Skip to main content

Advertisement

Log in

White adipose tissue mitochondrial bioenergetics in metabolic diseases

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

White adipose tissue (WAT) is an important endocrine organ that regulates systemic energy metabolism. In metabolically unhealthy obesity, adipocytes become dysfunctional through hypertrophic mechanisms associated with a reduced endocrine function, reduced mitochondrial function, but increased inflammation, fibrosis, and extracellular remodelling. A pathologic WAT remodelling promotes systemic lipotoxicity characterized by fat accumulation in tissues such as muscle and liver, leading to systemic insulin resistance and type 2 diabetes. Several lines of evidence from human and animal studies suggest a link between unhealthy obesity and adipocyte mitochondrial dysfunction, and interventions that improve mitochondrial function may reduce the risk of obesity-associated diseases. This review discusses the importance of mitochondrial function and metabolism in human adipocyte biology and intercellular communication mechanisms within WAT. Moreover, a selected interventional approach for better adipocyte mitochondrial metabolism in humans is reviewed. A greater understanding of mitochondrial bioenergetics in WAT might provide novel therapeutic opportunities to prevent or restore dysfunctional adipose tissue in obesity-associated diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

APCs:

Adipose progenitor cells

AT:

Adipose tissue

C/EBPα:

CCAAT-enhancer-binding protein alpha

CREB:

cAMP response element-binding protein

ERRα:

Estrogen-related receptor alpha

ETC:

Electron transport chain

EV:

Extracellular vesicle

HFD:

High-fat diet

PPARγ:

Peroxisome proliferator-activated receptor gamma,

PPARGC1A:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

OXPHOS:

Oxidative phosphorylation

SAT:

Subcutaneous white adipose tissue

SVF:

Stromal vascular fraction cells

T2D:

Type 2 diabetes

VAT:

Visceral adipose tissue

WAT:

White adipose tissue

References

  1. Kusminski CM, Bickel PE, Scherer PE. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov. 2016;15(9):639–60.

    Article  CAS  PubMed  Google Scholar 

  2. Oikonomou EK, Antoniades C. The role of adipose tissue in cardiovascular health and disease. Nat Rev Cardiol. 2019;16(2):83–99.

    Article  PubMed  Google Scholar 

  3. Crewe C, An YA, Scherer PE. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Invest. 2017;127(1):74–82.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol. 2000;16:145–71.

    Article  CAS  PubMed  Google Scholar 

  5. Spiegelman BM, Puigserver P, Wu Z. Regulation of adipogenesis and energy balance by PPARgamma and PGC-1. Int J Obes Relat Metab Disord. 2000;24(Suppl 4):8–10.

    Article  Google Scholar 

  6. Wilson-Fritch L, Nicoloro S, Chouinard M, et al. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest. 2004;114(9):1281–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kajimoto K, Terada H, Baba Y, Shinohara Y. Essential role of citrate export from mitochondria at early differentiation stage of 3T3-L1 cells for their effective differentiation into fat cells, as revealed by studies using specific inhibitors of mitochondrial di- and tricarboxylate carriers. Mol Genet Metab. 2005;85(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  8. Tormos KV, Anso E, Hamanaka RB, et al. Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 2011;14(4):537–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shi X, Burkart A, Nicoloro SM, Czech MP, Straubhaar J, Corvera S. Paradoxical effect of mitochondrial respiratory chain impairment on insulin signaling and glucose transport in adipose cells. J Biol Chem. 2008;283(45):30658–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vernochet C, Damilano F, Mourier A, et al. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. FASEB J. 2014;28(10):4408–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berger E, Rath E, Yuan D, et al. Mitochondrial function controls intestinal epithelial stemness and proliferation. Nat Commun. 2016;7:13171.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Altshuler-Keylin S, Shinoda K, Hasegawa Y, et al. Beige Adipocyte maintenance is regulated by Autophagy-Induced mitochondrial clearance. Cell Metab. 2016;24(3):402–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gupta RK, Mepani RJ, Kleiner S, et al. Zfp423 expression identifies committed preadipocytes and localizes to adipose endothelial and perivascular cells. Cell Metab. 2012;15(2):230–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hepler C, Shan B, Zhang Q et al. Identification of functionally distinct fibro-inflammatory and adipogenic stromal subpopulations in visceral adipose tissue of adult mice. Elife 2018;7.

  15. Joffin N, Paschoal VA, Gliniak CM, et al. Mitochondrial metabolism is a key regulator of the fibro-inflammatory and adipogenic stromal subpopulations in white adipose tissue. Cell Stem Cell. 2021;28(4):702–717e708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20(7):745–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sabaratnam R, Svenningsen P. Adipocyte-endothelium crosstalk in obesity. Front Endocrinol (Lausanne). 2021;12:681290.

    Article  PubMed  Google Scholar 

  18. Todorcevic M, Manuel AR, Austen L, et al. Markers of adipose tissue hypoxia are elevated in subcutaneous adipose tissue of severely obese patients with obesity hypoventilation syndrome but not in the moderately obese. Int J Obes (Lond). 2021;45(7):1618–22.

    Article  CAS  PubMed  Google Scholar 

  19. Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab. 2007;293(4):E1118–1128.

    Article  CAS  PubMed  Google Scholar 

  20. Wang B, Wood IS, Trayhurn P. Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch. 2007;455(3):479–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pasarica M, Sereda OR, Redman LM, et al. Reduced adipose tissue oxygenation in human obesity: evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes. 2009;58(3):718–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wagegg M, Gaber T, Lohanatha FL, et al. Hypoxia promotes osteogenesis but suppresses adipogenesis of human mesenchymal stromal cells in a hypoxia-inducible factor-1 dependent manner. PLoS ONE. 2012;7(9):e46483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shao M, Hepler C, Zhang Q, et al. Pathologic HIF1alpha signaling drives adipose progenitor dysfunction in obesity. Cell Stem Cell. 2021;28(4):685–701e687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O’Rourke RW, White AE, Metcalf MD, et al. Hypoxia-induced inflammatory cytokine secretion in human adipose tissue stromovascular cells. Diabetologia. 2011;54(6):1480–90.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Goossens GH, Bizzarri A, Venteclef N, et al. Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation. 2011;124(1):67–76.

    Article  CAS  PubMed  Google Scholar 

  26. Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 2010;11(12):872–84.

    Article  CAS  PubMed  Google Scholar 

  27. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A. 2004;101(45):15927–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Griparic L, van der Wel NN, Orozco IJ, Peters PJ, van der Bliek AM. Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem. 2004;279(18):18792–8.

    Article  CAS  PubMed  Google Scholar 

  29. Mancini G, Pirruccio K, Yang X, Bluher M, Rodeheffer M, Horvath TL. Mitofusin 2 in mature adipocytes controls adiposity and body weight. Cell Rep. 2019;26(11):2849–2858e2844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Altshuler-Keylin S, Kajimura S. Mitochondrial homeostasis in adipose tissue remodeling. Sci Signal 2017;10(468).

  31. Moore TM, Cheng L, Wolf DM, et al. Parkin regulates adiposity by coordinating mitophagy with mitochondrial biogenesis in white adipocytes. Nat Commun. 2022;13(1):6661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cai J, Pires KM, Ferhat M, et al. Autophagy ablation in Adipocytes induces insulin resistance and reveals roles for lipid peroxide and Nrf2 signaling in adipose-liver crosstalk. Cell Rep. 2018;25(7):1708–1717e1705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Patti ME, Corvera S. The role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev. 2010;31(3):364–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kusminski CM, Scherer PE. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol Metab. 2012;23(9):435–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heinonen S, Jokinen R, Rissanen A, Pietilainen KH. White adipose tissue mitochondrial metabolism in health and in obesity. Obes Rev. 2020;21(2):e12958.

    Article  PubMed  Google Scholar 

  36. Choo HJ, Kim JH, Kwon OB, et al. Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia. 2006;49(4):784–91.

    Article  CAS  PubMed  Google Scholar 

  37. Valerio A, Cardile A, Cozzi V, et al. TNF-alpha downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. J Clin Invest. 2006;116(10):2791–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schottl T, Kappler L, Fromme T, Klingenspor M. Limited OXPHOS capacity in white adipocytes is a hallmark of obesity in laboratory mice irrespective of the glucose tolerance status. Mol Metab. 2015;4(9):631–42.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yin X, Lanza IR, Swain JM, Sarr MG, Nair KS, Jensen MD. Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size. J Clin Endocrinol Metab. 2014;99(2):E209–216.

    Article  CAS  PubMed  Google Scholar 

  40. Heinonen S, Buzkova J, Muniandy M, et al. Impaired mitochondrial Biogenesis in Adipose tissue in acquired obesity. Diabetes. 2015;64(9):3135–45.

    Article  CAS  PubMed  Google Scholar 

  41. Semple RK, Crowley VC, Sewter CP, et al. Expression of the thermogenic nuclear hormone receptor coactivator PGC-1alpha is reduced in the adipose tissue of morbidly obese subjects. Int J Obes Relat Metab Disord. 2004;28(1):176–9.

    Article  CAS  PubMed  Google Scholar 

  42. Bogacka I, Xie H, Bray GA, Smith SR. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes. 2005;54(5):1392–9.

    Article  CAS  PubMed  Google Scholar 

  43. Hammarstedt A, Jansson PA, Wesslau C, Yang X, Smith U. Reduced expression of PGC-1 and insulin-signaling molecules in adipose tissue is associated with insulin resistance. Biochem Biophys Res Commun. 2003;301(2):578–82.

    Article  CAS  PubMed  Google Scholar 

  44. Kaaman M, Sparks LM, van Harmelen V, et al. Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue. Diabetologia. 2007;50(12):2526–33.

    Article  CAS  PubMed  Google Scholar 

  45. van der Kolk BW, Saari S, Lovric A, et al. Molecular pathways behind acquired obesity: adipose tissue and skeletal muscle multiomics in monozygotic twin pairs discordant for BMI. Cell Rep Med. 2021;2(4):100226.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Soronen J, Laurila PP, Naukkarinen J, et al. Adipose tissue gene expression analysis reveals changes in inflammatory, mitochondrial respiratory and lipid metabolic pathways in obese insulin-resistant subjects. BMC Med Genomics. 2012;5:9.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Muniandy M, Heinonen S, Yki-Jarvinen H, et al. Gene expression profile of subcutaneous adipose tissue in BMI-discordant monozygotic twin pairs unravels molecular and clinical changes associated with sub-types of obesity. Int J Obes (Lond). 2017;41(8):1176–84.

    Article  CAS  PubMed  Google Scholar 

  48. Sabaratnam R, Skov V, Paulsen SK, et al. A signature of exaggerated adipose tissue dysfunction in type 2 diabetes is linked to low plasma adiponectin and increased transcriptional activation of proteasomal degradation in muscle. Cells. 2022;11:13.

    Article  Google Scholar 

  49. Qatanani M, Tan Y, Dobrin R, et al. Inverse regulation of inflammation and mitochondrial function in adipose tissue defines extreme insulin sensitivity in morbidly obese patients. Diabetes. 2013;62(3):855–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Keuper M, Sachs S, Walheim E, et al. Activated macrophages control human adipocyte mitochondrial bioenergetics via secreted factors. Mol Metab. 2017;6(10):1226–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fischer B, Schottl T, Schempp C, et al. Inverse relationship between body mass index and mitochondrial oxidative phosphorylation capacity in human subcutaneous adipocytes. Am J Physiol Endocrinol Metab. 2015;309(4):E380–387.

    Article  CAS  PubMed  Google Scholar 

  52. Pietilainen KH, Naukkarinen J, Rissanen A, et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: pathways behind acquired obesity. PLoS Med. 2008;5(3):e51.

    Article  PubMed  PubMed Central  Google Scholar 

  53. van der Kolk BW, Muniandy M, Kaminska D, et al. Differential mitochondrial gene expression in adipose tissue following weight loss Induced by Diet or bariatric surgery. J Clin Endocrinol Metab. 2021;106(5):1312–24.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Honecker J, Ruschke S, Seeliger C, et al. Transcriptome and fatty-acid signatures of adipocyte hypertrophy and its non-invasive MR-based characterization in human adipose tissue. EBioMedicine. 2022;79:104020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hakansson J, Eliasson B, Smith U, Enerback S. Adipocyte mitochondrial genes and the forkhead factor FOXC2 are decreased in type 2 diabetes patients and normalized in response to rosiglitazone. Diabetol Metab Syndr. 2011;3:32.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mustelin L, Pietilainen KH, Rissanen A, et al. Acquired obesity and poor physical fitness impair expression of genes of mitochondrial oxidative phosphorylation in monozygotic twins discordant for obesity. Am J Physiol Endocrinol Metab. 2008;295(1):E148–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jahansouz C, Serrot FJ, Frohnert BI, et al. Roux-en-Y gastric bypass acutely decreases protein carbonylation and increases expression of mitochondrial Biogenesis genes in Subcutaneous Adipose tissue. Obes Surg. 2015;25(12):2376–85.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lindinger PW, Christe M, Eberle AN, et al. Important mitochondrial proteins in human omental adipose tissue show reduced expression in obesity. J Proteom. 2015;124:79–87.

    Article  CAS  Google Scholar 

  59. Xie X, Yi Z, Sinha S, et al. Proteomics analyses of subcutaneous adipocytes reveal novel abnormalities in human insulin resistance. Obes (Silver Spring). 2016;24(7):1506–14.

    Article  CAS  Google Scholar 

  60. Gomez-Serrano M, Camafeita E, Garcia-Santos E, et al. Proteome-wide alterations on adipose tissue from obese patients as age-, diabetes- and gender-specific hallmarks. Sci Rep. 2016;6:25756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gomez-Serrano M, Camafeita E, Lopez JA, et al. Differential proteomic and oxidative profiles unveil dysfunctional protein import to adipocyte mitochondria in obesity-associated aging and diabetes. Redox Biol. 2017;11:415–28.

    Article  CAS  PubMed  Google Scholar 

  62. Consortium GT. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–5.

    Article  Google Scholar 

  63. Consortium GT. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318–30.

    Article  Google Scholar 

  64. Mogensen M, Sahlin K, Fernstrom M, et al. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes. 2007;56(6):1592–9.

    Article  CAS  PubMed  Google Scholar 

  65. Hwang H, Bowen BP, Lefort N, et al. Proteomics analysis of human skeletal muscle reveals novel abnormalities in obesity and type 2 diabetes. Diabetes. 2010;59(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  66. Phielix E, Schrauwen-Hinderling VB, Mensink M, et al. Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes. 2008;57(11):2943–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73.

    Article  CAS  PubMed  Google Scholar 

  68. Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003;100(14):8466–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zamora-Mendoza R, Rosas-Vargas H, Ramos-Cervantes MT, et al. Dysregulation of mitochondrial function and biogenesis modulators in adipose tissue of obese children. Int J Obes (Lond). 2018;42(4):618–24.

    Article  CAS  PubMed  Google Scholar 

  70. Choi KM, Ryan KK, Yoon JC. Adipose mitochondrial complex I Deficiency modulates inflammation and glucose homeostasis in a sex-dependent manner. Endocrinology 2022;163(4).

  71. Merrick D, Sakers A, Irgebay Z, et al. Identification of a mesenchymal progenitor cell hierarchy in adipose tissue. Science. 2019;364:6438.

    Article  Google Scholar 

  72. Emont MP, Jacobs C, Essene AL, et al. A single-cell atlas of human and mouse white adipose tissue. Nature. 2022;603(7903):926–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vijay J, Gauthier MF, Biswell RL, et al. Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat Metab. 2020;2(1):97–109.

    Article  PubMed  Google Scholar 

  74. Hildreth AD, Ma F, Wong YY, Sun R, Pellegrini M, O’Sullivan TE. Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat Immunol. 2021;22(5):639–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112(12):1796–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117(1):175–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lumeng CN, DelProposto JB, Westcott DJ, Saltiel AR. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes. 2008;57(12):3239–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wentworth JM, Naselli G, Brown WA, et al. Pro-inflammatory CD11c + CD206 + adipose tissue macrophages are associated with insulin resistance in human obesity. Diabetes. 2010;59(7):1648–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vats D, Mukundan L, Odegaard JI, et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 2006;4(1):13–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jung SB, Choi MJ, Ryu D, et al. Reduced oxidative capacity in macrophages results in systemic insulin resistance. Nat Commun. 2018;9(1):1551.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Weinberg SE, Sena LA, Chandel NS. Mitochondria in the regulation of innate and adaptive immunity. Immunity. 2015;42(3):406–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Van den Bossche J, Baardman J, Otto NA, et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages. Cell Rep. 2016;17(3):684–96.

    Article  PubMed  Google Scholar 

  83. Read AD, Bentley RE, Archer SL, Dunham-Snary KJ. Mitochondrial iron-sulfur clusters: structure, function, and an emerging role in vascular biology. Redox Biol. 2021;47:102164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Simcox JA, McClain DA. Iron and diabetes risk. Cell Metab. 2013;17(3):329–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gabrielsen JS, Gao Y, Simcox JA, et al. Adipocyte iron regulates adiponectin and insulin sensitivity. J Clin Invest. 2012;122(10):3529–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moreno-Navarrete JM, Novelle MG, Catalan V, et al. Insulin resistance modulates iron-related proteins in adipose tissue. Diabetes Care. 2014;37(4):1092–100.

    Article  CAS  PubMed  Google Scholar 

  87. Hilton C, Sabaratnam R, Drakesmith H, Karpe F. Iron, glucose and fat metabolism and obesity: an intertwined relationship. Int J Obes (Lond). 2023.

  88. Moreno-Navarrete JM, Ortega F, Moreno M, Ricart W, Fernandez-Real JM. Fine-tuned iron availability is essential to achieve optimal adipocyte differentiation and mitochondrial biogenesis. Diabetologia. 2014;57(9):1957–67.

    Article  CAS  PubMed  Google Scholar 

  89. Kusminski CM, Holland WL, Sun K, et al. MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat Med. 2012;18(10):1539–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kusminski CM, Ghaben AL, Morley TS, et al. A Novel Model of Diabetic Complications: Adipocyte mitochondrial dysfunction triggers massive beta-cell hyperplasia. Diabetes. 2020;69(3):313–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Joffin N, Gliniak CM, Funcke JB et al. Adipose tissue macrophages exert systemic metabolic control by manipulating local iron concentrations. Nat Metab 2022.

  92. Orr JS, Kennedy A, Anderson-Baucum EK, et al. Obesity alters adipose tissue macrophage iron content and tissue iron distribution. Diabetes. 2014;63(2):421–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zheng J, Chen M, Liu G, Xu E, Chen H. Ablation of hephaestin and ceruloplasmin results in iron accumulation in adipocytes and type 2 diabetes. FEBS Lett. 2018;592(3):394–401.

    Article  CAS  PubMed  Google Scholar 

  94. Joffin N, Gliniak CM, Funcke JB, et al. Adipose tissue macrophages exert systemic metabolic control by manipulating local iron concentrations. Nat Metab. 2022;4(11):1474–94.

    Article  CAS  PubMed  Google Scholar 

  95. Hubler MJ, Erikson KM, Kennedy AJ, Hasty AH. MFe(hi) adipose tissue macrophages compensate for tissue iron perturbations in mice. Am J Physiol Cell Physiol. 2018;315(3):C319–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kita S, Maeda N, Shimomura I. Interorgan communication by exosomes, adipose tissue, and adiponectin in metabolic syndrome. J Clin Invest. 2019;129(10):4041–9.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Thomou T, Mori MA, Dreyfuss JM, et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 2017;542(7642):450–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ying W, Riopel M, Bandyopadhyay G, et al. Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in Vitro insulin sensitivity. Cell. 2017;171(2):372–384e312.

    Article  CAS  PubMed  Google Scholar 

  99. Crewe C, Funcke JB, Li S, et al. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metab. 2021;33(9):1853–68. e1811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Crewe C, Joffin N, Rutkowski JM, et al. An endothelial-to-adipocyte Extracellular Vesicle Axis governed by metabolic state. Cell. 2018;175(3):695–708. e613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hartwig S, De Filippo E, Goddeke S, et al. Exosomal proteins constitute an essential part of the human adipose tissue secretome. Biochim Biophys Acta Proteins Proteom. 2019;1867(12):140172.

    Article  CAS  PubMed  Google Scholar 

  102. Auber M, Svenningsen P. An estimate of extracellular vesicle secretion rates of human blood cells. J Extracell Biology 2022;Volume1(6).

  103. Brestoff JR, Wilen CB, Moley JR, et al. Intercellular Mitochondria transfer to Macrophages regulates White Adipose tissue homeostasis and is impaired in obesity. Cell Metab. 2021;33(2):270–282e278.

    Article  CAS  PubMed  Google Scholar 

  104. Borcherding N, Jia W, Giwa R, et al. Dietary lipids inhibit mitochondria transfer to macrophages to divert adipocyte-derived mitochondria into the blood. Cell Metab. 2022;34(10):1499–1513e1498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020;367(6478).

  106. Couzin J. Cell biology: the ins and outs of exosomes. Science. 2005;308(5730):1862–3.

    Article  CAS  PubMed  Google Scholar 

  107. Tkach M, Thery C. Communication by Extracellular vesicles: where we are and where we need to go. Cell. 2016;164(6):1226–32.

    Article  CAS  PubMed  Google Scholar 

  108. Flaherty SE 3rd, Grijalva A, Xu X, Ables E, Nomani A, Ferrante AW. Jr. A lipase-independent pathway of lipid release and immune modulation by adipocytes. Science. 2019;363(6430):989–93.

  109. Dang SY, Leng Y, Wang ZX, et al. Exosomal transfer of obesity adipose tissue for decreased mir-141-3p mediate insulin resistance of hepatocytes. Int J Biol Sci. 2019;15(2):351–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang J, Li L, Zhang Z, et al. Extracellular vesicles mediate the communication of adipose tissue with brain and promote cognitive impairment associated with insulin resistance. Cell Metab. 2022;34(9):1264–1279e1268.

    Article  CAS  PubMed  Google Scholar 

  111. Pan Y, Hui X, Hoo RLC, et al. Adipocyte-secreted exosomal microRNA-34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Invest. 2019;129(2):834–49.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Jang SC, Crescitelli R, Cvjetkovic A, et al. Mitochondrial protein enriched extracellular vesicles discovered in human melanoma tissues can be detected in patient plasma. J Extracell Vesicles. 2019;8(1):1635420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Obata Y, Kita S, Koyama Y et al. Adiponectin/T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release. JCI Insight 2018;3(8).

  114. Sabaratnam R, Wojtaszewski JFP, Hojlund K. Factors mediating Exercise-induced Organ Crosstalk. Acta Physiol (Oxf) 2022:e13766.

  115. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    Article  CAS  PubMed  Google Scholar 

  116. Kjobsted R, Pedersen AJ, Hingst JR, et al. Intact regulation of the AMPK Signaling Network in response to Exercise and insulin in skeletal muscle of male patients with type 2 diabetes: illumination of AMPK activation in Recovery from Exercise. Diabetes. 2016;65(5):1219–30.

    Article  PubMed  Google Scholar 

  117. Savikj M, Zierath JR. Train like an athlete: applying exercise interventions to manage type 2 diabetes. Diabetologia. 2020;63(8):1491–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Stallknecht B, Vinten J, Ploug T, Galbo H. Increased activities of mitochondrial enzymes in white adipose tissue in trained rats. Am J Physiol. 1991;261(3 Pt 1):E410–414.

    CAS  PubMed  Google Scholar 

  119. Sutherland LN, Bomhof MR, Capozzi LC, Basaraba SA, Wright DC. Exercise and adrenaline increase PGC-1{alpha} mRNA expression in rat adipose tissue. J Physiol. 2009;587(Pt 7):1607–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Trevellin E, Scorzeto M, Olivieri M, et al. Exercise training induces mitochondrial biogenesis and glucose uptake in subcutaneous adipose tissue through eNOS-dependent mechanisms. Diabetes. 2014;63(8):2800–11.

    Article  CAS  PubMed  Google Scholar 

  121. Lehnig AC, Dewal RS, Baer LA, et al. Exercise Training induces Depot-Specific Adaptations to White and Brown Adipose tissue. iScience. 2019;11:425–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ronn T, Volkov P, Tornberg A, et al. Extensive changes in the transcriptional profile of human adipose tissue including genes involved in oxidative phosphorylation after a 6-month exercise intervention. Acta Physiol (Oxf). 2014;211(1):188–200.

    Article  CAS  PubMed  Google Scholar 

  123. Brandao CFC, de Carvalho FG, Souza AO, et al. Physical training, UCP1 expression, mitochondrial density, and coupling in adipose tissue from women with obesity. Scand J Med Sci Sports. 2019;29(11):1699–706.

    Article  PubMed  Google Scholar 

  124. Pino MF, Parsons SA, Smith SR, Sparks LM. Active individuals have high mitochondrial content and oxidative markers in their abdominal subcutaneous adipose tissue. Obes (Silver Spring). 2016;24(12):2467–70.

    Article  CAS  Google Scholar 

  125. Gudiksen A, Qoqaj A, Ringholm S, Wojtaszewski J, Plomgaard P, Pilegaard H. Ameliorating Effects of lifelong physical activity on healthy aging and mitochondrial function in Human White Adipose tissue. J Gerontol A Biol Sci Med Sci. 2022;77(6):1101–11.

    Article  CAS  PubMed  Google Scholar 

  126. Stinkens R, Brouwers B, Jocken JW, et al. Exercise training-induced effects on the abdominal subcutaneous adipose tissue phenotype in humans with obesity. J Appl Physiol (1985). 2018;125(5):1585–93.

    Article  CAS  PubMed  Google Scholar 

  127. Dohlmann TL, Hindso M, Dela F, Helge JW, Larsen S. High-intensity interval training changes mitochondrial respiratory capacity differently in adipose tissue and skeletal muscle. Physiol Rep. 2018;6(18):e13857.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Camera DM, Anderson MJ, Hawley JA, Carey AL. Short-term endurance training does not alter the oxidative capacity of human subcutaneous adipose tissue. Eur J Appl Physiol. 2010;109(2):307–16.

    Article  PubMed  Google Scholar 

  129. Larsen S, Danielsen JH, Sondergard SD, et al. The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue. Scand J Med Sci Sports. 2015;25(1):e59–69.

    Article  CAS  PubMed  Google Scholar 

  130. Andersson DP, Eriksson Hogling D, Thorell A, et al. Changes in subcutaneous fat cell volume and insulin sensitivity after weight loss. Diabetes Care. 2014;37(7):1831–6.

    Article  CAS  PubMed  Google Scholar 

  131. Moreno-Castellanos N, Guzman-Ruiz R, Cano DA, et al. The Effects of bariatric Surgery-Induced weight loss on adipose tissue in morbidly obese women depends on the initial metabolic status. Obes Surg. 2016;26(8):1757–67.

    Article  PubMed  Google Scholar 

  132. Mela V, Ruiz-Limon P, Balongo M, et al. Mitochondrial homeostasis in obesity-related Hypertriglyceridemia. J Clin Endocrinol Metab. 2022;107(8):2203–15.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Gonzalez-Franquesa A, Gama-Perez P, Kulis M, et al. Remission of obesity and insulin resistance is not sufficient to restore mitochondrial homeostasis in visceral adipose tissue. Redox Biol. 2022;54:102353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tonelli J, Li W, Kishore P, et al. Mechanisms of early insulin-sensitizing effects of thiazolidinediones in type 2 diabetes. Diabetes. 2004;53(6):1621–9.

    Article  CAS  PubMed  Google Scholar 

  135. Rizza S, Cardellini M, Porzio O, et al. Pioglitazone improves endothelial and adipose tissue dysfunction in pre-diabetic CAD subjects. Atherosclerosis. 2011;215(1):180–3.

    Article  CAS  PubMed  Google Scholar 

  136. Horio T, Suzuki M, Takamisawa I, et al. Pioglitazone-induced insulin sensitization improves vascular endothelial function in nondiabetic patients with essential hypertension. Am J Hypertens. 2005;18(12 Pt 1):1626–30.

    Article  CAS  PubMed  Google Scholar 

  137. Boden G, Homko C, Mozzoli M, Showe LC, Nichols C, Cheung P. Thiazolidinediones upregulate fatty acid uptake and oxidation in adipose tissue of diabetic patients. Diabetes. 2005;54(3):880–5.

    Article  CAS  PubMed  Google Scholar 

  138. Yu JG, Javorschi S, Hevener AL, et al. The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects. Diabetes. 2002;51(10):2968–74.

    Article  CAS  PubMed  Google Scholar 

  139. Habib ZA, Havstad SL, Wells K, Divine G, Pladevall M, Williams LK. Thiazolidinedione use and the longitudinal risk of fractures in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95(2):592–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Singh S, Loke YK, Furberg CD. Thiazolidinediones and heart failure: a teleo-analysis. Diabetes Care. 2007;30(8):2148–53.

    Article  CAS  PubMed  Google Scholar 

  141. Daniele G, Eldor R, Merovci A, et al. Chronic reduction of plasma free fatty acid improves mitochondrial function and whole-body insulin sensitivity in obese and type 2 diabetic individuals. Diabetes. 2014;63(8):2812–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ahlqvist E, Storm P, Karajamaki A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol. 2018;6(5):361–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Figure created with BioRender.com.

Funding

RS. and DRH. are supported by the Steno Diabetes Center Odense funded by the Novo Nordisk Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization - RS., DRH., PS.; Writing—original draft preparation, RS., DRH., PS.; Writing—review and editing, RS., DRH., PS.; Visualization - RS., DRH., PS.

Corresponding authors

Correspondence to Rugivan Sabaratnam or Per Svenningsen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest with this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabaratnam, R., Hansen, D.R. & Svenningsen, P. White adipose tissue mitochondrial bioenergetics in metabolic diseases. Rev Endocr Metab Disord 24, 1121–1133 (2023). https://doi.org/10.1007/s11154-023-09827-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-023-09827-z

Keywords

Navigation