Methods of assessing microbial activity and inhibition under anaerobic conditions: a literature review

Abstract

This work reviews the existing methodologies for assessing microbial activity and inhibition under anaerobic conditions. The anaerobic digestion process consists of several metabolic steps–the Anaerobic Digestion Model No. 1 (ADM1) has attempted to describe these steps in the form of a mathematical model with the intention of providing a reference base for all further efforts in the modelling of anaerobic processes. The existence of a reference point for modelling has highlighted the fact that there is a lack of coherence between the many different methodologies for experimentally assessing anaerobic activity and inhibition.

A working group of the International Water Association was recently founded to harmonise the existing methodologies with the ultimate intention of developing a unified reference procedure– a primary objective of the group will be the establishment of a standard terminology in the field of anaerobic digestion, activity and inhibition assessment. Secondly, it will compare the existing methodologies and develop standard protocols for assessing the kinetic parameters (e.g. maximum uptake rate, half-saturation constant) of anaerobic processes that may be entered directly into ADM1 and its successors.

This paper revises and enlarges a contribution presented by the authors at the workshop “Harmonisation of anaerobic biodegradation, activity and inhibition assays” (Ligthart & Nieman 2002, Proc. workshop held in Orta (Italy) June 7–8, 2002) and aims to promote a clear understanding of the currently established methodology.

Numerous methods have been developed over the past 30 years, since Van den Berg et al. (1974, Biotechnol Bioeng 16(11)– 1459–1469) measured methanogenic activity, by using a manometric device equipped with a photoelectric sensor to quantify the gas production. Methanogenesis is often the rate limiting step of the entire process and since the quantification of gas flowrate is relatively easy to perform, most of the methods reported in literature monitor the production of biogas. These methods can be termed volumetric or manometric methods, as the volume of biogas produced or the pressure increase due to gas production inside a close vessel are assessed, respectively. However, this same concept can be employed to assess activity or inhibition of individual metabolic steps preceding the methanogenic one, providing that they are rate limiting for the whole process. The reliability of activity assessment through gas measurement has been proven to be strongly dependent on the equilibrium between liquid and gas phase in a closed vessel. This can be influenced by many factors, e.g. the amount and characteristics of the test substrate; the concentration of the biomass; the gas-to-liquid ratio– all these aspects will need to be addressed in the standard procedure. Other direct or indirect methods, targeting physico-chemical or microbiological parameter exist and have been investigated by many authors. Besides the interest for research purposes, the definition of reference methods to assess activity and inhibition can be of great interest for engineers, both phy. Specific reference procedures might be needed for particular applications, e.g. the (kinetic) study of rate limiting microbial steps and might require ad-hoc methodologies to be devised. A microbiological technique such as FISH, coupled with microsensors have been reported to have a great potential in the near future.

This is a preview of subscription content, access via your institution.

References

  1. R Amann M Kühl (1998) ArticleTitleIn situ methods for assessment of microorganisms and their activities Curr. Opin. Microbiol. 1 352–358

    Google Scholar 

  2. R Amann BM Fuchs S Behrens (2001) ArticleTitleThe identification of microorganisms by fluorescence in situ hybridisation Curr. Opinion Biotechnol. 12 231–236

    Google Scholar 

  3. GK Anderson G Yang (1992) ArticleTitleDetermination of bicarbonate and total volatile acid concentration in anaerobic digesters using a simple titration Wat. Environ. Res. 64(1) IssueID1 53–59

    Google Scholar 

  4. I Angelidaki JE Schmidt L Ellegaard BK Ahring (1998) ArticleTitleAn automated system for simultaneous monitoring of gas evolution in multiple closed vessels J. Microbiol. Meth. 33 93–100

    Google Scholar 

  5. LT Angenent S Sung L Raskin (2002) ArticleTitleMethanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste Wat. Res. 36 4648–4654

    Google Scholar 

  6. E Annweiler A Materna M Safinowski A Kappler HH Richnow W Michaelis RU Meckenstock (2000) ArticleTitleAnaerobic degradation of 2-methylnaphthalene by a sulfate-reducing enrichment culture Appl. Environ. Microbiol. 66 IssueID12 5329–5333

    Google Scholar 

  7. ASTM d 5210 (1992) Determining the anaerobic biodegradation of plastic materials in the presence of municipal sewage sludge

  8. DJ Batstone J Keller RI Angelidaki SV Kalyuzhnyi SG Pavlostathis A Rozzi WTM Sanders H Siegrist VA Vavilin (2002) Anaerobic Digestion Model No 1 (ADM1) Scientific and Technical Report No. 13 IWA Task Group for Mathematical Modelling of Anaerobic Wastewater IWA Publishing London 88

    Google Scholar 

  9. NS Battersby (2000) ArticleTitleThe biodegradability and microbial toxicity testing of lubricants–some recommendations Chemosphere 41 1011–1027

    Google Scholar 

  10. A Beaubien C Jolicoeur JF Alary (1989) ArticleTitleAutomated high sensitivity gas metering system for biological processes J. Environ. Eng. 118 IssueID4 551–567

    Google Scholar 

  11. VK Bhupathiraju MT Hernandez D Landfear L Alvarez-Cohen (1999) ArticleTitleApplication of a tetrazolium dye as an indicator of viability in anaerobic bacteria J. Microbiol. Methods 37 231–243

    Google Scholar 

  12. SM Burland EA Edwards (1999) ArticleTitleAnaerobic benzene biodegradation linked to nitrate reduction Appl. Environ. Microbiol. 65 IssueID2 529–533

    Google Scholar 

  13. CMM Campos CAL Chernicaro (1991) ArticleTitleThe use of the SMA-test for measuring toxicity in anaerobic sludges Wat. Sci. Technol. 24 IssueID12 103–111

    Google Scholar 

  14. CC Chen CY Lin (2003) ArticleTitleUsing sucrose as a substrate in an anaerobic hydrogen-producing reactor Adv. Environ. Res. 7 695–699

    Google Scholar 

  15. Y-C Chung JB Neethling (1988) ArticleTitleATP as a measure of anaerobic sludge digester activity J. Wat. Pollut. Contr. Fed. 60 IssueID1 108–112

    Google Scholar 

  16. Y-C Chung JB Neethling (1989) ArticleTitleMicrobial activity measurements for anaerobic sludge digestion J. Wat. Pollut. Contr. Fed. 61 IssueID3 343–349

    Google Scholar 

  17. JD Coates MF Coughlan E Colleran (1996) ArticleTitleSimple method for the measurement of the hydrogenotrophic methanogenic activity of anaerobic sludges J. Microbiol. Meth. 26 237–46

    Google Scholar 

  18. A Cohen (1992) ArticleTitleEffects of some industrial chemicals on anaerobic activity measured by sequential automated methanometry Wat. Sci. Tech. 25 IssueID7 11–20

    Google Scholar 

  19. F Concannon PJ Reynolds A Hennigan E Colleran (1988) ArticleTitleAutomated measurement of the specific methanogenic activity of anaerobic digestion biomass Biochem. Soc. Trans. 17 425

    Google Scholar 

  20. EF Long ParticleDe GS Wickham NR Pace (1989) ArticleTitlePhylogenetic stain: ribosomal RNA-based probes for the identification of single microbial cells Science 243 1360–1363

    Google Scholar 

  21. de Zeeuw W & Lettinga G (1980) Acclimation of digested sewage sludge during start-up of upflow anaerobic sludge blanket (UASB) reactor. In: Proc. 35th Ind. Wastewater Conf., Purdue University, Lafayette

  22. C Delbès R Moletta J-J Godon (2001) ArticleTitleBacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digestor ecosystem FEMS Microbiol. Ecol. 35 19–26

    Google Scholar 

  23. J Dolfing J-W Mulder (1985) ArticleTitleComparison of methane production rate and coenzyme F420 content in anaerobic granular sludge Appl. Environ. Microbiol. 49 1142–1145

    Google Scholar 

  24. ECETOC (1988) Guideline for screening of chemical for anaerobic biodegradability. Technical Report 28, Brussels.

  25. HHP Fang X-S Jia (1999) ArticleTitleFormation of interim by-products in methanogenic degradation of butyrate Wat. Res. 33 IssueID8 1791–1798

    Google Scholar 

  26. F Fdz.Polanco M Fdz.Polanco N Fernandez MA Urueña PA Garcia S Villaverde (2001) ArticleTitleNew process for simultaneous removal of nitrogen and sulphate under anaerobic conditions Wat. Res. 35 IssueID4 1111–1114

    Google Scholar 

  27. H Feitkenhauer J von Sachs U Meyer (2002) ArticleTitleOn-line titration of volatile fatty acids for the process control of anaerobic digestion plants Wat. Res. 36 212–218

    Google Scholar 

  28. MT García E Campos J Sánchez-Leal I Ribosa (2000) ArticleTitleAnaerobic degradation and toxicity of commercial cationic surfactants in anaerobic screening tests Chemosphere 41 705–710

    Google Scholar 

  29. M Glauser B Jenny M Aragno (1984) ArticleTitleAn inexpensive, automatic gas meter for laboratory-scale methane digesters and other gas-evolving systems J. Microbiol. Meth. 2 159–164

    Google Scholar 

  30. G Gonzalez-Gil R Kleerebezem G Lettinga (2002) ArticleTitleAssessment of metabolic properties and kinetic parameters of methanogenic sludge by on-line methane production rate measurements Appl. Microbiol. Biotechnol. 58 248–254

    Google Scholar 

  31. LG Gorris TM Kok Particlede BM Kroon C Drift Particlevan der GD Vogels (1988) ArticleTitleRelationship between methanogenic cofactor content and maximum specific methanogenic activity of anaerobic granular sludges Appl. Environ. Microbiol. 54 1126–1130

    Google Scholar 

  32. CL Gruden S Fevig M Abu-Dalo M Hernandez (2003) ArticleTitle5-Cyano-2,3-ditolyl tetrazolium chloride (CTC) reduction in a mesophilic anaerobic digester: measuring redox behavior, differentiating abiotic reduction, and comparing FISH response as an activity indicator J. Microbiol. Meth. 52 59–68

    Google Scholar 

  33. AJ Guwy DL Hawkes FR Hawkes A Rozzi (1994) ArticleTitleCharacterisation of a prototype industrial on-line analyser for bicarbonate/carbonate monitoring Biotechnol. Bioeng. 44 IssueID11 1325–1330

    Google Scholar 

  34. MM Häggblom VK Knight LJ Kerkhof (2000) ArticleTitleAnaerobic decomposition of halogenated aromatic compounds Environ. Pollut. 107 199–207

    Google Scholar 

  35. DJ Hills K Nakano (1984) ArticleTitleEffect of particle size on anaerobic digestion of tomato solid waste Agric. Wastes 10 285–295

    Google Scholar 

  36. Y Hongwei J Zhanpeng S Shaoqi WZ Tang (2002) ArticleTitleINT-dehydrogenase activity test for assessing anaerobic biodegradability of organic compounds Ecotoxicol. Environ. Saf. 53 416–421

    Google Scholar 

  37. ISO 11734 (1995) Water quality–Evaluation of the ultimate anaerobic biodegradability of organic compounds in digested sludge–method by measurement of the biogas production. International Standard (First Edition 15-12-1995)

  38. ISO/DIS 14853 (1997) Evaluation of ultimate anaerobic biodegradation of plastic materials in an aqueous system–method by analysis of carbon conversion to carbon dioxide and methane

  39. A James CAL Chernicaro CMM Campos (1990) ArticleTitleThe development of a new methodology for the assessment of specific methanogenic activity Wat. Res. 24 IssueID7 813–825

    Google Scholar 

  40. C Jolicoeur T To A Beaubien (1998) ArticleTitleFlow microcalorimetry in monitoring biological activity of aerobic and anaerobic wastewater treatment processes Anal. Chim. Acta 213 165–176

    Google Scholar 

  41. R Jörg (1999) Anaerobe, biologische Abbaubarkeit in aquatischen Screening-Tests unter Berücksichtigung von Untersuchung mit dem neuen Meßgerät Methanomat Ph.D. Thesis. ISWA Universität Stuttgart Germany

    Google Scholar 

  42. K Kida T Shigematsu J Kijima M Numaguchi Y Mochinaga N Morimura S Abe (2001) ArticleTitleInfluence of Ni2+ and Co2+ on methanogenic activity and the amounts of coenzymes involved in methanogenesis J. Biosci. Bioeng. 91 IssueID6 590–595

    Google Scholar 

  43. K Kuroda RG Silveira N Nishio H Sunahara S Nagai (1991) ArticleTitleMeasurement of dissolved hydrogen in an anaerobic digestion process by a membrane-covered electrode J. Ferment. Technol. 71 418–423

    Google Scholar 

  44. Kuss ML & Young JC (1992) Apparatus for measuring gas flow using bubble volume. U.S. Patent No. 5,092,181 (March 3, 1992)

  45. Y Lee M Takashima RE Speece (1987) ArticleTitleMicrocomputer pH control of multiple bioreactors J. Biotechnol. Bioeng. 30 329–330

    Google Scholar 

  46. Ligthart J & Nieman H (2002) Harmonisation of anaerobic biodegradation, activity and inhibition assays. Proc. Workshop held in Orta (Italy) June 7–8, 2002

  47. BE Logan S-E Oh IS Kim S Ginkel ParticleVan (2002) ArticleTitleBiological hydrogen production measured in batch anaerobic respirometers Environ. Sci. Technol. 36 2530–2535

    Google Scholar 

  48. DR Lovley JC Woodward FH Chapelle (1996) ArticleTitleRapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms Appl. Environ. Microbiol. 62 288–291

    Google Scholar 

  49. T Madsen HB Rasmussen (1996) ArticleTitleA method for screening the potential toxicity of organic chemicals to methanogenic gas production Wat. Sci. Technol. 33 IssueID6 213–220

    Google Scholar 

  50. IW Marison JS Liu S Ampuero U Von Stockar B Schenker (1998) ArticleTitleBiological reaction calorimetry: Development of high sensitivity bio-calorimeters Thermochim. Acta 30 157–173

    Google Scholar 

  51. J Mata-Alvarez A Martinez-Viturtia R Torres (1986) ArticleTitleA simple device to measure biogas production in laboratory scale digester Biotechnol. Lett. 8 IssueID10 719–720

    Google Scholar 

  52. B Meyer E Heinzle (1998) ArticleTitleDynamic determination of anaerobic acetate kinetics using membrane mass spectrometry Biotechnol. Bioeng. 57 IssueID2 127–135

    Google Scholar 

  53. R Moletta G Albagnac (1982) ArticleTitleA gas meter for low rates of flow: Application to the methane fermentation Biotechnol. Lett. 4 IssueID5 319–322

    Google Scholar 

  54. M Mösche HJ Jördening (1999) ArticleTitleComparison of different models of substrate and product inhibition in anaerobic digestion Wat. Res. 33 IssueID11 2545–2554

    Google Scholar 

  55. Müller W-R and Frommert I (2002) Existing standardised methods for anaerobic biodegradability testing. In: Ligthart and Nieman (2002)

  56. WF Owen DC Stuckey JB Healy LY Young PL Mc Carty (1979) ArticleTitleBioassay for monitoring biochemical methane potential and anaerobic toxicity Wat. Res. 13 485–492

    Google Scholar 

  57. HA Painter P Reynolds S Comber (2003) ArticleTitleApplication of the headspace CO2 method (ISO 14593) to the assessment of the ultimate biodegradability of surfactants: Results of a calibration exercise Chemosphere 50 29–38

    Google Scholar 

  58. SG Pavlostathis E Giraldo-Gomez (1991) ArticleTitleKinetics of anaerobic treatment: A review, Crit Rev. Environ. Control 21 411–490

    Google Scholar 

  59. O Pelz A Chatzinotas A Zarda-Hess W-R Abraham J Zeyer (2001) ArticleTitleTracing toluene-assimilating sulphate-reducing bacteria using 13C-incorporation in fatty acids and whole-cell hybridisation FEMS Microbiol. Ecol. 38 123–131

    Google Scholar 

  60. A Pollice A Rozzi MC Tomei AC Di Pinto N Limoni (2000) ArticleTitleMonitoring the inhibitory effects of NaCl on anaerobic wastewater treatment processes by the Rantox biosensor Environ. Technol. 21 IssueID5 535–544

    Google Scholar 

  61. A Pollice A Rozzi MC Tomei AC Di Pinto G Laera (2001) ArticleTitleInhibiting effects of chloroform on anaerobic microbial consortia as monitored by the Rantox biosensor Wat. Res. 35 IssueID5 1179–1190

    Google Scholar 

  62. E Puhar A Einsele H Buehler W Ingold (1980) ArticleTitleSteam sterilisable pCO2 electrode Biotechnol. Bioeng. 22 2411–2416

    Google Scholar 

  63. L Raskin LK Poulsen DR Noguera BE Rittmann DA Stahl (1994) ArticleTitleQuantification of methanogenic groups in anaerobic biological reactors by oligonucleotide probe hybridization Appl. Environ. Microbiol. 60 1241–1248

    Google Scholar 

  64. L Raskin RI Amann LK Poulsen BE Rittmann DA Stahl (1995) ArticleTitleUse of ribosomal RNA-based molecular probes for characterisation of complex microbial communities in anaerobic biofilms Wat. Sci. Technol. 31 IssueID1 261–272

    Google Scholar 

  65. E Remigi (Eds) (2001) Biodegradability and activity assessment under anaerobic conditions Ph.D. Thesis. Politecnico di Milano Italy

    Google Scholar 

  66. Remigi E, Rozzi A & Fux C (2002) Assessment of microbial kinetics (aceticlastic methanogenesis and Anammox) by a titration bioassay. Proc. VII Taller y Seminario Latinoamericano sobre Digestion Anaerobia, Mérida (Mexico) 22–25 October

  67. Rozzi A, Brunetti A, Palmisano V & Stella P (1983) Automatic data acquisition and processing system for acetoclastic methanogenic activity tests. Proc. Anaerobic wastewater treatment symposium (Noordwijkerhout, The Netherlands, November 1983)

  68. A Rozzi MC Tomei Pinto AC Di N Limoni (1997) ArticleTitleMonitoring toxicity in anaerobic digesters by the Rantox biosensor: Theoretical background Biotechnol. Bioeng. 55 IssueID1 33–40

    Google Scholar 

  69. A Rozzi MC Tomei AC Di Pinto N Limoni (1999) ArticleTitleMonitoring toxicity in anaerobic digesters by the Rantox biosensor: Calibration tests Biores. Technol. 68 IssueID2 155–163

    Google Scholar 

  70. Rozzi A & Ficara E (2001) Titration biosensors for risk assessment of contaminated sites and groundwater. Proc. 1st Workshop SENSPOL: Sensing Technologies for contaminated sites on groundwater. University of Alcalà (Spain), 9–11 May

  71. A Rozzi E Remigi C Buckley (2001) ArticleTitleMethanogenic activity measurements by the MAIA biosensor: Instruction guide Wat. Sci. Technol. 44 IssueID4 287–294

    Google Scholar 

  72. A Rozzi L Castellazzi RE Speece (2002) ArticleTitleAcetoclastic methanogenic activity measurement by a titration bioassay Biotech. Bioeng. 77 IssueID1 20–26

    Google Scholar 

  73. WTM Sanders (2001) Anaerobic hydrolysis during digestion of complex substrates Ph.D. Thesis. Wageningen University The Netherlands

    Google Scholar 

  74. WTM Sanders G Zeeman G Lettinga (2002) ArticleTitleHydrolysis kinetics of dissolved polymer substrates Wat. Sci. Technol. 45 IssueID10 99–104

    Google Scholar 

  75. JC Schonberg SK Bhattacharya RL Madura SH Mason RA Conway (1997) ArticleTitleEvaluation of anaerobic treatment of selected petrochemical wastes J. Hazardous Mat. 54 47–63

    Google Scholar 

  76. EA Shelton JM Tiedje (1984) ArticleTitleGeneral method for determining anaerobic biodegradation potential Appl. Environ. Microbiol. 47 IssueID4 850–857

    Google Scholar 

  77. CR South DAL Hogsett DLR Lynd (1995) ArticleTitleModelling simultaneous saccharification and fermentation of lignocellulose to ethanol in batch and continuous reactors Enzyme Microbiol. Technol. 17 797–803

    Google Scholar 

  78. RE Speece (1996) Anaerobic biotechnology for industrial wastewaters Archae Press Nashville (TN, USA)

    Google Scholar 

  79. DT Sponza (2003) ArticleTitleToxicity and treatability of carbontetrachloride and tetrachloroethylene in anaerobic batch cultures Int. Biodeterior. Biodegr. 51 119–127

    Google Scholar 

  80. M Strous JG Kuenen MSM Jetten (1999) ArticleTitleKey physiology of anaerobic ammonium oxidation Appl. Environ. Microbiol. 65 3248–3250

    Google Scholar 

  81. W Stumm J Morgan (1996) Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters Wiley Interscience New York, USA

    Google Scholar 

  82. JM Suflita F Concannon (1995) ArticleTitleScreening test for assessing the anaerobic biodegradation of pollutant chemicals in subsurface environments J. Microbiol. Meth. 21 267–281

    Google Scholar 

  83. M Takashima RE Speece (1989) ArticleTitleMineral nutrient requirements for high-rate methane fermentation of acetate at low SRT Res. J. Wat. Poll. Contr. Fed. 61 IssueID11–12 1645–1650

    Google Scholar 

  84. Tipton FK (1992) Principles of enzyme assays and kinetic studies in enzyme assays. In: Eseinthal R & Ranson MJ (Ed.) A Practical Approach, Oxford University Press, Oxford

  85. WW Umbreit RH Burris JF Stayffer (1964) Manometric Techniques Burgess Berks

    Google Scholar 

  86. D Valcke W Verstraete (1983) ArticleTitleA practical method to estimate the acetoclastic methanogenic biomass in anaerobic sludges J. Wat. Poll. Contr. Fed. 55 1191–1195

    Google Scholar 

  87. den Berg L Van CP Lentz RJ Athey EA Rooke (1974) ArticleTitleAssessment of methanogenic activity in anaerobic digestion apparatus and method Biotechnol. Bioeng. 16 IssueID11 1459–1469

    Google Scholar 

  88. A Veeken B Hamelers (1999) ArticleTitleEffect of temperature on the hydrolysis rate of selected biowaste components Biores. Technol. 69 IssueID3 249–255

    Google Scholar 

  89. MC Veiga M Soto R Mendez JM Lema (1990) ArticleTitleA new device for measurement control of gas production by bench scale anaerobic digester Wat. Res. 24 IssueID12 1551–1554

    Google Scholar 

  90. G Vidal M Soto J Field R Mendéz-Pampín JM Lema (1997) ArticleTitleAnaerobic biodegradability and toxicity of wastewater from chlorine and total chlorine-free bleaching of eucalyptus kraft pulps Wat. Res. 31 IssueID10 2487–2494

    Google Scholar 

  91. RK Voolapalli DC Stuckey (2001) ArticleTitleHydrogen production in anaerobic reactors during shock loads–influence of formate production and H2 kinetics Wat. Res. 35 IssueID7 1831–1841

    Google Scholar 

  92. J Yang RE Speece (1986) ArticleTitleThe effects of chloroform toxicity on methane fermentation Wat. Res. 20 1273–1279

    Google Scholar 

  93. JC Young HH Tabak (1993) ArticleTitleMultilevel protocol for assessing the fate and effect of toxic organic chemicals in anaerobic treatment processes Wat. Environ. Res. 65(1) 34–35

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Enrico Remigi.

Additional information

Passed away on April 7th 2003.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rozzi, A., Remigi, E. Methods of assessing microbial activity and inhibition under anaerobic conditions: a literature review. Rev Environ Sci Biotechnol 3, 93–115 (2004). https://doi.org/10.1007/s11157-004-5762-z

Download citation

Keywords

  • activity
  • anaerobic
  • inhibition
  • methods