363:206–215

    CAS  Article  Google Scholar 

  179. Yuan SY, Wei SH, Chang BV (2000) Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere 41:1463–1468

    CAS  Article  Google Scholar 

  180. Zhao B, Zhu L, Li W, Chen B (2005)Solubilization and biodegradation of phenanthrene in mixed anionic–nonionic surfactant solutions. Chemosphere 58:33–40

    CAS  Article  Google Scholar 

  181. Zheng Z, Obbard JP (2002) Polycyclic aromatic hydrocarbon removal from soil by surfactant solubilization and Phanerochaete chrysosporium oxidation. J Environ Qual 31:1842–1847

    CAS  Article  Google Scholar 

  182. Zheng ZM, Obbard JP (2003) Oxidation of polycyclic aromatic hydrocarbons by fungal isolates from oil contaminated refinery soil. Environ Sci Pollut Res 10:173–176

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Venkata Mohan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mohan, S.V., Kisa, T., Ohkuma, T. et al. Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Rev Environ Sci Biotechnol 5, 347–374 (2006). https://doi.org/10.1007/s11157-006-0004-1

Download citation

Keywords

  • Polycyclic aromatic hydrocarbons (PAHs)
  • Bioremediation
  • Technologies
  • Bioavailability
  • Factors
  • Bioaugmentation
  • Biostimulation
  • Bacterial chemotaxins
  • Rhizoremediation
  • Biomimetic catalytic system