Skip to main content
Log in

Thirty years of active surveillance for low-risk thyroid cancer, lessons learned and future directions

Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Cite this article

Abstract

Active Surveillance is a non-invasive strategy designed to identify a minority of patients with low-risk papillary thyroid carcinoma who might experience clinical progression and benefit from additional definitive treatments. Global experience suggests that these tumors typically show minimal changes in size during active surveillance, often demonstrating very slow growth or even size reduction. Moreover, the rate of lymph node metastases is low and can be effectively managed through rescue surgery, without impacting cancer-related mortality. However, despite 30 years of experience demonstrating the safety and feasibility of active surveillance for appropriately selected patients, this approach seems to have limited adoption in specific contexts. This limitation can be attributed to various barriers, including disparities in access to accurate information about the indolent nature of this disease and the prevalence of a maximalist mindset among certain patients and medical settings. This review aims to revisit the experience from the last three decades, provide current insights into the clinical outcomes of active surveillance trials, and propose a systematic approach for its implementation. Furthermore, it intends to emphasize the importance of precise patient selection and provides new perspectives in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

AS:

Active surveillance

ATA:

American Thyroid Association

CI:

Confidence interval

DTC:

Differentiated thyroid carcinoma

FNAB:

Fine-needle aspiration biopsy

FN/SFN:

Follicular neoplasm or suspicious for a follicular neoplasm

HIFU:

High intensity focused ultrasound

IS:

Immediate surgery

JAES:

Japan Association of Endocrine Surgery Task Force

L-T4:

Levothyroxine

LA:

Laser ablation

MWA:

Microwave ablation

NIFTP:

Noninvasive follicular thyroid neoplasm with papillary-like nuclear features

NR:

Not reported

NS:

Non-significant

RFA:

Radiofrequency ablation

RLN:

Recurrent laryngeal nerve

RR:

Relative risk

Tg:

Thyroglobulin

TgAB:

Anti-thyroglobulin antibodies

TSH:

Thyroid stimulating hormone

TV-DR:

Tumor volume doubling rate

PMC:

Papillary microcarcinoma

PTC:

Papillary thyroid carcinoma

References

  1. Miyauchi A. Chronology of thyroid Cancer. World J Surg. 2023;47(2):288–95. https://doi.org/10.1007/s00268-022-06741-4.

    Article  PubMed  Google Scholar 

  2. Davies L, Welch HG. Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg. 2014;140:317–22. https://doi.org/10.1001/jamaoto.2014.1.

    Article  PubMed  Google Scholar 

  3. Davies L, Morris LG, Haymart M, Chen AY, Goldenberg D, Morris J, Ogilvie JB, Terris DJ, Netterville J, Wong RJ, Randolph G, AACE Endocrine Surgery Scientific Committee. American association of clinical endocrinologists and american college of endocrinology disease state clinical review: the increasing incidence of thyroid cancer. Endocr Pract. 2015;21:686–96. https://doi.org/10.4158/EP14466.DSCR. PMID: 26135963.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ito Y, Uruno T, Nakano K, Takamura Y, Miya A, Kobayashi K, Yokozawa T, Matsuzuka F, Kuma S, Kuma K, Miyauchi A. An observation trial without surgical treatment in patients with papillary microcarcinoma of the thyroid. Thyroid. 2003;13:381–7. https://doi.org/10.1089/105072503321669875.

    Article  PubMed  Google Scholar 

  5. Shaha AR, Tuttle RM, Editorial. Risk of disease progression during active surveillance of papillary thyroid cancer. Surgery. 2018;163:53–4. https://doi.org/10.1016/j.surg.2017.08.020.

    Article  PubMed  Google Scholar 

  6. Tuttle RM, Zhang L, Shaha A. A clinical framework to facilitate selection of patients with differentiated thyroid cancer for active surveillance or less aggressive initial surgical management. Expert Rev Endocrinol Metab. 2018;13:77–85. https://doi.org/10.1080/17446651.2018.1449641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. National Cancer Institute. Cancer Stat Facts: thyroid cancer. SEER. 2018. Available from: https://seer.cancer.gov/statfacts/html/thyro.html.

  8. Harach HR, Franssila KO, Wasenius VM. Occult papillary carcinoma of the thyroid. A normal finding in Finland. A systematic autopsy study. Cancer. 1985;56:531–8. https://doi.org/10.1002/1097-0142(19850801)56:33.0.CO;2-3.

    Article  PubMed  CAS  Google Scholar 

  9. Ottino A, Pianzola HM, Castelletto RH. Occult papillary thyroid carcinoma at autopsy in La Plata, Argentina. Cancer. 1989;64:547–51. https://doi.org/10.1002/1097-0142(19890715)64:2<547::aid-cncr2820640232>3.0.co;2-n.

    Article  PubMed  CAS  Google Scholar 

  10. Lee YS, Lim H, Chang HS, Park CS. Papillary thyroid microcarcinomas are different from latent papillary thyroid carcinomas at autopsy. J Korean Med Sci. 2014;29:676–9. https://doi.org/10.3346/jkms.2014.29.5.676.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kovács GL, Gonda G, Vadász G, Ludmány E, Uhrin K, Görömbey Z, Kovács L, Hubina E, Bodó M, Góth MI, Szabolcs I. Epidemiology of thyroid microcarcinoma found in autopsy series conducted in areas of different iodine intake. Thyroid. 2005;15:152–7. https://doi.org/10.1089/thy.2005.15.152.

    Article  PubMed  Google Scholar 

  12. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, Pacini F, Randolph GW, Sawka AM, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward DL, Tuttle RM, Wartofsky L. 2015 american thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid Cancer: the american thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid Cancer. Thyroid. 2016;26:1–133. https://doi.org/10.1089/thy.2015.0020.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mehanna H, Al-Maqbili T, Carter B, Martin E, Campain N, Watkinson J, McCabe C, Boelaert K, Franklyn JA. Differences in the recurrence and mortality outcomes rates of incidental and nonincidental papillary thyroid microcarcinoma: a systematic review and meta-analysis of 21 329 person-years of follow-up. J Clin Endocrinol Metab. 2014;99:2834–43. https://doi.org/10.1210/jc.2013-2118. PMID: 24828487.

    Article  PubMed  CAS  Google Scholar 

  14. Wada N, Duh QY, Sugino K, Iwasaki H, Kameyama K, Mimura T, Ito K, Takami H, Takanashi Y. Lymph node metastasis from 259 papillary thyroid microcarcinomas: frequency, pattern of occurrence and recurrence, and optimal strategy for neck dissection. Ann Surg. 2003;237:399–407. https://doi.org/10.1097/01.SLA.0000055273.58908.19].

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ito Y, Miyauchi A, Kihara M, Higashiyama T, Kobayashi K, Miya A. Patient age is significantly related to the progression of papillary microcarcinoma of the thyroid under observation. Thyroid. 2014;24:27–34. https://doi.org/10.1089/thy.2013.0367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sugitani I, Toda K, Yamada K, Yamamoto N, Ikenaga M, Fujimoto Y. Three distinctly different kinds of papillary thyroid microcarcinoma should be recognized: our treatment strategies and outcomes. World J Surg. 2010;34:1222–31. https://doi.org/10.1007/s00268-009-0359-x.

    Article  PubMed  Google Scholar 

  17. Sakai T, Sugitani I, Ebina A, Fukuoka O, Toda K, Mitani H, Yamada K. Active surveillance for T1bN0M0 papillary thyroid carcinoma. Thyroid. 2019;29:59–63. https://doi.org/10.1089/thy.2018.0462.

    Article  PubMed  Google Scholar 

  18. Tuttle RM, Fagin JA, Minkowitz G, Wong RJ, Roman B, Patel S, Untch B, Ganly I, Shaha AR, Shah JP, Pace M, Li D, Bach A, Lin O, Whiting A, Ghossein R, Landa I, Sabra M, Boucai L, Fish S, Morris LGT. Natural history and tumor volume kinetics of papillary thyroid cancers during active surveillance. JAMA Otolaryngol Head Neck Surg. 2017;143:1015–20. https://doi.org/10.1001/jamaoto.2017.1442.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Smulever A, Pitoia F. Active surveillance in papillary thyroid carcinoma: not easily accepted but possible in Latin America. Arch Endocrinol Metab. 2019;63:462–9. https://doi.org/10.20945/2359-3997000000168. PMID: 31482955.

    PubMed  PubMed Central  Google Scholar 

  20. Smulever A, Pitoia F. High rate incidence of post-surgical adverse events in patients with low-risk papillary thyroid cancer who did not accept active surveillance. Endocrine. 2020;69(3):587–95. https://doi.org/10.1007/s12020-020-02310-8. PMID: 32328966.

    Article  PubMed  CAS  Google Scholar 

  21. Sanabria A, Kowalski LP, Shah JP, Nixon IJ, Angelos P, Williams MD, Rinaldo A, Ferlito A. Growing incidence of thyroid carcinoma in recent years: factors underlying overdiagnosis. Head Neck. 2018;40:855–66. https://doi.org/10.1002/hed.25029. PMID: 29206325.

    Article  PubMed  Google Scholar 

  22. Miyauchi A, Ito Y, Fujishima M, Miya A, Onoda N, Kihara M, Higashiyama T, Masuoka H, Kawano S, Sasaki T, Nishikawa M, Fukata S, Akamizu T, Ito M, Nishihara E, Hisakado M, Kosaka K, Hirokawa M, Hayashi T. Long-term outcomes of active Surveillance and Immediate surgery for adult patients with low-risk papillary thyroid Microcarcinoma: 30-Year experience. Thyroid. 2023;33(7):817–25. https://doi.org/10.1089/thy.2023.0076.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cho SJ, Suh CH, Baek JH, Chung SR, Choi YJ, Chung KW, Shong YK, Lee JH. Active surveillance for small papillary thyroid Cancer: a systematic review and Meta-analysis. Thyroid. 2019;29(10):1399–408. https://doi.org/10.1089/thy.2019.0159.

    Article  PubMed  Google Scholar 

  24. Saravana-Bawan B, Bajwa A, Paterson J, McMullen T. Active surveillance of low-risk papillary thyroid cancer: a meta-analysis. Surgery. 2020;167(1):46–55. https://doi.org/10.1016/j.surg.2019.03.040.

    Article  PubMed  Google Scholar 

  25. Aryanti C, Sudarsa IW, Adiputra PAT. Meta Analysis of the Outcomes in doing active Surveillance and Surgical Approach for Micropapillary thyroid carcinoma. Asian Pac Environ Cancer. 2022;4(1):25–31. https://doi.org/10.31557/APJEC.2021.4.1.25.

    Article  Google Scholar 

  26. Issa PP, Munshi R, Albuck AL, Omar M, Abu Alhuda RF, Metz T, Hussein M, Shama M, Lee GS, Toraih E, Kandil E. Recommend with caution: a meta-analysis investigating papillary thyroid carcinoma tumor progression under active surveillance. Am J Otolaryngol. 2023;44(6):103994DOI. https://doi.org/10.1016/j.amjoto.2023.103994.

    Article  Google Scholar 

  27. Brito JP, Ito Y, Miyauchi A, Tuttle RM. A clinical Framework to facilitate risk stratification when considering an active Surveillance Alternative to Immediate Biopsy and surgery in Papillary Microcarcinoma. Thyroid. 2016;26:144–9. https://doi.org/10.1089/thy.2015.0178.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sugitani I, Ito Y, Takeuchi D, Nakayama H, Masaki C, Shindo H, Teshima M, Horiguchi K, Yoshida Y, Kanai T, Hirokawa M, Hames KY, Tabei I, Miyauchi A. Indications and strategy for active surveillance of adult low-risk papillary thyroid Microcarcinoma: Consensus statements from the Japan Association of endocrine surgery Task Force on Management for Papillary thyroid Microcarcinoma. Thyroid. 2021;31(2):183–92. https://doi.org/10.1089/thy.2020.0330.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pitoia F, Miyauchi A. 2015 American Thyroid Association Guidelines for Thyroid Nodules and Differentiated Thyroid Cancer and Their Implementation in Various Care Settings. Thyroid 2016; 26: 319–321. https://doi.org/10.1089/thy.2015.0530.

  30. Groopman J, Hartzband P. Your medical mind. How to decide what is right for you. New York: Penguin Books; 2011. p. 308.

    Google Scholar 

  31. Pitoia F, Smulever A. Vigilancia activa encubierta y los costos de la ausencia de implementación de la cirugía diferida en Argentina. Rev Argent Endocrinol Metab. 2020;57(3):40–3.

    Google Scholar 

  32. Tong M, Li S, Li Y, Li Y, Feng Y, Che Y. Efficacy and safety of radiofrequency, microwave and laser ablation for treating papillary thyroid microcarcinoma: a systematic review and meta-analysis. Int J Hyperthermia. 2019;36(1):1278–86. https://doi.org/10.1089/thy.2019.0707.

    Article  PubMed  Google Scholar 

  33. Ledesma-Leon T, Solis-Pazmino P, Lincango EP, Figueroa LA, Ellenhorn J, Nasseri Y, Cohen J, Romero-Arenas M, Garcia C, Sanabria A, Rojas T, Torres-Román J, Camacho E, Vallejo S, Alvarado-Mafla B, Dream S, James BC, Ponce OJ, Sharma A, Brito JP. Ablation techniques or active surveillance compared to surgical resection in patients with low-risk papillary thyroid cancer: a systematic review and meta-analysis. Endocrine. 2023 Sep 2. https://doi.org/10.1007/s12020-023-03502-8. Epub ahead of print.

  34. Pitoia F, Smulever A. Active surveillance in low risk papillary thyroid carcinoma. World J Clin Oncol. 2020;11(6):320–36. https://doi.org/10.5306/wjco.v11.i6.320.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Miyauchi A, Ito Y. Conservative Surveillance Management of low-risk papillary thyroid microcarcinoma. Endocrinol Metab Clin North Am. 2019;48:215–26. https://doi.org/10.1016/j.ecl.2018.10.007.

    Article  PubMed  Google Scholar 

  36. Ito Y, Miyauchi A, Kihara M, Fukushima M, Higashiyama T, Miya A. Overall survival of papillary thyroid carcinoma patients: a Single-Institution Long-Term Follow-Up of 5897 patients. World J Surg. 2018;42(3):615–22. https://doi.org/10.1007/s00268-018-4479-z.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Miyauchi A, Kudo T, Ito Y, Oda H, Yamamoto M, Sasai H, Higashiyama T, Masuoka H, Fukushima M, Kihara M, Miya A. Natural history of papillary thyroid microcarcinoma: kinetic analyses on tumor volume during active surveillance and before presentation. Surgery. 2019;165(1):25–30. https://doi.org/10.1016/j.surg.2018.07.045. PMID: 30413323.

    Article  PubMed  Google Scholar 

  38. Rosato L, Avenia N, Bernante P, De Palma M, Gulino G, Nasi PG, Pelizzo MR, Pezzullo L. Complications of thyroid surgery: analysis of a multicentric study on 14,934 patients operated on in Italy over 5 years. World J Surg. 2004;28:271–6. https://doi.org/10.1007/s00268-003-6903-1.

    Article  PubMed  Google Scholar 

  39. Sosa A, Bowman HM, Tielsch JM, Powe NR, Gordon TA, Udelsman R. The importance of surgeon experience for clinical and economic outcomes from thyroidectomy. Ann Surg. 1998;228:320–30. https://doi.org/10.1097/00000658-199809000-00005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Hartl DM, Schlumberger M. Extent of Thyroidectomy and Incidence of Morbidity. Thyroid Surg. 2013;19–32. https://doi.org/10.1002/9781118444832.ch3.

  41. Kuo EJ, Wu JX, Li N, Zanocco KA, Yeh MW, Livhits MJ. Nonoperative management of differentiated thyroid cancer in California: a population-level analysis of 29,978 patients. Endocr Pract. 2017;23:1262–9. https://doi.org/10.4158/EP171933.OR.

    Article  PubMed  Google Scholar 

  42. Ito Y, Miyauchi A, Kudo T, Oda H, Yamamoto M, Sasai H, Masuoka H, Fukushima M, Higashiyama T, Kihara M, Miya A. Trends in the implementation of active surveillance for low-risk papillary thyroid microcarcinomas at Kuma Hospital: gradual increase and heterogeneity in the Acceptance of this New Management option. Thyroid. 2018;28(4):488–95. https://doi.org/10.1089/thy.2017.0448.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Koshkina A, Fazelzad R, Sugitani I, Miyauchi A, Thabane L, Goldstein DP, Ghai S, Sawka AM. Association of Patient Age with progression of low-risk papillary thyroid carcinoma under active surveillance: a systematic review and Meta-analysis. JAMA Otolaryngol Head Neck Surg. 2020;146(6):552–60. https://doi.org/10.1001/jamaoto.2020.0368. Erratum in: JAMA Otolaryngol Head Neck Surg. 2021;147(1):111. PMID: 32297926; PMCID: PMC7163784.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ito Y, Miyauchi A, Oda H, Kobayashi K, Kihara M, Miya A. Revisiting low-risk thyroid papillary Microcarcinomas Resected without Observation: was Immediate surgery necessary? World J Surg. 2016;40:523–8. https://doi.org/10.1007/s00268-015-3184-4.

    Article  PubMed  Google Scholar 

  45. Kimura T, Van Keymeulen A, Golstein J, Fusco A, Dumont JE, Roger PP. Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr Rev. 2001;22:631–56. https://doi.org/10.1210/edrv.22.5.0444.

    Article  PubMed  CAS  Google Scholar 

  46. Sugitani I, Fujimoto Y, Yamada K. Association between serum thyrotropin concentration and growth of asymptomatic papillary thyroid microcarcinoma. World J Surg. 2014;38:673–8. https://doi.org/10.1007/s00268-013-2335-8.

    Article  PubMed  Google Scholar 

  47. Kim HI, Jang HW, Ahn HS, Ahn S, Park SY, Oh YL, Hahn SY, Shin JH, Kim JH, Kim JS, Chung JH, Kim TH, Kim SW. High serum TSH level is Associated with progression of papillary thyroid Microcarcinoma during active surveillance. J Clin Endocrinol Metab. 2018;103:446–51. https://doi.org/10.1210/jc.2017-01775.

    Article  PubMed  Google Scholar 

  48. Kim HI, Jin M, Ko NG, Oh YL, Shin JH, Kim JH, Kim JS, Jeon MJ, Kim TY, Kim SW, Kim WB, Chung JH, Shong YK, Kim WG, Kim TH. Effect of TSH levels during active surveillance of PTMC according to age. Endocr Relat Cancer. 2022;1(4):191–200. https://doi.org/10.1530/ERC-21-0403.

    Article  Google Scholar 

  49. Ito Y, Miyauchi A, Fujishima M, Noda T, Sano T, Sasaki T, Kishi T, Nakamura T. Thyroid-stimulating hormone, Age, and Tumor size are risk factors for progression during active surveillance of low-risk papillary thyroid microcarcinoma in adults. World J Surg. 2022 Oct. https://doi.org/10.1007/s00268-022-06770-z. 2 Epub ahead of print.

  50. Yamamoto M, Miyauchi A, Ito Y et al. Active surveillance outcomes of patients with low-risk papillary thyroid Microcarcinoma according to Levothyroxine Treatment Status. Thyroid 2023, Epub ahead of print https://doi.org/10.1089/thy.2023.0046.

  51. Tuttle RMMD. Is there a role for levothyroxine therapy in euthyroid patients on active surveillance for papillary microcarcinomas? Thyroid. 2023 Aug 19. Epub ahead of print. https://doi.org/10.1089/thy.2023.0424.

  52. Trimboli P, Treglia G, Giovanella L. Preoperative measurement of serum thyroglobulin to predict malignancy in thyroid nodules: a systematic review. Horm Metab Res. 2015;47(4):247–52. https://doi.org/10.1055/s-0034-1395517.

    Article  PubMed  CAS  Google Scholar 

  53. Guarino E, Tarantini B, Pilli T, Checchi S, Brilli L, Ciuoli C, Di Cairano G, Mazzucato P, Pacini F. Presurgical serum thyroglobulin has no prognostic value in papillary thyroid cancer. Thyroid. 2005;15(9):1041–5. https://doi.org/10.1089/thy.2005.15.1041.

    Article  PubMed  CAS  Google Scholar 

  54. Patell R, Mikhael A, Tabet M, Bena J, Berber E, Nasr C. Assessing the utility of preoperative serum thyroglobulin in differentiated thyroid cancer: a retrospective cohort study. Endocrine. 2018;61(3):506–10. https://doi.org/10.1007/s12020-018-1643-z.

    Article  PubMed  CAS  Google Scholar 

  55. Smulever A, November. Low risk DTC: why in Latin America is better active surveillance [Low risk DTC]. XVIII Latin American Thyroid Congress, virtual event; 2021. pp. 18–20.

  56. Shindo H, Amino N, Ito Y, Kihara M, Kobayashi K, Miya A, Hirokawa M, Miyauchi A. Papillary thyroid microcarcinoma might progress during pregnancy. Thyroid. 2014;24:840–4. https://doi.org/10.1089/thy.2013.0527.

    Article  PubMed  CAS  Google Scholar 

  57. Oh, H.-S., Kim, W. G., Park, S., Kim, M., Kwon, H., Jeon, M. J., … Kim, W. B. (2017).Serial Neck Ultrasonographic Evaluation of Changes in Papillary Thyroid Carcinoma During Pregnancy. Thyroid. 27(6), 773–777. DOI:10.1089/thy.2016.0618.

  58. Ito Y, Miyauchi A, Kudo T, Ota H, Yoshioka K, Oda H, Sasai H, Nakayama A, Yabuta T, Masuoka H, Fukushima M, Higashiyama T, Kihara M, Kobayashi K, Miya A. Effects of pregnancy on Papillary Microcarcinomas of the thyroid re-evaluated in the entire patient series at Kuma Hospital. Thyroid. 2016;26:156–60. https://doi.org/10.1089/thy.2015.0393.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ieni A, Vita R, Cardia R, Giuffré G, Benvenga S, Tuccari G. BRAF Status in Papillary Microcarcinomas of the thyroid gland: a brief review. Curr Mol Med. 2019;19:665–72. https://doi.org/10.2174/1566524019666190717161359.

    Article  PubMed  CAS  Google Scholar 

  60. Xing M, Liu R, Liu X, Murugan AK, Zhu G, Zeiger MA, Pai S, Bishop J. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol. 2014;32:2718–26. https://doi.org/10.1200/JCO.2014.55.5094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. de Biase D, Gandolfi G, Ragazzi M, Eszlinger M, Sancisi V, Gugnoni M, Visani M, Pession A, Casadei G, Durante C, Costante G, Bruno R, Torlontano M, Paschke R, Filetti S, Piana S, Frasoldati A, Tallini G, Ciarrocchi A. TERT promoter mutations in papillary thyroid Microcarcinomas. Thyroid. 2015;25(9):1013–9. https://doi.org/10.1089/thy.2015.0101.

    Article  PubMed  CAS  Google Scholar 

  62. Yabuta T, Matsuse M, Hirokawa M, Yamashita S, Mitsutake N, Miyauchi A. TERT promoter mutations were not found in papillary thyroid Microcarcinomas that showed disease progression on active surveillance. Thyroid. 2017;27:1206–7. https://doi.org/10.1089/thy.2016.0645.

    Article  PubMed  Google Scholar 

  63. Kim KJ, Kim SG, Tan J, Shen X, Viola D, Elisei R, Puxeddu E, Fugazzola L, Colombo C, Jarzab B, Czarniecka A, Lam AK, Mian C, Vianello F, Yip L, Riesco-Eizaguirre G, Santisteban P, O’Neill CJ, Sywak MS, Clifton-Bligh R, Bendlova B, Sýkorová V, Xing M. BRAF V600E status may facilitate decision-making on active surveillance of low-risk papillary thyroid microcarcinoma. Eur J Cancer. 2020;124:161–9. https://doi.org/10.1016/j.ejca.2019.10.017.

    Article  PubMed  CAS  Google Scholar 

  64. Ito Y, Miyauchi A, Kudo T, et al. Kinetic analysis of growth activity in enlarging papillary thyroid Microcarcinomas. Thyroid. 2019;29(12):1765–73. https://doi.org/10.1089/thy.2019.0396.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Tuttle RM, Fagin J, Minkowitz G, Wong R, Roman B, Patel S, Untch B, Ganly I, Shaha A, Shah J, Li D, Bach A, Girshman J, Lin O, Cohen M, Cohen JM, Cracchiolo J, Ghossein R, Sabra M, Boucai L, Fish S, Morris L. Active surveillance of papillary thyroid Cancer: frequency and time course of the six most common tumor volume kinetic patterns. Thyroid. 2022;32(11):1337–45. https://doi.org/10.1089/thy.2022.0325.

    Article  PubMed  CAS  Google Scholar 

  66. Lubitz CC, Kong CY, McMahon PM, Daniels GH, Chen Y, Economopoulos KP, Gazelle GS, Weinstein MC. Annual financial impact of well-differentiated thyroid cancer care in the United States. Cancer. 2014;120:1345–52. https://doi.org/10.1002/cncr.28562.

    Article  PubMed  Google Scholar 

  67. Oda H, Miyauchi A, Ito Y, Sasai H, Masuoka H, Yabuta T, Fukushima M, Higashiyama T, Kihara M, Kobayashi K, Miya A. Comparison of the costs of active surveillance and immediate surgery in the management of low-risk papillary microcarcinoma of the thyroid. Endocr J. 2017;64:59–64. https://doi.org/10.1507/endocrj.EJ16-0381.

    Article  PubMed  Google Scholar 

  68. Lang BH, Wong CK. A cost-effectiveness comparison between early surgery and non-surgical approach for incidental papillary thyroid microcarcinoma. Eur J Endocrinol. 2015;173:367–75. https://doi.org/10.1530/EJE-15-0454.

    Article  PubMed  CAS  Google Scholar 

  69. Youssef MR, Attia AS, Omar M, Aboueisha M, Freeman MN, Shama M, Kandil E. Thyroid lobectomy as a cost-effective approach in low-risk papillary thyroid cancer versus active surveillance. Surgery. 2022;171(1):190–6. https://doi.org/10.1016/j.surg.2021.05.057.

    Article  PubMed  Google Scholar 

  70. Kim K, Choi JY, Kim SJ, Lee EK, Lee YK, Ryu JS, Lee KE, Moon JH, Park YJ, Cho SW, Park SK. Active Surveillance Versus Immediate surgery for low-risk papillary thyroid Microcarcinoma Patients in South Korea: a cost-minimization analysis from the MAeSTro Study. Thyroid. 2022;32(6):648–56. https://doi.org/10.1089/thy.2021.0679.

    Article  PubMed  CAS  Google Scholar 

  71. Ali SZ, Baloch ZW, Cochand-Priollet B, Schmitt FC, Vielh P, VanderLaan PA. The 2023 Bethesda System for reporting thyroid cytopathology. Thyroid. 2023;33(9):1039–44. https://doi.org/10.1089/thy.2023.0141.

    Article  PubMed  Google Scholar 

  72. Wang CC, Friedman L, Kennedy GC, Wang H, Kebebew E, Steward DL, Zeiger MA, Westra WH, Wang Y, Khanafshar E, Fellegara G, Rosai J, Livolsi V, Lanman RB. A large multicenter correlation study of thyroid nodule cytopathology and histopathology. Thyroid. 2011;21(3):243–51. https://doi.org/10.1089/thy.2010.0243.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Klubo-Gwiezdzinska J, Wartofsky L. The Role of Molecular Diagnostics in the Management of Indeterminate Thyroid Nodules. J Clin Endocrinol Metab. 2018; 1;103(9):3507–3510. https://doi.org/10.1210/jc.2018-01081.

  74. Smulever A, Pitoia F. Active surveillance in small cytological indeterminate thyroid nodules: a call to common sense? Endocrine. 2021;72(2):505–12. https://doi.org/10.1007/s12020-020-02566-0.

    Article  PubMed  CAS  Google Scholar 

  75. Gorshtein A, Slutzky-Shraga I, Robenshtok E, Benbassat C, Hirsch D. Adherence to active surveillance and clinical outcomes in patients with indeterminate thyroid nodules not referred for Thyroidectomy. Eur Thyroid J. 2021;10(2):168–73. https://doi.org/10.1159/000509037.

    Article  PubMed  Google Scholar 

  76. Garcia-Lozano CA, Sanabria A. Preliminary report of active surveillance as a conservative strategy for Bethesda IV thyroid nodules. Thyroid. 2023;33(1):126–8. https://doi.org/10.1089/thy.2022.0296.

    Article  PubMed  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

AS y FP contributed to the conception and design of the article. Both authors drafted, revised, and approved the final manuscript.

Corresponding author

Correspondence to Anabella Smulever.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smulever, A., Pitoia, F. Thirty years of active surveillance for low-risk thyroid cancer, lessons learned and future directions. Rev Endocr Metab Disord (2023). https://doi.org/10.1007/s11154-023-09844-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11154-023-09844-y

Keywords

Navigation