Skip to main content

Advertisement

Log in

A multifaceted and inclusive methodology for the detection of sarcopenia in patients undergoing bariatric surgery: an in-depth analysis of current evidence

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Bariatric surgery is widely recognized as the most effective intervention for obesity and offers benefits beyond weight loss. However, not all patients achieve satisfactory weight loss, balanced changes in body composition, and resolution of comorbidities. Therefore, thorough pre- and postoperative evaluations are important to predict success and minimize adverse effects. More comprehensive assessments require broadening the focus beyond body weight and fat measurements to consider quantitative and qualitative evaluations of muscles. Introducing the concept of sarcopenia is useful for assessing the degradative and pathological changes in muscles associated with cardiometabolic function, physical performance, and other obesity-related comorbidities in patients undergoing bariatric surgery. However, there is currently no consensus or definition regarding the research and clinical use of sarcopenia in patients undergoing bariatric surgery. Therefore, this review aimed to define the concept of sarcopenia applicable to patients undergoing bariatric surgery, based on the consensus reached for sarcopenia in the general population. We also discuss the methods and significance of measuring muscle mass, quality, and strength, which are key variables requiring a comprehensive assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ALM:

Appendicular lean mass

BIA:

Bioimpedance analysis

BMI:

Body mass index

CT:

Computed tomography

DXA:

Dual-energy X-ray absorptiometry

EASO:

European Association for the Study of Obesity

ESPEN:

European Society for Clinical Nutrition and Metabolism

EWGSOP:

European Working Group on Sarcopenia in Older People

EWGSOP2:

European Working Group on Sarcopenia in Older People, revised in 2018

FNIH:

Foundation for the National Institutes of Health

HU:

Hounsfield units

MRI:

Magnetic resonance imaging

SMI:

Skeletal muscle index

References

  1. Cosentino C, Marchetti C, Monami M, Mannucci E, Cresci B. Efficacy and effects of bariatric Surgery in the treatment of obesity: network meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2021;31:2815–24. https://doi.org/10.1016/j.numecd.2021.06.018.

    Article  CAS  PubMed  Google Scholar 

  2. Andersson DP, Dahlman I, Eriksson Hogling D, Bäckdahl J, Toft E, Qvisth V, Näslund E, Thorell A, Rydén M, Arner P. Improved metabolism and body composition beyond normal levels following gastric bypass Surgery: a longitudinal study. J Intern Med. 2019;285:92–101. https://doi.org/10.1111/joim.12824.

    Article  CAS  PubMed  Google Scholar 

  3. Adams TD, Davidson LE, Litwin SE, Kim J, Kolotkin RL, Nanjee MN, Gutierrez JM, Frogley SJ, Ibele AR, Brinton EA, Hopkins PN, McKinlay R, Simper SC, Hunt SC. Weight and metabolic outcomes 12 years after gastric bypass. N Engl J Med. 2017;377:1143–55. https://doi.org/10.1056/NEJMoa1700459.

    Article  PubMed  PubMed Central  Google Scholar 

  4. van de Laar AW, van Rijswijk AS, Kakar H, Bruin SC. Sensitivity and specificity of 50% excess weight loss (50% EWL) and twelve other bariatric criteria for weight loss success. Obes Surg. 2018;28:2297–304. https://doi.org/10.1007/s11695-018-3173-4.

    Article  PubMed  Google Scholar 

  5. Grover BT, Morell MC, Kothari SN, Borgert AJ, Kallies KJ, Baker MT. Defining weight loss after bariatric Surgery: a call for standardization. Obes Surg. 2019;29:3493–9. https://doi.org/10.1007/s11695-019-04022-z.

    Article  PubMed  Google Scholar 

  6. Gómez-Ambrosi J, Andrada P, Valentí V, Rotellar F, Silva C, Catalán V, Rodríguez A, Ramírez B, Moncada R, Escalada J, Salvador J, Frühbeck G. Dissociation of body mass index, excess weight loss and body fat percentage trajectories after 3 years of gastric bypass: relationship with metabolic outcomes. Int J Obes (Lond). 2017;41:1379–87. https://doi.org/10.1038/ijo.2017.134.

    Article  PubMed  Google Scholar 

  7. Gómez-Ambrosi J, Silva C, Galofré JC, Escalada J, Santos S, Millán D, Vila N, Ibañez P, Gil MJ, Valentí V, Rotellar F, Ramírez B, Salvador J, Frühbeck G. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int J Obes (Lond). 2012;36:286–94. https://doi.org/10.1038/ijo.2011.100.

    Article  CAS  PubMed  Google Scholar 

  8. Tabesh MR, Abolhasani M, Zali MR, Bagheri R, Alipour M, Cheraghloo N, Asadzadeh-Aghdaei H, Wong A, Zahedi H, Hobaby S, Shadnoush M, Cheraghpour M. The impact of bariatric Surgery procedures on the modulation of cardiometabolic risk factors in patients with severe obesity: a 12-month follow-up. J Int Med Res. 2022;50:3000605221119657. https://doi.org/10.1177/03000605221119657.

    Article  CAS  PubMed  Google Scholar 

  9. Haghighat N, Ashtary-Larky D, Bagheri R, Aghakhani L, Asbaghi O, Amini M, Moeinvaziri N, Hosseini B, Wong A, Shamekhi Z, Jafarian F, Hosseini SV. Preservation of fat-free mass in the first year after bariatric Surgery: a systematic review and meta-analysis of 122 studies and 10,758 participants. Surg Obes Relat Dis. 2022;18:964–82. https://doi.org/10.1016/j.soard.2022.02.022.

    Article  PubMed  Google Scholar 

  10. Nuijten MAH, Eijsvogels TMH, Monpellier VM, Janssen IMC, Hazebroek EJ, Hopman MTE. The magnitude and progress of lean body mass, fat-free mass, and skeletal muscle mass loss following bariatric Surgery: a systematic review and meta-analysis. Obes Rev. 2022;23:e13370. https://doi.org/10.1111/obr.13370.

    Article  PubMed  Google Scholar 

  11. Prado CM, Wells JC, Smith SR, Stephan BC, Siervo M. Sarcopenic obesity: a critical appraisal of the current evidence. Clin Nutr. 2012;31:583–601. https://doi.org/10.1016/j.clnu.2012.06.010.

    Article  CAS  PubMed  Google Scholar 

  12. Maïmoun L, Aouinti S, Puech M, Lefebvre P, Deloze M, de Santa Barbara P, Renard E, Christol JP, Myzia J, Picot MC, Mariano-Goulart D, Nocca D. Changes in lean tissue mass, Fat Mass, biological parameters and resting energy expenditure over 24 months following sleeve gastrectomy. Nutrients. 2023;15. https://doi.org/10.3390/nu15051201.

  13. Holanda N, Crispim N, Carlos I, Moura T, Nóbrega E, Bandeira F. Musculoskeletal effects of obesity and bariatric Surgery - a narrative review. Arch Endocrinol Metab. 2022;66:621–32. https://doi.org/10.20945/2359-3997000000551.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wolfe RR. The underappreciated role of muscle in health and Disease. Am J Clin Nutr. 2006;84:475–82. https://doi.org/10.1093/ajcn/84.3.475.

    Article  CAS  PubMed  Google Scholar 

  15. Bužga M, Pekar M, Uchytil J, Horká V, Malůš J, Vilímek D, Švagera Z, Kutáč P, Holéczy P. Prevention of Sarcopenia in patients with obesity after bariatric and metabolic Surgery: the effect of programmed training on the muscle tissue and anthropometric functions - a randomized controlled trial (SarxOb study protocol). Bosn J Basic Med Sci. 2022. https://doi.org/10.17305/bjbms.2022.7786.

    Article  Google Scholar 

  16. Pekař M, Pekařová A, Bužga M, Holéczy P, Soltes M. The risk of Sarcopenia 24 months after bariatric Surgery - assessment by dual energy X-ray absorptiometry (DEXA): a prospective study. Wideochir Inne Tech Maloinwazyjne. 2020;15:583–7. https://doi.org/10.5114/wiitm.2020.93463.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997. https://doi.org/10.1093/jn/127.5.990S. 127;Suppl:990S–1S.

  18. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. https://doi.org/10.1093/ageing/afy169.

    Article  PubMed  Google Scholar 

  19. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinková E, Vandewoude M, Zamboni M. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older people. Age Ageing. 2010;39:412–23. https://doi.org/10.1093/ageing/afq034.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Barazzoni R, Bischoff SC, Boirie Y, Busetto L, Cederholm T, Dicker D, Toplak H, Van Gossum A, Yumuk V, Vettor R. Sarcopenic obesity: time to meet the challenge. Clin Nutr. 2018;37:1787–93. https://doi.org/10.1016/j.clnu.2018.04.018.

    Article  PubMed  Google Scholar 

  21. Donini LM, Busetto L, Bischoff SC, Cederholm T, Ballesteros-Pomar MD, Batsis JA, Bauer JM, Boirie Y, Cruz-Jentoft AJ, Dicker D, Frara S, Frühbeck G, Genton L, Gepner Y, Giustina A, Gonzalez MC, Han HS, Heymsfield SB, Higashiguchi T, Laviano A, Lenzi A, Nyulasi I, Parrinello E, Poggiogalle E, Prado CM, Salvador J, Rolland Y, Santini F, Serlie MJ, Shi H, Sieber CC, Siervo M, Vettor R, Villareal DT, Volkert D, Yu J, Zamboni M, Barazzoni R. Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement. Obes Facts. 2022;15:321–35. https://doi.org/10.1159/000521241.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ji T, Li Y, Ma L. Sarcopenic obesity: an emerging public health problem. Aging Dis. 2022;13:379–88. https://doi.org/10.14336/AD.2021.1006.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mastino D, Robert M, Betry C, Laville M, Gouillat C, Disse E. Bariatric Surgery outcomes in sarcopenic obesity. Obes Surg. 2016;26:2355–62. https://doi.org/10.1007/s11695-016-2102-7.

    Article  PubMed  Google Scholar 

  24. Voican CS, Lebrun A, Maitre S, Lainas P, Lamouri K, Njike-Nakseu M, Gaillard M, Tranchart H, Balian A, Dagher I, Perlemuter G, Naveau S. Predictive score of Sarcopenia occurrence one year after bariatric Surgery in severely obese patients. PLoS ONE. 2018;13:e0197248. https://doi.org/10.1371/journal.pone.0197248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Molero J, Moizé V, Flores L, De Hollanda A, Jiménez A, Vidal J. The impact of age on the prevalence of sarcopenic obesity in bariatric Surgery candidates. Obes Surg. 2020;30:2158–64. https://doi.org/10.1007/s11695-019-04198-4.

    Article  PubMed  Google Scholar 

  26. Simó-Servat A, Ibarra M, Libran M, Rodríguez S, Perea V, Quirós C, Orois A, Pérez N, Simó R, Barahona M-J. Usefulness of muscle ultrasound to study sarcopenic obesity: a pilot case-control study. J Clin Med. 2022;11:2886. https://doi.org/10.3390/jcm11102886.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Coral RV, Bigolin AV, Machry MC, Menguer RK, Pereira-Lima JC, Contin I, Stock PV. Improvement in muscle strength and metabolic parameters despite muscle mass loss in the initial six months after bariatric Surgery. Obes Surg. 2021;31:4485–91. https://doi.org/10.1007/s11695-021-05634-0.

    Article  PubMed  Google Scholar 

  28. Ruthes EMP, Lenardt BCC, Lass AD, Petroski CA, de Mello MF, de Andrade Junior AB, Souza CJF, de Matos O, Castelo-Branco C. Lean mass and strength profile of women submitted to bariatric Surgery: comparison of the EWGSOP2 and FNIH classification for Sarcopenia - ASBS program phase II. Gynecol Endocrinol. 2022;38:868–73. https://doi.org/10.1080/09513590.2022.2119956.

    Article  PubMed  Google Scholar 

  29. Vieira FT, Godziuk K, Lamarca F, Melendez-Araújo MS, Lima RM, Prado CM, de Carvalho KMB, Dutra ES. Sarcopenic obesity diagnosis by different criteria mid-to long-term post-bariatric Surgery. Clin Nutr. 2022;41:1932–41. https://doi.org/10.1016/j.clnu.2022.07.006.

    Article  PubMed  Google Scholar 

  30. Baad VMA, Bezerra LR, de Holanda NCP, Dos Santos ACO, da Silva AAM, Bandeira F, Cavalcante TCF. Body composition, Sarcopenia and physical performance after bariatric Surgery: differences between sleeve gastrectomy and Roux-en-Y gastric bypass. Obes Surg. 2022;32:3830–8. https://doi.org/10.1007/s11695-022-06335-y.

    Article  PubMed  Google Scholar 

  31. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, Davis M, Muscaritoli M, Ottery F, Radbruch L, Ravasco P, Walsh D, Wilcock A, Kaasa S, Baracos VE. Definition and classification of cancer Cachexia: an international consensus. Lancet Oncol. 2011;12:489–95. https://doi.org/10.1016/S1470-2045(10)70218-7.

    Article  PubMed  Google Scholar 

  32. Prado CM, Lieffers JR, McCargar LJ, Reiman T, Sawyer MB, Martin L, et al. Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol. 2008;9:629–35. https://doi.org/10.1016/S1470-2045(08)70153-0.

    Article  PubMed  Google Scholar 

  33. Gaillard M, Tranchart H, Maitre S, Perlemuter G, Lainas P, Dagher I. Preoperative detection of sarcopenic obesity helps to predict the occurrence of gastric leak after sleeve gastrectomy. Obes Surg. 2018;28:2379–85. https://doi.org/10.1007/s11695-018-3169-0.

    Article  PubMed  Google Scholar 

  34. Vassilev G, Galata C, Finze A, Weiss C, Otto M, Reissfelder C, Blank S. Sarcopenia after Roux-en-Y gastric bypass: detection by skeletal muscle mass index versus bioelectrical impedance analysis. J Clin Med. 2022;11. https://doi.org/10.3390/jcm11061468.

  35. Beaudart C, McCloskey E, Bruyère O, Cesari M, Rolland Y, Rizzoli R, Araujo de Carvalho I, Amuthavalli Thiyagarajan J, Bautmans I, Bertière MC, Brandi ML, Al-Daghri NM, Burlet N, Cavalier E, Cerreta F, Cherubini A, Fielding R, Gielen E, Landi F, Petermans J, Reginster JY, Visser M, Kanis J, Cooper C. Sarcopenia in daily practice: assessment and management. BMC Geriatr. 2016;16:170. https://doi.org/10.1186/s12877-016-0349-4.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gonzalez MC, Heymsfield SB. Bioelectrical impedance analysis for diagnosing Sarcopenia and cachexia: what are we really estimating? J Cachexia Sarcopenia Muscle. 2017;8:187–9. https://doi.org/10.1002/jcsm.12159.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yamada Y, Nishizawa M, Uchiyama T, Kasahara Y, Shindo M, Miyachi M, Tanaka S. Developing and validating an age-independent equation using multi-frequency bioelectrical impedance analysis for estimation of appendicular skeletal muscle mass and establishing a cutoff for Sarcopenia. Int J Environ Res Public Health. 2017;14. https://doi.org/10.3390/ijerph14070809.

  38. Bianchi L, Maietti E, Abete P, Bellelli G, Bo M, Cherubini A, Corica F, Di Bari M, Maggio M, Martone AM, Rizzo MR, Rossi AP, Volpato S, Landi F. Comparing EWGSOP2 and FNIH sarcopenia definitions: agreement and 3-year survival prognostic value in older hospitalized adults: the GLISTEN study. J Gerontol A Biol Sci Med Sci. 2020;75:1331–7. https://doi.org/10.1093/gerona/glz249.

    Article  PubMed  Google Scholar 

  39. Setiati S. Diagnostic tools for Sarcopenia: can we get less expensive and accurate methods? Acta Med Indones. 2019;51:93–4.

    PubMed  Google Scholar 

  40. Simó-Servat A, Ibarra M, Libran M, et al. Usefulness of Ultrasound in assessing the impact of bariatric Surgery on body composition: a pilot study. Obes Surg. 2023;33:1211–7. https://doi.org/10.1007/s11695-023-06510-9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mirón Mombiela R, Vucetic J, Rossi F, Tagliafico AS. Ultrasound biomarkers for Sarcopenia: what can we tell so far? Semin Musculoskelet Radiol. 2020;24:181–93. https://doi.org/10.1055/s-0039-3402745.

    Article  PubMed  Google Scholar 

  42. Watanabe Y, Yamada Y, Fukumoto Y, et al. Echo intensity obtained from ultrasonography images reflecting muscle strength in elderly men. Clin Interv Aging. 2013;8:993–8. https://doi.org/10.2147/cia.S47263.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ivanoski S, Vasilevska Nikodinovska V. Future ultrasound biomarkers for Sarcopenia: Elastography, contrast-enhanced Ultrasound, and speed of Sound Ultrasound Imaging. Semin Musculoskelet Radiol. 2020;24:194–200. https://doi.org/10.1055/s-0040-1701630.

    Article  PubMed  Google Scholar 

  44. Gallagher D, Visser M, De Meersman RE, Sepúlveda D, Baumgartner RN, Pierson RN, Harris T, Heymsfield SB. Appendicular skeletal muscle mass: effects of age, gender, and ethnicity. J Appl Physiol (1985). 1997;83:229–39. https://doi.org/10.1152/jappl.1997.83.1.229.

    Article  CAS  PubMed  Google Scholar 

  45. Lee SH, Gong HS. Measurement and interpretation of handgrip strength for research on Sarcopenia and osteoporosis. J Bone Metab. 2020;27:85–96. https://doi.org/10.11005/jbm.2020.27.2.85.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Marcos-Pardo PJ, González-Gálvez N, Carbonell-Baeza A, Jiménez-Pavón D, Vaquero-Cristóbal R. GDLAM and SPPB batteries for screening Sarcopenia in community-dwelling Spanish older adults: healthy-age network study. Exp Gerontol. 2023;172:112044. https://doi.org/10.1016/j.exger.2022.112044.

    Article  PubMed  Google Scholar 

  47. Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, Kiel DP, Kritchevsky SB, Shardell MD, Dam TT, Vassileva MT. The FNIH Sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014;69:547–58. https://doi.org/10.1093/gerona/glu010.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Heo JE, Kim HC, Shim JS, Song BM, Bae HY, Lee HJ, Suh I. Association of appendicular skeletal muscle mass with carotid intima-media thickness according to body mass index in Korean adults. Epidemiol Health. 2018;40:e2018049. https://doi.org/10.4178/epih.e2018049.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Haines MS, Leong A, Porneala BC, Meigs JB, Miller KK. Association between muscle mass and Diabetes prevalence Independent of body fat distribution in adults under 50 years old. Nutr Diabetes. 2022;12:29. https://doi.org/10.1038/s41387-022-00204-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Newman AB, Kupelian V, Visser M, Simonsick E, Goodpaster B, Nevitt M, Kritchevsky SB, Tylavsky FA, Rubin SM, Harris TB. Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc. 2003;51:1602–9. https://doi.org/10.1046/j.1532-5415.2003.51534.x.

    Article  PubMed  Google Scholar 

  51. Vincent HK, Mathews A. Obesity and mobility in advancing age: mechanisms and interventions to preserve Independent mobility. Curr Obes Rep. 2013;2:275–83. https://doi.org/10.1007/s13679-013-0059-6.

    Article  Google Scholar 

  52. Alalwan AA, Friedman J, Park H, Segal R, Brumback BA, Hartzema AG. US national trends in bariatric Surgery: a decade of study. Surgery. 2021;170:13–7. https://doi.org/10.1016/j.surg.2021.02.002.

    Article  PubMed  Google Scholar 

  53. Reinmann A, Gafner SC, Hilfiker R, Bruyneel AV, Pataky Z, Allet L. Bariatric Surgery: consequences on functional capacities in patients with obesity. Front Endocrinol (Lausanne). 2021;12:646283. https://doi.org/10.3389/fendo.2021.646283.

    Article  PubMed  Google Scholar 

  54. Baad VMA, Bezerra LR, de Holanda NCP, et al. Body composition, Sarcopenia and physical performance after bariatric Surgery: differences between Sleeve Gastrectomy and Roux-En-Y gastric bypass. Obes Surg. 2022;32:3830–8. https://doi.org/10.1007/s11695-022-06335-y.

    Article  PubMed  Google Scholar 

  55. Vaurs C, Diméglio C, Charras L, Anduze Y, Chalret du Rieu M, Ritz P. Determinants of changes in muscle mass after bariatric Surgery. Diabetes Metab. 2015;41:416–21. https://doi.org/10.1016/j.diabet.2015.04.003.

    Article  CAS  PubMed  Google Scholar 

  56. Ciudin A, Simó-Servat A, Palmas F, Barahona MJ. Sarcopenic obesity: a new challenge in the clinical practice. Endocrinol Diabetes Nutr (Engl Ed). 2020;67:672–81. https://doi.org/10.1016/j.endinu.2020.03.004.

    Article  PubMed  Google Scholar 

  57. Shishikura K, Tanimoto K, Sakai S, Tanimoto Y, Terasaki J, Hanafusa T. Association between skeletal muscle mass and insulin secretion in patients with type 2 Diabetes Mellitus. Endocr J. 2014;61:281–7. https://doi.org/10.1507/endocrj.ej13-0375.

    Article  CAS  PubMed  Google Scholar 

  58. Ghachem A, Lagacé JC, Brochu M, Dionne IJ. Fat-free mass and glucose homeostasis: is greater fat-free mass an Independent predictor of insulin resistance? Aging Clin Exp Res. 2019;31:447–54. https://doi.org/10.1007/s40520-018-0993-y.

    Article  PubMed  Google Scholar 

  59. Zaniqueli D, de Oliveira Alvim R, Griep RH, Benseñor IM, Barreto SM, Lotufo PA, Mill JG. Insulin resistance may be misdiagnosed by HOMA-IR in adults with greater fat-free mass: the ELSA-Brasil Study. Acta Diabetol. 2021;58:73–80. https://doi.org/10.1007/s00592-020-01594-6.

    Article  CAS  PubMed  Google Scholar 

  60. Goodpaster BH, Theriault R, Watkins SC, Kelley DE. Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism. 2000;49:467–72. https://doi.org/10.1016/s0026-0495(00)80010-4.

    Article  CAS  PubMed  Google Scholar 

  61. Rolland Y, Lauwers-Cances V, Pahor M, Fillaux J, Grandjean H, Vellas B. Muscle strength in obese elderly women: effect of recreational physical activity in a cross-sectional study. Am J Clin Nutr. 2004;79:552–7. https://doi.org/10.1093/ajcn/79.4.552.

    Article  CAS  PubMed  Google Scholar 

  62. Goodpaster BH, Thaete FL, Kelley DE. Composition of skeletal muscle evaluated with computed tomography. Ann N Y Acad Sci. 2000;904:18–24. https://doi.org/10.1111/j.1749-6632.2000.tb06416.x.

    Article  CAS  PubMed  Google Scholar 

  63. Hamaguchi Y, Kaido T, Okumura S, Kobayashi A, Shirai H, Yao S, Yagi S, Kamo N, Seo S, Taura K, Okajima H, Uemoto S. Preoperative visceral adiposity and muscularity predict poor outcomes after hepatectomy for hepatocellular carcinoma. Liver Cancer. 2019;8:92–109. https://doi.org/10.1159/000488779.

    Article  PubMed  Google Scholar 

  64. Foster MC, Hwang SJ, Porter SA, Massaro JM, Hoffmann U, Fox CS. Fatty kidney, Hypertension, and chronic Kidney Disease: the Framingham Heart Study. Hypertension. 2011;58:784–90. https://doi.org/10.1161/HYPERTENSIONAHA.111.175315.

    Article  CAS  PubMed  Google Scholar 

  65. Miljkovic I, Vella CA, Allison M. Computed tomography-derived myosteatosis and metabolic disorders. Diabetes Metab J. 2021;45:482–91. https://doi.org/10.4093/dmj.2020.0277.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Goodpaster BH, Kelley DE, Thaete FL, He J, Ross R. Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol (1985). 2000;89:104–10. https://doi.org/10.1152/jappl.2000.89.1.104.

    Article  CAS  PubMed  Google Scholar 

  67. Huynh K, Ayers C, Butler J, Neeland I, Kritchevsky S, Pandey A, Barton G, Berry JD. Association between thigh muscle fat infiltration and incident Heart Failure: the health ABC study. JACC Heart Fail. 2022;10:485–93. https://doi.org/10.1016/j.jchf.2022.04.012.

    Article  PubMed  Google Scholar 

  68. Nachit M, Kwanten WJ, Thissen JP, Op De Beeck B, Van Gaal L, Vonghia L, Verrijken A, Driessen A, Horsmans Y, Francque S, Leclercq IA. Muscle fat content is strongly associated with NASH: a longitudinal study in patients with morbid obesity. J Hepatol. 2021;75:292–301. https://doi.org/10.1016/j.jhep.2021.02.037.

    Article  CAS  PubMed  Google Scholar 

  69. Rahemi H, Nigam N, Wakeling JM. The effect of intramuscular fat on skeletal muscle mechanics: implications for the elderly and obese. J R Soc Interface. 2015;12:20150365. https://doi.org/10.1098/rsif.2015.0365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Addison O, Drummond MJ, LaStayo PC, Dibble LE, Wende AR, McClain DA, Marcus RL. Intramuscular fat and inflammation differ in older adults: the impact of frailty and inactivity. J Nutr Health Aging. 2014;18:532–8. https://doi.org/10.1007/s12603-014-0019-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Therkelsen KE, Pedley A, Hoffmann U, Fox CS, Murabito JM. Intramuscular fat and physical performance at the Framingham Heart Study. Age (Dordr). 2016;38:31. https://doi.org/10.1007/s11357-016-9893-2.

    Article  PubMed  Google Scholar 

  72. Kim MK, Kim W, Kwon HS, Baek KH, Kim EK, Song KH. Effects of bariatric Surgery on metabolic and nutritional parameters in severely obese Korean patients with type 2 Diabetes: a prospective 2-year follow up. J Diabetes Investig. 2014;5:221–7. https://doi.org/10.1111/jdi.12137.

    Article  CAS  PubMed  Google Scholar 

  73. Camastra S, Vitali A, Anselmino M, Gastaldelli A, Bellini R, Berta R, Severi I, Baldi S, Astiarraga B, Barbatelli G, Cinti S, Ferrannini E. Muscle and adipose tissue morphology, insulin sensitivity and beta-cell function in diabetic and nondiabetic obese patients: effects of bariatric Surgery. Sci Rep. 2017;7:9007. https://doi.org/10.1038/s41598-017-08444-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ma Q, Cheng X, Hou X, Yan Y, Zhao C, Yang Z. Influence of sleeve gastrectomy on skeletal muscular fat infiltration measured by MRI in patients with metabolic syndrome: preliminary results. Ann Nutr Metab. 2023;79:78–87. https://doi.org/10.1159/000527941.

    Article  CAS  PubMed  Google Scholar 

  75. Faria SL, Kelly E, Faria OP. Energy expenditure and weight regain in patients submitted to roux-en-Y gastric bypass. Obes Surg. 2009;19:856–9. https://doi.org/10.1007/s11695-009-9842-6.

    Article  PubMed  Google Scholar 

  76. Sjöström L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B, Dahlgren S, Larsson B, Narbro K, Sjöström CD, Sullivan M, Wedel H. Lifestyle, Diabetes, and cardiovascular risk factors 10 years after bariatric Surgery. N Engl J Med. 2004;351:2683–93. https://doi.org/10.1056/NEJMoa035622.

    Article  PubMed  Google Scholar 

  77. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98:2133–223. https://doi.org/10.1152/physrev.00063.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yoshino M, Kayser BD, Yoshino J, Stein RI, Reeds D, Eagon JC, Eckhouse SR, Watrous JD, Jain M, Knight R, Schechtman K, Patterson BW, Klein S. Effects of Diet versus gastric bypass on metabolic function in Diabetes. N Engl J Med. 2020;383:721–32. https://doi.org/10.1056/NEJMoa2003697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ha J, Kwon Y, Park S. Metabolomics in bariatric Surgery: towards identification of mechanisms and biomarkers of metabolic outcomes. Obes Surg. 2021;31:4564–74. https://doi.org/10.1007/s11695-021-05566-9.

    Article  PubMed  Google Scholar 

  80. Kristensen MD, Petersen SM, Møller KE, Lund MT, Hansen M, Hansen CN, Courraud J, Helge JW, Dela F, Prats C. Obesity leads to impairments in the morphology and organization of human skeletal muscle lipid droplets and mitochondrial networks, which are resolved with gastric bypass surgery-induced improvements in insulin sensitivity. Acta Physiol (Oxf). 2018;224:e13100. https://doi.org/10.1111/apha.13100.

    Article  CAS  PubMed  Google Scholar 

  81. Weigert C, Klopfer K, Kausch C, Brodbeck K, Stumvoll M, Häring HU, Schleicher ED. Palmitate-induced activation of the hexosamine pathway in human myotubes: increased expression of glutamine:fructose-6-phosphate aminotransferase. Diabetes. 2003;52:650–6. https://doi.org/10.2337/diabetes.52.3.650.

    Article  CAS  PubMed  Google Scholar 

  82. Cho MR, Lee S, Song SK. A review of Sarcopenia pathophysiology, diagnosis, treatment and future direction. J Korean Med Sci. 2022;37:e146. https://doi.org/10.3346/jkms.2022.37.e146.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lynch GS. Update on emerging Drugs for Sarcopenia - age-related muscle wasting. Expert Opin Emerg Drugs. 2008;13:655–73. https://doi.org/10.1517/14728210802544476.

    Article  CAS  PubMed  Google Scholar 

  84. Wagner KR, Fleckenstein JL, Amato AA, Barohn RJ, Bushby K, Escolar DM, Flanigan KM, Pestronk A, Tawil R, Wolfe GI, Eagle M, Florence JM, King WM, Pandya S, Straub V, Juneau P, Meyers K, Csimma C, Araujo T, Allen R, Parsons SA, Wozney JM, Lavallie ER, Mendell JR. A phase I/IItrial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol. 2008;63:561–71. https://doi.org/10.1002/ana.21338.

    Article  CAS  PubMed  Google Scholar 

  85. Andersson DC, Betzenhauser MJ, Reiken S, Meli AC, Umanskaya A, Xie W, Shiomi T, Zalk R, Lacampagne A, Marks AR. Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab. 2011;14:196–207. https://doi.org/10.1016/j.cmet.2011.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Akazawa N, Harada K, Okawa N, Tamura K, Moriyama H. Muscle mass and intramuscular fat of the quadriceps are related to muscle strength in non-ambulatory chronic Stroke survivors: a cross-sectional study. PLoS ONE. 2018;13:e0201789. https://doi.org/10.1371/journal.pone.0201789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Baumgartner RN, Wayne SJ, Waters DL, Janssen I, Gallagher D, Morley JE. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes Res. 2004;12:1995–2004.

    Article  PubMed  Google Scholar 

  88. Baumgartner RN. Body composition in healthy aging. Ann N Y Acad Sci. 2000;904:437–48. https://doi.org/10.1111/j.1749-6632.2000.tb06498.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Open access funding provided by a grant of Korea University and Yungjin Pharm. Co., Ltd.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception. The original draft of the manuscript was written by E.S. and Y.K. and the review of the manuscript and supervision were performed by S.P. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sungsoo Park.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have no commercial associations that might be a conflict of interest in relation to this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, E., Kwon, Y., ALRomi, A. et al. A multifaceted and inclusive methodology for the detection of sarcopenia in patients undergoing bariatric surgery: an in-depth analysis of current evidence. Rev Endocr Metab Disord (2024). https://doi.org/10.1007/s11154-023-09864-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11154-023-09864-8

Keywords

Navigation