A Non-Parametric Option Pricing Model: Theory and Empirical Evidence

Abstract

In this paper, we propose an empirically-based, non-parametric option pricing model to evaluate S&P 500 index options. Given the fact that the model is derived under the real measure, an equilibrium asset pricing model, instead of no-arbitrage, must be assumed. Using the histogram of past S&P 500 index returns, we find that most of the volatility smile documented in the literature disappears.

This is a preview of subscription content, access via your institution.

References

  1. Ait-Sahalia, Y. and A. W. Lo, “Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices.” Journal of Finance 53(2), 499–547 (1998).

    Google Scholar 

  2. Amin, K. I. and V. K. Ng, “Inferring Future Volatility from the Information in Implied Volatility in Eurodollar Options: A New Approach.” Review of Financial Studies 10(2), 333–367 (1997).

    Google Scholar 

  3. Bailey, W. and R. Stulz, “The Pricing of Stock Index Options in a General Equilibrium Model.” Journal of Quantitative Analysis 24, 1–12 (1989).

    Google Scholar 

  4. Bakshi, G.S., C. Cao and Z. Chen, “Empirical Performance of Alternative Option Pricing Models.” Journal of Finance 52, 2003–2049 (1997).

    Google Scholar 

  5. Bates, D., “The Crash of 87’: Was It Expected? The Evidence from Options Markets.” Journal of Finance 46, 1009–1044 (1991).

    Google Scholar 

  6. Bates, D., “Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options.” Review of Financial Studies 9, 69–107 (1996).

    Google Scholar 

  7. Black, F. and M. Scholes, “The Valuation of Option Contracts and a Test of Market Efficiency.” Journal of Finance 27, 399–417 (1972).

    Google Scholar 

  8. Black, F. and M. Scholes, “The Pricing of Options and Corporate Liabilities.” Journal of Political Economy 81, 637–659 (1973).

    Google Scholar 

  9. Black, F., “Fact and Fantasy in the use of Options.” Financial Analysis Journal 31, 36–41, 61–72 (1975).

  10. Bodurtha, J. and G. Courtadon, “Tests of the American Option Pricing Model in the Foreign Currency Option Market.” Journal of Financial and Quantitative Analysis 22, 153–167 (1987).

    Google Scholar 

  11. Boyle, P. and T. Vorst, “Option Replication in Discrete Time with Transaction Costs.” Journal of Finance 47, 271–293 (1992).

    Google Scholar 

  12. Campa, J. and K.H. Chang, “Testing the Expectation Hypothesis on the Term Structure of Volatilities.” Journal of Finance 50, 529–547 (1995).

    Google Scholar 

  13. Canina, L. and S. Figlewsk, “The Informational Content of Implied Volatility.” Review of Financial Studies 6(3), 659–681 (1993).

    Google Scholar 

  14. Cochrane, J. H. and Jesus Saa-Requejo, “Beyond Arbitrage: Good-Deal Asset Price Bounds in Incomplete Markets.” Journal of Political Economy 79–119 (2000).

  15. Constantinides, G., “Transactions Costs and the Volatility Implied by Option Prices.” Manuscript. Chicago: Univ. Chicago, Grad. School Bus (1998).

  16. Coval, J. D. and T. Shumway, “Expected Option Returns.” Journal of Finance 56(3), 983–1009 (2001).

    Google Scholar 

  17. Cox, J., J. Ingersoll and S. Ross, “An Intertemporal General Equilibrium Model of Asset Prices.” Econometrica 53(2), 363–384 (1985).

    Google Scholar 

  18. Das, S. R. and R. K. Sundaram, “Of Smiles and Smirks: A Term Structure Perspective.” Journal of Financial and Quantitative Analysis 34, 211–239 (1999).

    Google Scholar 

  19. Day, T. E. and C. M. Lewis, “Stock Market Volatility and the Information Content of Stock Index Options.” Journal of Econometrics 52, 267–287 (1992).

    Google Scholar 

  20. Duan, J. C., “The GARCH Option Pricing Model.” Mathematical Finance 5(1), 13–32 (1995).

    Google Scholar 

  21. Duan, J. C., “Cracking the Smile.” Risk 9, 55–59 (1996).

    Google Scholar 

  22. Duan, J. C., “Conditionally Fat Tailed Distribution and the Volatility Smile in Options.” Working paper, University of Toronto (1999).

  23. Dumas, B., J. Fleming and R. Whaley, “Implied Volatility Smiles: Empirical Tests.”Journal of Finance 53, 2059–2106 (1998).

    Google Scholar 

  24. Eberlein, E., U. Keller and K. Prause, “New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model.” Journal of Business 71, 371–405 (1998).

    Google Scholar 

  25. Emanuel, D. and J. D. MacBeth, “Further Results on Constant Elasticity of Variance Call Option Models.” Journal of Financial and Quantitative Analysis 17, 533–554 (1982).

    Google Scholar 

  26. Geske, R. and R. Rolls, “On Valuing American Call Options with the Black-Scholes European Formula.” Journal of Finance 39, 443–455 (1984).

    Google Scholar 

  27. Geske, R., R. Roll and K. Shastri, “Over-the-Counter Option Market Dividend Protection and “Biases” in the Black-Scholes Model: A Note.” Journal of Finance 38, 1271–1277 (1983).

    Google Scholar 

  28. Heston, S. L., “A Close-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options,”Review of Financial Studies 6, 327–343 (1993).

    Google Scholar 

  29. Heynen, R., A. Kemna and T. Vorst, “Analysis of the Term Structure of Implied Volatilities.” Journal of Financial and Quantitative Analysis 29, 31–56 (1994).

    Google Scholar 

  30. Hull, J. and A. White, “The Pricing of Options on Assets with Stochastic Volatilities.” Journal of Finance 42, 281–300 (1987).

    Google Scholar 

  31. Jackwerth J. C. and M. Rubinstein, “Recovering Probability Distributions from Option Prices.” Journal of Finance 51, 1611–1631 (1996).

    Google Scholar 

  32. Johnson, H. and D. Shanno, “Option Pricing When the Variance is Changing.” Journal of Financial and Quantitative Analysis 22, 143–151 (1987).

    Google Scholar 

  33. Jorion, P., “Predicting Volatility in the Foreign Exchange Market.” Journal of Finance 50(2), 507–528 (1995).

    Google Scholar 

  34. Lamoureux, C. G. and W.D. Lastrapes, “Forecasting Stock Return Variance: Toward an Understanding of Stochastic Implied Volatilities.” Review of Financial Studies 6, 293–326 (1990).

    Google Scholar 

  35. Leland, H. E., “Option Pricing and Replication with Transactions Costs.” Journal of Finance 40, 1283–1301 (1985).

    Google Scholar 

  36. Longstaff, F., “Option Pricing and the Martingale Restrict.” Review of Financial Studies 8, 1091–1124 (1995).

    Google Scholar 

  37. MacBeth, J. D. and L. J. Merville, “An Empirical Examination of the Black-Scholes Call Option Pricing Model.” Journal of Finance 34, 1173–1186 (1979).

    Google Scholar 

  38. Mason, S. P., “Essays in Continuous Time Finance.” Ph.D. Dissertation, M.I.T. (1979).

  39. Merton, R. C., “Option Pricing When Underlying Stock Returns Are Discontinuous.” Journal of Financial Economics, 3(1/2), 125–44 (1976).

    Google Scholar 

  40. Merton, R. C., M. S. Scholes and M. L. Gladstein, “The Returns and Risk of Alternative Call Option Portfolio Investment Strategies.” Journal of Business, 51(2), 183–242 (1978).

    Google Scholar 

  41. Naik, V. and M. Lee, “General Equilibrium: Pricing of Options on the Market Portfolio with Discontinuous Returns.” Review of Financial Studies 3, 493–521 (1990).

    Google Scholar 

  42. Parkinson, M., “Option Pricing: The American Put,”Journal of Business 50, 21–36 (1977).

    Google Scholar 

  43. Peña, I., G. Rubio and G. Serna, “Why Do We Smile? On the Determinants of the Implied Volatility Function.” Journal of Banking & Finance 23, 1151–1179 (1999).

    Google Scholar 

  44. Rubinstein, M., “Implied Binomial Trees.” Journal of Finance 49, 771–818 (1994).

    Google Scholar 

  45. Shimko, D., “Bounds of Probability.” Risk 6, 33–37 (1993).

    Google Scholar 

  46. Whaley, R. E., “Valuation of American Call Options on Dividend-Paying Stocks: Empirical Tests.” Journal of Financial Economics 10, 29–58 (1982).

    Google Scholar 

  47. Whaley, R. E., “Valuation of American Futures Options: Theory and Empirical Tests.” Journal of Finance 41, 127–150 (1986).

    Google Scholar 

  48. Wiggins, J. B., “Option Values under Stochastic Volatility: Theory and Empirical Estimations.” Journal of Financial Economics 351–372 (1987).

  49. Xu, X. and S. J. Taylor, “The Term Structure of Volatility Implied by Foreign Exchange Options.” Journal of Financial and Quantitative Analysis 29, 57–74 (1994).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ren-Raw Chen.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, RR., Palmon, O. A Non-Parametric Option Pricing Model: Theory and Empirical Evidence. Rev Quant Finan Acc 24, 115–134 (2005). https://doi.org/10.1007/s11156-005-6333-2

Download citation

Key words

  • options
  • implied volatility
  • volatility smile
  • nonparametric model