Review of Quantitative Finance and Accounting

, Volume 50, Issue 3, pp 695–715 | Cite as

Empirical performance of Gaussian affine dynamic term structure models in the presence of autocorrelation misspecification bias

  • Januj Juneja
Original Research


Recently, several authors have documented the presence of estimation bias in Gaussian affine dynamic term structure models (GADTSM). However, only a few applications involving its impact on the empirical performance of GADTSM exist in the extant literature, and these studies focus solely on discrete-time vector autoregressive (VAR) based GADTSM and concentrate on issues of small-sample bias and persistence. In this paper, we provide a comprehensive investigation of this issue that includes the estimation of both discrete-time VAR based GADTSM and continuous-time GADTSM at multiple data frequencies through a unique empirical design and two Monte Carlo simulation experiments, within which we construct estimation bias from the serial correlation in yield pricing errors. Our findings show that, although, empirical performance of all studied GADTSM are severely impacted by estimation bias, discrete-time GADTSM are more severely impacted by estimation bias than continuous-time GADTSM. Building on theoretical arguments developed in previous works, we attribute this finding to the strong dependence of discrete-time VAR based GADTSM on the ordinary least squares econometric technique relative to the continuous-time GADTSM for which general maximum likelihood estimation is more suitable.


Dynamic term structure model Autocorrelation misspecification Estimation bias Model performance 

JEL Classification

E43 C52 C58 E47 



I would like to thank Chris Lamoureux, A.D. Amar and seminar participants at the 2015 Financial Management Association Annual meetings held in Orlando, Florida. I would also like to especially thank the editor, Cheng Few Lee, the associate editors, and anonymous referees who are all associated with the Review of Quantitative Finance and Accounting for helpful and insightful comments that greatly improved the paper.


  1. Abrahams M, Adrian T, Crump R, Moench E (2016) Decomposing real and nominal yield curves. J Monet Econ 84:182–200. doi: 10.1016/j.jmoneco.2016.10.006 CrossRefGoogle Scholar
  2. Adrian T, Crump R, Moench E (2013) Pricing the term structure with linear regressions. J Financ Econ 110:110–138. doi: 10.1016/j.jfineco.2013.04.009 CrossRefGoogle Scholar
  3. Bauer M, Neely CJ (2014) International channels of the Fed’s unconventional monetary policy. J Int Money Financ 44:24–46. doi: 10.1016/j.jimonfin.2013.12.007 CrossRefGoogle Scholar
  4. Bauer M, Rudebusch G (2016) Resolving the spanning puzzle in macro-finance term structure models. Rev Financ 21:511–553. doi: 10.1093/rof/rfw044 Google Scholar
  5. Bauer M, Rudebusch G, Wu J (2012) Correcting estimation bias in dynamic term structure models. J Bus Econ Stat 30:454–467. doi: 10.1080/07350015.2012.693855 CrossRefGoogle Scholar
  6. Bauer M, Rudebusch G, Wu J (2014) Term premia and inflation uncertainty: empirical evidence from an international panel dataset: comment. Am Econ Rev 104:323–337. doi: 10.1257/aer.104.1.323 CrossRefGoogle Scholar
  7. Busse J (2001) Another look at mutual fund tournaments. J Financ Quant Anal 36:53–73. doi: 10.2307/2676197 CrossRefGoogle Scholar
  8. Chatzikonstanti V, Venetis I (2015) Long memory in log-range series: do structural breaks matter? J Empir Financ 33:104–113. doi: 10.1016/j.jempfin.2015.06.003 CrossRefGoogle Scholar
  9. Christensen J, Rudebusch G (2012) The response of interest rates to US and UK Quantitative Easing. Econ J 122:F385–F414. doi: 10.1111/j.1468-0297.2012.02554.x CrossRefGoogle Scholar
  10. Christensen J, Diebold F, Rudebusch G (2011) The affine arbitrage-free class of Nelson–Seigel term structure models. J Econ 164:4–20. doi: 10.1016/j.jeconom.2011.02.011 CrossRefGoogle Scholar
  11. Cochrane J, Piazzesi M (2005) Bond risk premia. Am Ecov Rev 95:138–160. doi: 10.1257/0002828053828581 CrossRefGoogle Scholar
  12. Collin-Dufresne P, Goldstein R, Jones C (2008) Identification of maximal affine term structure models. J Financ 63:743–795. doi: 10.1111/j.1540-6261.2008.01331.x CrossRefGoogle Scholar
  13. Dai Q, Singleton K (2000) Specification analysis of Affine term structure models. J Financ 55:1943–1978. doi: 10.1111/0022-1082.00278 CrossRefGoogle Scholar
  14. de Los Diez, Rios A (2015) A new linear estimator for Gaussian dynamic term structure models. J Bus Econ Stat 33:282–295. doi: 10.1080/07350015.2014.948176 CrossRefGoogle Scholar
  15. Dejong F (2000) Time series and cross-section information in affine term structure models. J Bus Econ Stat 18:300–314. doi: 10.1080/07350015.2000.10524872 CrossRefGoogle Scholar
  16. Dempster M, Tang K (2011) Estimating exponential affine models with correlated measurement errors: applications to fixed income and commodities. J Bank Fin 35:639–652. doi: 10.1080/07350015.2000.10524872 CrossRefGoogle Scholar
  17. Duan J, Simonato J (1999) Estimating and testing exponential-affine term structure models by Kalman filter. Rev Quant Financ Acc 13:111–135. doi: 10.1023/A:1008304625054 CrossRefGoogle Scholar
  18. Duffee G (2002) Term premia and interest rate forecasts in affine models. J Financ 57:405–433. doi: 10.1111/1540-6261.00426 CrossRefGoogle Scholar
  19. Duffee G (2011) Forecasting with the term structure: the role of no-arbitrage restrictions. Johns Hopkins University (unpublished working paper)Google Scholar
  20. Duffie D, Kan R (1996) A yield factor model of interest rates. Math Financ 6:379–406. doi: 10.1111/j.1467-9965.1996.tb00123.x CrossRefGoogle Scholar
  21. Duffie D, Singleton K (1997) An econometric model of the term structure of interest-rate swap yields. J Financ 52:1287–1321. doi: 10.1111/j.1540-6261.1997.tb01111.x CrossRefGoogle Scholar
  22. Engle R (2011) Long-term skewness and systematic risk. J Financ Econ 9:437–468. doi: 10.1093/jjfinec/nbr002 Google Scholar
  23. Goliński A, Spencer P (2017) The advantages of using excess returns to model the term structure. J Financ Econ. doi: 10.1016/j.jfineco.2017.05.001
  24. Hamilton J, Wu J (2012) Identification and estimation of Gaussian affine term structure models. J Econ 168:315–331. doi: 10.1016/j.jeconom.2012.01.035 CrossRefGoogle Scholar
  25. Hamilton J, Wu J (2014) Testable implications of affine term structure models. J Econ 178:231–242. doi: 10.1016/j.jeconom.2013.08.024 CrossRefGoogle Scholar
  26. Joslin S, Singleton K, Zhu H (2011) A new perspective on Gaussian dtsm’s. Rev Financ Stud 24:926–970. doi: 10.1093/rfs/hhq128 CrossRefGoogle Scholar
  27. Juneja J (2014) Term structure estimation in the presence of autocorrelation. N Am J Econ Financ 28:119–129. doi: 10.1016/j.najef.2014.02.007 CrossRefGoogle Scholar
  28. Juneja J (2015) An evaluation of alternative methods used in the estimation of Gaussian term structure models. Rev Quant Financ Acc 44:1–24. doi: 10.1007/s11156-013-0396-2 CrossRefGoogle Scholar
  29. Juneja J (2017) Invariance, observational equivalence, and identification: some implications for the empirical performance of affine term structure models. Quant Rev Econ Financ 64:292–305. doi: 10.1016/j.qref.2016.08.003 CrossRefGoogle Scholar
  30. Liljeblom E, Mollah S, Rotter P (2015) Do dividends signal future earnings in the Nordic stock markets? Rev Quant Financ Acc 44:493–511. doi: 10.1007/s11156-013-0415-3 CrossRefGoogle Scholar
  31. Lin W, Sun D (2007) Liquidity-adjusted benchmark yield curves: a look at trading concentration and information. Rev Pac Basin Financ Mark Polic 10:491–518. doi: 10.1142/S0219091507001173 CrossRefGoogle Scholar
  32. Lundtofte F (2013) The quality of public information and the term structure of interest rates. Rev Quant Financ Acc 40:715–740. doi: 10.1007/s11156-012-0295-y CrossRefGoogle Scholar
  33. Malik S, Meldrum A (2016) Evaluating the robustness of UK term structure decompositions using linear regression methods. J Bank Financ 67:85–102. doi: 10.1016/j.jbankfin.2016.02.006 CrossRefGoogle Scholar
  34. Müller U (2014) HAC corrections for strongly autocorrelated time series. J Bus Econ Stat 32:311–322. doi: 10.1080/07350015.2014.931238 CrossRefGoogle Scholar
  35. Nelson C, Siegel A (1987) Parsimonious modeling of yield curves. J Bus 60:473–489CrossRefGoogle Scholar
  36. Qu Z (2011) A test against spurious long memory. J Bus Econ Stat 29:423–438. doi: 10.1198/jbes.2010.09153 CrossRefGoogle Scholar
  37. Raviv E (2015) Prediction bias correction for dynamic term structure models. Econ Lett 129:112–115. doi: 10.1016/j.econlet.2015.01.022 CrossRefGoogle Scholar
  38. Sapp T (2009) Estimating continuous-time stochastic volatility models of the short-term interest rate: a comparison of the generalized method of moments and the Kalman filter. Rev Quant Financ Acc 33:303–326. doi: 10.1007/s11156-009-0122-2 CrossRefGoogle Scholar
  39. Vasicek O (1977) An equilibrium characterization of the term structure. J Financ Econ 5:177–188. doi: 10.1016/0304-405X(77)90016-2 CrossRefGoogle Scholar
  40. Wright J (2011) Term premia and inflation uncertainty: empirical evidence from an international panel dataset. Am Econ Rev 101:1514–1534. doi: 10.1257/aer.101.4.1514 CrossRefGoogle Scholar
  41. Wright J (2014) Term premia and inflation uncertainty: empirical evidence from an international panel dataset: reply. Am Econ Rev 104:338–341. doi: 10.1257/aer.104.1.338 CrossRefGoogle Scholar
  42. Yang X, Cheng J (2010) A data-driven approach for building macroeconomic decision support system. In: 2010 institute of electrical and electronics engineers international conference on systems, man, and cybernetics, October 13, 2010, pp 1054–1061Google Scholar
  43. Yeh S, Lin B (2003) Term structure fitting models and information content: an empirical examination in Taiwanese government bond market. Rev Pac Basin Financ Mark Polic 6:305–348. doi: 10.1142/S0219091503001110 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Finance, College of Business AdministrationSan Diego State UniversitySan DiegoUSA

Personalised recommendations