Skip to main content

Correcting estimation bias in regime switching dynamic term structure models

Abstract

This paper extends the minimum-chi-square estimation for affine term structure models to a regime switching framework, and corrects the estimation bias in the regime switching dynamic term structure model. Biases arise as a result of highly persistent bond yields, and bias correction changes the decomposition of medium- and long-term forward rates. The bias-corrected expected short rate accounts for the pronounced moves in forward rates during the 1979–1982 monetary experiment and the financial crisis. The bias-corrected term premium becomes counter-cyclical and more negatively correlated with the short-term yield. Monte Carlo simulation shows that the decomposition of forward rates is more accurate after bias correction.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. The identification scheme for the model with macro factors and regime shifts as in Ang et al. (2008) is available upon request.

  2. Within each regime, the short rate is an affine function of a vector of \(N_f\) risk factors, and risk factors follow a Gaussian vector-autoregression with constant conditional variances.

  3. In these studies, the transition probability of regimes is time-varying under the physical measure, and is constant under the risk neutral measure. In this paper, we assume they are constant and equal.

  4. Bond yields have long swings in the sample, however, are not explosive and stay within a range (see e.g., a comment of Cochrane 2005, p. 199; Cerrato et al. 2013 for statistical evidence).

  5. Following the common practice for regime switching models, we use the smoothed probability to classify regimes: it is classified as j if the smoothed probability of j is greater than 0.5 for \(N_q=2\).

  6. However, the purpose of this paper is not to compare the bias of regime switching models with affine models. Both models should be economically motivated, and it is an empirical question which sample period is more subject to bias.

  7. Note that \(\alpha _1^{kj}\) has \(N_1\cdot (2 N_q-1)\) rather than \(N_1\times N_q^2\) elements.

References

  • Adrian T, Crump RK, Moench E (2013) Pricing the term structure with linear regressions. J Financ Econ 110(1):110–138

    Article  Google Scholar 

  • Andrews DWK (1993) Exactly median-unbiased estimation of first order autoregressive/unit root models. Econometrica 61(1):139–165

    Article  Google Scholar 

  • Ang A, Bekaert G (2002) Regime switches in interest rates. J Bus Econ Stat 20(2):163–182

    Article  Google Scholar 

  • Ang A, Bekaert G, Wei M (2008) The term structure of real rates and expected inflation. J Finance 63(2):797–849

    Article  Google Scholar 

  • Backus DK, Wright JH (2007) Cracking the conundrum. Brook Pap Econ Act 1:293–329

    Article  Google Scholar 

  • Ball CA, Torous WN (1996) Unit roots and the estimation of interest rate dynamics. J Empir Finance 3(2):215–238

    Article  Google Scholar 

  • Bansal R, Zhou H (2002) Term structure of interest rates with regime shifts. J Finance 57(5):1997–2043

    Article  Google Scholar 

  • Bansal R, Yaron A (2004) Risks for the long run: a potential resolution of asset pricing puzzles. J Finance 59(4):1481–1509

    Article  Google Scholar 

  • Bauer MD, Rudebusch GD (2014) The signaling channel for Federal Reserve bond purchases. Int J Cent Bank 10(3):233–289

    Google Scholar 

  • Bauer MD, Rudebusch GD, Wu JC (2012) Correcting estimation bias in dynamic term structure models. J Bus Econ Stat 30(3):454–467

    Article  Google Scholar 

  • Bauer MD, Rudebusch GD, Wu JC (2014) Term premia and inflation uncertainty: empirical evidence from an international panel dataset: comment. Am Econ Rev 104(1):323–337

    Article  Google Scholar 

  • Bikbov R, Chernov M (2013) Monetary policy regimes and the term structure of interest rates. J Econom 174(1):27–43

    Article  Google Scholar 

  • Campbell JY, Cochrane JH (1999) By force of habit: a consumption-based explanation of aggregate stock market behavior. J Polit Econ 107(2):205–251

    Article  Google Scholar 

  • Campbell JY, Sunderam A, Viceira LM (2017) Inflation bets or deflation hedges? The changing risks of nominal bonds. Crit Finance Rev 6(2):263–301

    Article  Google Scholar 

  • Cerrato M, Kim H, MacDonald R (2013) Nominal interest rates and stationarity. Rev Quant Financ Acc 40(4):741–745

    Article  Google Scholar 

  • Chen R-R, Scott L (1993) Maximum likelihood estimation for a multifactor equilibrium model of the term structure of interest rates. J Fixed Income 3(3):14–31

    Article  Google Scholar 

  • Cochrane JH (2005) Asset pricing. Princeton University Press, Princeton

    Google Scholar 

  • Cochrane JH (2007) Commentary on macroeconomic implications of changes in the term premium. Federal Reserve Bank of St. Louis Review. July/August 2007, pp 271–282

  • Cox JC, Ingersoll JE Jr, Ross SA (1985) A theory of the term structure of interest rates. Econometrica 53(2):385–407

    Article  Google Scholar 

  • Dai Q, Singleton KJ (2000) Specification analysis of affine term structure models. J Finance 55(5):1943–1978

    Article  Google Scholar 

  • Dai Q, Singleton K (2003) Term structure dynamics in theory and reality. Rev Financ Stud 16(3):631–678

    Article  Google Scholar 

  • Dai Q, Singleton K, Yang W (2007) Regime shifts in a dynamic term structure model of U.S. Treasury bond yields. Rev Financ Stud 20(5):1669–1706

    Article  Google Scholar 

  • D’Amico S, Kim DH, Wei M (2018) Tips from TIPS: the informational content of Treasury inflation-protected security prices. J Financ Quant Anal 53(1):395–436

    Article  Google Scholar 

  • Droumaguet M (2012) Markov-switching vector autoregressive models: Monte Carlo experiment, impulse analysis, and Granger-causal analysis. PhD, European University Institute

  • Duffee GR (2002) Term premia and interest rate forecasts in affine models. J Finance 57(1):405–443

    Article  Google Scholar 

  • Duffee GR, Stanton RH (2012) Estimation of dynamic term structure models. Q J Finance 2(2):1250008

    Article  Google Scholar 

  • Duffie D, Kan R (1996) A yield-factor model of interest rates. Math Finance 6(4):379–406

    Article  Google Scholar 

  • Evans MDD (2003) Real risk, inflation risk, and the term structure. Econ J 113(487):345–389

    Article  Google Scholar 

  • Garcia R, Perron P (1996) An analysis of the real interest rate under regime shifts. Rev Econ Stat 78(1):111–125

    Article  Google Scholar 

  • Gray SF (1996) Modeling the conditional distribution of interest rates as a regime-switching process. J Financ Econ 42(1):27–62

    Article  Google Scholar 

  • Gürkaynak RS, Sack B, Wright JH (2007) The U.S. Treasury yield curve: 1961 to the present. J Monet Econ 54(8):2291–2304

    Article  Google Scholar 

  • Hamilton JD (1988) Rational-expectations econometric analysis of changes in regime: an investigation of the term structure of interest rates. J Econ Dyn Control 12(2):385–423

    Article  Google Scholar 

  • Hamilton JD, Wu JC (2012) Identification and estimation of Gaussian affine term structure models. J Econom 168(2):315–331

    Article  Google Scholar 

  • Hansen LP (2007) Beliefs, doubts and learning: valuing macroeconomic risk. Am Econ Rev 97(2):1–30

    Article  Google Scholar 

  • Hansen LP, Sargent TJ (2001) Robust control and model uncertainty. Am Econ Rev 91(2):60–66

    Article  Google Scholar 

  • Hansen LP, Sargent TJ (2007) Recursive robust estimation and control without commitment. J Econ Theory 136(1):1–27

    Article  Google Scholar 

  • Hansen LP, Sargent TJ (2008) Robustness. Princeton University Press, Princeton

    Google Scholar 

  • Hanson SG, Lucca DO, Wright JH (2018) The excess sensitivity of long-term rates: a tale of two frequencies. Federal Reserve Bank of New York Staff Reports, No. 810

  • Joslin S, Priebsch M, Singleton KJ (2014) Risk premiums in dynamic term structure models with unspanned macro risks. J Finance 69(3):1197–1233

    Article  Google Scholar 

  • Juneja J (2015) An evaluation of alternative methods used in the estimation of Gaussian term structure models. Rev Quant Financ Acc 44(1):1–24

    Article  Google Scholar 

  • Juneja J (2018) Empirical performance of Gaussian affine dynamic term structure models in the presence of autocorrelation misspecification bias. Rev Quant Financ Acc 50(3):695–715

    Article  Google Scholar 

  • Kilian L (1998) Small-sample confidence intervals for impulse response functions. Rev Econ Stat 80(2):218–230

    Article  Google Scholar 

  • Kim DH, Orphanides A (2012) Term structure estimation with survey data on interest rate forecasts. J Financ Quant Anal 47(1):241–272

    Article  Google Scholar 

  • Kozak S (2022) Dynamics of bond and stock returns. J Monet Econ 126:188–209

    Article  Google Scholar 

  • Kumar A, Mallick S, Mohanty M, Zampolli F (2023) Market volatility, monetary policy and the term premium. Oxf Bull Econ Stat 85(1):208–237

    Article  Google Scholar 

  • Landén C (2000) Bond pricing in a hidden Markov model of the short rate. Finance Stochast 4(4):371–389

    Article  Google Scholar 

  • Ludvigson SC, Ng S (2009) Macro factors in bond risk premia. Rev Financ Stud 22(12):5027–5067

    Article  Google Scholar 

  • Newey WK, West KD (1987) A Simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55(3):703–708

    Article  Google Scholar 

  • Nicholls DF, Pope AL (1988) Bias in the estimation of multivariate autoregressions. Aust J Stat 30A(1):296–309

    Article  Google Scholar 

  • Pierse RG, Snell AJ (1995) Temporal aggregation and the power of tests for a unit root. J Econom 65(2):333–345

    Article  Google Scholar 

  • Psaradakis Z, Sola M (1998) Finite-sample properties of the maximum likelihood estimator in autoregressive models with Markov switching. J Econom 86(2):369–386

    Article  Google Scholar 

  • Sola M, Driffill J (1994) Testing the term structure of interest rates using a stationary vector autoregression with regime switching. J Econ Dyn Control 18(3):601–628

    Article  Google Scholar 

  • Wright JH (2011) Term premia and inflation uncertainty: empirical evidence from an international panel dataset. Am Econ Rev 101(4):1514–1534

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Michael Brennan, Massimo Guidolin, Stuart Hyde, Ranko Jelic, Neil Kellard, Jong-Min Kim, Alex Kostakis, Christian Schlag for their suggestions. We received useful comments from the seminar participants at Alliance Manchester Business School, Goethe University Frankfurt, Xi’an Jiaotong-Liverpool University, International Conference on Computational and Financial Econometrics (2016, Seville), World Congress of the Econometric Society (2020, Milan, Virtual), FMA Conference (2020, New York, Virtual) and Annual Conference on PBFEAM (2022, Taiwan, Virtual).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Bond prices

This section derives the functional form of bond prices. We consider a zero-coupon bond with a maturity of \((n+1)\) periods at time t. Given the current regime \(s_t=j\), the price of this bond, \(P_{n+1,t}\), is conjectured to depend on the latent factors \(F_t\) as

$$\begin{aligned} P_{n+1,t}={\textrm{e}}^{-A_{n+1}^j-B_{n+1}\cdot F_t}, \end{aligned}$$
(41)

where A is a regime-dependent scalar; the factor loading B is \(1\times N_f\) and does not depend on regimes. The price of this bond is also equal to the expected price at time \(t+1\) under the Q-measure discounted at the one-period risk free rate, i.e., given \(q_t=j\) and \(q_{t+1}=k\),

$$\begin{aligned} \log P_{n+1,t}&=\log E_t^Q\Big [{\textrm{e}}^{-r_t^j}\cdot P_{n,t+1}\Big ] \nonumber \\&=-r_t^j+\log \left( \sum _{k}\pi _{jk}^Q\cdot E_t^Q\Big [{\textrm{e}}^{-A_{n}^k-B_{n}\cdot F_{t+1}}\Big |q_t=j,q_{t+1}=k\Big ]\right) \nonumber \\&=-\Big (\delta _0^j+\delta _1\cdot F_t\Big )+\log \left( \sum _{k}\pi _{jk}^Q \cdot {\textrm{e}}^{-A_{n}^k} \right) +\left[ -B_{n}\cdot \Big [\theta ^{Qj}+\rho ^{Q} \cdot \left( F_t-\theta ^{Qj}\right) \Big ]+\frac{1}{2}B_n\Sigma ^j\Sigma ^{j'} B_n^{'}\right] . \end{aligned}$$
(42)

Equating the two prices in Eqs. (41) and (42) by the constant term and the coefficient on the latent factors gives the relationships that A and B must satisfy under the assumption of no arbitrage, i.e., Eqs. (6) and (7).

Appendix B: Risk neutral bond prices

This section derives the functional form of bond prices in the risk neutral world. We consider a zero-coupon bond with a maturity of \((n+1)\) periods at time t. Given the current regime \(s_t=j\), the price of this bond, \({\ddot{P}}_{n+1,t}\), is conjectured to depend on the latent factors \(F_t\) as

$$\begin{aligned} {\ddot{P}}_{n+1,t}={\textrm{e}}^{-{\ddot{A}}_{n+1}^j- {\ddot{B}}_{n+1}^{j}\cdot F_t}, \end{aligned}$$
(43)

where \({\ddot{A}}\) is a regime-dependent scalar; the factor loading \({\ddot{B}}\) is \(1\times N_f\) and depends on regimes as well. The price of this bond is also equal to the expected price at time \(t+1\) under the P-measure discounted at the one-period risk free rate, i.e., given \(q_t=j\) and \(q_{t+1}=k\),

$$\begin{aligned} {\ddot{P}}_{n+1,t}&=E_t^P\Big [{\textrm{e}}^{-r_t^j}\cdot {\ddot{P}}_{n,t+1}\Big |q_t=j \Big ] \nonumber \\&=\sum _{k} \left( \pi _{jk}^P \cdot {\textrm{e}}^{-r_t^j} \cdot E_t^P\Big [{\ddot{P}}_{n,t+1}^k\Big |q_t=j,q_{t+1}=k \Big ]\right) \nonumber \\&=\sum _{k} \left( \pi _{jk}^P \cdot {\textrm{e}}^{-r_t^j} \cdot E_t^P\Big [{\textrm{e}}^{-{\ddot{A}}_{n}^k-{\ddot{B}}_{n}^{k}\cdot F_{t+1}}\Big |q_t=j,q_{t+1}=k \Big ]\right) \nonumber \\&=\sum _{k}\left( \pi _{jk}^P \cdot {\textrm{e}}^{-r_t^j} \cdot {\textrm{e}}^{-{\ddot{A}}_{n}^k} \cdot {\textrm{e}}^{-{\ddot{B}}_{n}^{k}\cdot \Big [\theta ^{Pj}+\rho ^{Pj} \cdot \left( F_t-\theta ^{Pj}\right) \Big ]+\frac{1}{2}{\ddot{B}}_{n}^{k}\Sigma ^j \Sigma ^{j'} {\ddot{B}}_{n}^{k'} }\right) . \end{aligned}$$
(44)

Equating the two prices in Eqs. (43) and (44) gives

$$\begin{aligned} {\textrm{e}}^{-{\ddot{A}}_{n+1}^j- {\ddot{B}}_{n+1}^{j}\cdot F_t}&=\sum _{k}\left( \pi _{jk}^P \cdot {\textrm{e}}^{-r_t^j} \cdot {\textrm{e}}^{-{\ddot{A}}_{n}^k} \cdot {\textrm{e}}^{-{\ddot{B}}_{n}^{k}\cdot \Big [\theta ^{Pj}+\rho ^{Pj} \cdot \left( F_t-\theta ^{Pj}\right) \Big ]+\frac{1}{2}{\ddot{B}}_{n}^{k}\Sigma ^j \Sigma ^{j'} {\ddot{B}}_{n}^{k'} }\right) \\ 1&=\sum _{k}\left( \pi _{jk}^P \cdot {\textrm{e}}^{-r_t^j} \cdot {\textrm{e}}^{-{\ddot{A}}_{n}^k} \cdot {\textrm{e}}^{-{\ddot{B}}_{n}^{k}\cdot \Big [\theta ^{Pj}+\rho ^{Pj} \cdot \left( F_t-\theta ^{Pj}\right) \Big ]+\frac{1}{2}{\ddot{B}}_{n}^{k}\Sigma ^j \Sigma ^{j'} {\ddot{B}}_{n}^{k'} } \cdot {\textrm{e}}^{{\ddot{A}}_{n+1}^j+ {\ddot{B}}_{n+1}^{j}\cdot F_t} \right) . \end{aligned}$$

Using the approximation \({\textrm{e}}^y\approx 1+y\) gives

$$\begin{aligned}&1\approx \sum _{k}\pi _{jk}^P \cdot \left( 1 {-r_t^j} {-{\ddot{A}}_{n}^k}-{\ddot{B}}_{n}^{k}\cdot \Big [\theta ^{Pj}+\rho ^{Pj} \cdot \left( F_t-\theta ^{Pj}\right) \Big ]+\frac{1}{2}{\ddot{B}}_{n}^{k}\Sigma ^j \Sigma ^{j'} {\ddot{B}}_{n}^{k'} +{\ddot{A}}_{n+1}^j+ {\ddot{B}}_{n+1}^{j}\cdot F_t \right) \\&{-{\ddot{A}}_{n+1}^j- {\ddot{B}}_{n+1}^{j}\cdot F_t}=\sum _{k}\pi _{jk}^P \cdot \left( {-r_t^j} {-{\ddot{A}}_{n}^k} {-{\ddot{B}}_{n}^{k}\cdot \Big [\theta ^{Pj}+\rho ^{Pj} \cdot \left( F_t-\theta ^{Pj}\right) \Big ]+\frac{1}{2}{\ddot{B}}_{n}^{k}\Sigma ^j \Sigma ^{j'} {\ddot{B}}_{n}^{k'} }\right) , \end{aligned}$$

where

$$\begin{aligned} r_t=\delta _0^j + \delta _1\cdot F_t. \end{aligned}$$
(4)

Equating both sides by the constant term and the coefficient on the latent factors gives Eqs. (11) and (12).

Appendix C: Estimation of RS-DTSMs

1.1 Appendix C.1: Reduced-form models

We derive the reduced-form model of the observed bond yields \(\{Y_1,Y_2\}\). According to equation (8), the bond yield vector is a function of latent factors, i.e., given the current regime \(q_t=j\),

$$\begin{aligned} \begin{bmatrix} Y_{1,t} \\ Y_{2,t} \end{bmatrix} = \begin{bmatrix} {\varvec{a}}_{1}^j \\ {\varvec{a}}_{2}^j \end{bmatrix} + \begin{bmatrix} {\varvec{b}}_{1} \\ {\varvec{b}}_{2} \end{bmatrix} \cdot F_t + \begin{bmatrix} 0 \\ \Sigma _e^{j} \cdot u_{e,t} \end{bmatrix}, \end{aligned}$$

where

$$\begin{aligned} \underset{(N_1\times 1)}{{\varvec{a}}_{1}^j}= \begin{bmatrix} a_{n_1}^j \\ a_{n_2}^j \\ \vdots \\ a_{n_N}^j \end{bmatrix}, \qquad \underset{(N_1\times N_f)}{{\varvec{b}}_{1}}= \begin{bmatrix} b_{n_1} \\ b_{n_2} \\ \vdots \\ b_{n_N} \end{bmatrix}, \qquad \underset{(N_2\times 1)}{{\varvec{a}}_{2}^j}= \begin{bmatrix} a_{m_1}^j \\ a_{m_2}^j \\ \vdots \\ a_{m_M}^j \end{bmatrix}, \qquad \underset{(N_2\times N_f)}{{\varvec{b}}_{2}}= \begin{bmatrix} b_{m_1} \\ b_{m_2} \\ \vdots \\ b_{m_M} \end{bmatrix}. \end{aligned}$$

Given \(q_{t+1}=k\) and \(q_t=j\), the reduced-form model is

$$\begin{aligned} Y_{1,t+1}&={\varvec{a}}_1^k+{\varvec{b}}_1\cdot F_{t+1}={\varvec{a}}_1^k+{\varvec{b}}_1\cdot \Big [\theta ^{Pj}+\rho ^{Pj} \cdot \left( F_{t}-\theta ^{Pj}\right) +\Sigma ^j\cdot u_{t+1}^P\Big ] \nonumber \\&={\varvec{a}}_1^k+{\varvec{b}}_1\cdot \left[ \theta ^{Pj}+\rho ^{Pj}\cdot \Big ({\varvec{b}}_1^{-1}\cdot \left( Y_{1,t}-{\varvec{a}}_1^j\right) -\theta ^{Pj}\Big )+\Sigma ^j\cdot u_{t+1}^P\right] \nonumber \\&={\varvec{a}}_1^k+{\varvec{b}}_1\cdot \theta ^{Pj}+\underbrace{{\varvec{b}}_1\cdot \rho ^{Pj}\cdot {\varvec{b}}_1^{-1}}_{\phi _{11}^j}\cdot \Big (Y_{1,t}-{\varvec{a}}_1^j-{\varvec{b}}_1\cdot \theta ^{Pj}\Big )+\underbrace{{\varvec{b}}_1\cdot \Sigma ^j\cdot u_{t+1}^P}_{\Omega _{1}^j={\varvec{b}}_{1}\cdot \Sigma ^j\cdot \Sigma ^{j'}\cdot {\varvec{b}}_{1}^{'}}, \end{aligned}$$
(45)

and define

$$\begin{aligned} \alpha _1^{jk}= & {} {\varvec{a}}_1^k+{\varvec{b}}_1\cdot \theta ^{Pj}-\phi _{11}^j\cdot \left( {\varvec{a}}_1^j+{\varvec{b}}_1\cdot \theta ^{Pj}\right) .\nonumber \\ Y_{2,t}= & {} {\varvec{a}}_2^j+{\varvec{b}}_2\cdot F_t+\Sigma _e^j\cdot u_t^e \nonumber \\= & {} {\varvec{a}}_2^j+\underbrace{{\varvec{b}}_2\cdot {\varvec{b}}_1^{-1}}_{\phi _{21}}\cdot (Y_{1,t}-{\varvec{a}}_1^j)+\underbrace{\Sigma _e^{j} \cdot u_{e,t}}_{\Omega _{e}^j=\Sigma _e^j\cdot \Sigma _e^{j'}}, \end{aligned}$$
(46)

and define

$$\begin{aligned} \alpha _2^j={\varvec{a}}_2^j-\phi _{21}\cdot {\varvec{a}}_1^j. \end{aligned}$$

1.2 Appendix C.2: The mapping procedure and model identification

The mapping procedure with normalisations consists of the following steps.

  1. 1.

    The mapping is between structural parameters \(\left\{ \underset{(N_f\times N_f)}{\rho ^Q}, \underset{(N_f\times 1)}{\delta _1}, \underset{\frac{N_f(N_f+1)}{2}\cdot N_q}{\Sigma ^j} \right\}\) and reduced-form parameters \(\left\{ \underset{(N_2\times N_1)}{\phi _{21}},\underset{\frac{N_1(N_1+1)}{2}\cdot N_q}{\Omega _1^j} \right\}\).

    Normalisations include

    $$\begin{aligned}&\Sigma ^{j=1}=I_{N} \\&\rho ^Q \text { is lower triangular}. \end{aligned}$$

    Then the number of elements in structural parameters is

    $$\begin{aligned} \rho ^Q&\qquad \frac{N_f(N_f+1)}{2} \\ \delta _1&\qquad N_f \\ \Sigma ^j&\qquad \frac{N_f(N_f+1)}{2}\cdot (N_q-1). \end{aligned}$$

    When \(N_1=N_f\) and \(N_2=1\), the number of elements in reduced-form parameters is

    $$\begin{aligned} \phi _{21}&\qquad N_2\times N_1=N_f \\ \Omega _1^j&\qquad \frac{N_1(N_1+1)}{2}\cdot N_q=\frac{N_f(N_f+1)}{2}\cdot N_q. \end{aligned}$$

    The mapping is just-identified with equal number of elements in structural and reduced-form parameters. The output is \(\left\{ \rho ^Q, \delta _1, \Sigma ^j \right\}\) and therefore \(\{{\varvec{b}}_{1},{\varvec{b}}_{2}\}\).

  2. 2.

    Given \(\{{\varvec{b}}_{1},{\varvec{b}}_{2}\}\), solve \(\rho ^{Pj}\) analytically from \(\phi _{11}^{j}\).

  3. 3.

    Finally, the mapping is between structural parameters \(\left\{ \underset{(N_f\times 1)\cdot N_q}{\theta ^{Pj}},\underset{(N_f\times 1)\cdot N_q}{\theta ^{Qj}},\underset{(1\times 1)\cdot N_q}{\delta _0},\underset{N_q\cdot (N_q-1)}{\pi ^{Q}}\right\}\) and reduced-form parameters \(\left\{ \underset{(N_1\times 1)\cdot (2 N_q-1)}{\alpha _1^{kj}},\underset{(N_2\times 1)\cdot N_q}{\alpha _2^j} \right\}\)Footnote 7.

    Normalisations include

    $$\begin{aligned}&\theta ^{P1}=0_{N_f\times 1} \\&\pi _{jk}^Q \text { is fixed}, \end{aligned}$$

    where \(\pi ^Q\) can be set equal to its counterpart in the physical measure, \(\pi ^P\), or the constant transition probability implied by the smoothed probability if \(\pi ^P\) is time-varying. Then the number of elements in structural parameters is

    $$\begin{aligned} \theta ^{Pj}&\qquad (N_f\times 1)\cdot (N_q-1) \\ \theta ^{Qj}&\qquad (N_f\times 1)\cdot N_q \\ \delta _0^j&\qquad (1\times 1)\cdot N_q. \end{aligned}$$

    When \(N_1=N\) and \(N_2=1\), the number of elements in reduced-form parameters is

    $$\begin{aligned} \alpha _{1}^{kj}&\qquad (N_1\times 1)\cdot (2 N_q-1)=(N_f\times 1) \cdot (2 N_q-1) \\ \alpha _{2}^j&\qquad (N_2\times 1)\cdot N_q=N_q. \end{aligned}$$

    The mapping is just-identified with equal number of elements in structural and reduced-form parameters.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S., Liu, L. Correcting estimation bias in regime switching dynamic term structure models. Rev Quant Finan Acc 61, 1093–1127 (2023). https://doi.org/10.1007/s11156-023-01182-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11156-023-01182-z

Keywords

JEL Classification