Skip to main content

Advertisement

Log in

How does Hashimoto’s thyroiditis affect bone metabolism?

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Bone marrow contains resident cellular components that are not only involved in bone maintenance but also regulate hematopoiesis and immune responses. The immune system and bone interact with each other, coined osteoimmunology. Hashimoto’s thyroiditis (HT) is one of the most common chronic autoimmune diseases which is accompanied by lymphocytic infiltration. It shows elevating thyroid autoantibody levels at an early stage and progresses to thyroid dysfunction ultimately. Different effects exert on bone metabolism during different phases of HT. In this review, we summarized the mechanisms of the long-term effects of HT on bone and the relationship between thyroid autoimmunity and osteoimmunology. For patients with HT, the bone is affected not only by thyroid function and the value of TSH, but also by the setting of the autoimmune background. The autoimmune background implies a breakdown of the mechanisms that control self-reactive system, featuring abnormal immune activation and presence of autoantibodies. The etiology of thyroid autoimmunity and osteoimmunology is complex and involves a number of immune cells, cytokines and chemokines, which regulate the pathogenesis of HT and osteoporosis at the same time, and have potential to affect each other. In addition, vitamin D works as a potent immunomodulator to influence both thyroid immunity and osteoimmunology. We conclude that HT affects bone metabolism at least through endocrine and immune pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

HT:

Hashimoto’s thyroiditis

RANK:

receptor activator of nuclear factor-kappaB

RANKL:

receptor activator of nuclear factor-kappaB ligand

AIT:

autoimmune thyroiditis

TH:

thyroid hormones

TSH:

thyroid stimulating hormone

T4:

thyroxine

T3:

triiodothyronine

OATP:

organic anion transporting polypeptide

MCT:

monocarboxylate transporter

SLC:

solute carriers

DIO1:

type 1 iodothyronine deiodinase

DIO2:

type 2 iodothyronine deiodinase

DIO3:

type 3 iodothyronine deiodinase

GWA:

genome-wide association

HPT:

hypothalamic-pituitary-thyroid

TR:

thyroid hormone nuclear receptor

IGF-1:

insulin-like growth factor-1

OPG:

osteoprotegerin

LT4:

levothyroxine

NK:

natural killer

TgAb:

antibodies against thyroglobulin

TPOAb:

antibodies against thyroid peroxidase

CDC:

complement-dependent cytotoxicity

ADCC:

antibody-dependent cell-mediated cytotoxicity

FRAX:

Fracture Risk Assessment Tool

1,25(OH)2D:

1,25-dihydroxyvitamin D

VDR:

vitamin D receptor

IL:

interleukin

ST2:

suppression of tumorigenicity 2 protein

TNF-α:

tumor necrosis factor- alpha

IFN-γ:

interferon-gamma

L-SAT:

lymphocytic- spontaneous autoimmune thyroiditis

TRAF6:

tumor necrosis factor receptor associated factor 6

RUNX2:

runt-related transcription factor 2

Se:

selenium

SeNPs:

Se nanoparticles

ALP:

alkaline phosphatase

References

  1. Delitala AP, Scuteri A, Doria C. Thyroid Hormone Diseases and Osteoporosis. J Clin Med, 2020. 9(4).

  2. Engblom C, et al., Osteoblasts remotely supply lung tumors with cancer-promoting SiglecF(high) neutrophils. Science, 2017. 358(6367).

  3. Schett G, David JP. The multiple faces of autoimmune-mediated bone loss. Nat Rev Endocrinol. 2010;6(12):698–706.

    Article  CAS  PubMed  Google Scholar 

  4. Takegahara N, Kim H, Choi Y. RANKL biology Bone. 2022;159:116353.

    Article  CAS  PubMed  Google Scholar 

  5. Edner NM, et al. Targeting co-stimulatory molecules in autoimmune disease. Nat Rev Drug Discov. 2020;19(12):860–83.

    Article  CAS  PubMed  Google Scholar 

  6. Schett G, Takayanagi H. Editorial overview: Osteoimmunology Bone. 2022;162:116466.

    PubMed  Google Scholar 

  7. Arron JR, Choi Y. Bone versus immune system. Nature. 2000;408(6812):535–6.

    Article  CAS  PubMed  Google Scholar 

  8. Lademann F, et al. Bone cell-specific deletion of thyroid hormone transporter Mct8 distinctly regulates bone volume in young versus adult male mice. Bone. 2022;159:116375.

    Article  CAS  PubMed  Google Scholar 

  9. Groeneweg S, et al., Thyroid Hormone Transporters. Endocr Rev, 2020. 41(2).

  10. Williams AJ, et al. Iodothyronine deiodinase enzyme activities in bone. Bone. 2008;43(1):126–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lademann F, et al. Lack of the thyroid hormone transporter Mct8 in osteoblast and osteoclast progenitors increases trabecular bone in male mice. Thyroid. 2020;30(2):329–42.

    Article  CAS  PubMed  Google Scholar 

  12. Abe S, et al. Monocarboxylate transporter 10 functions as a thyroid hormone transporter in chondrocytes. Endocrinology. 2012;153(8):4049–58.

    Article  CAS  PubMed  Google Scholar 

  13. Lademann F, et al., The thyroid hormone transporter MCT10 is a Novel Regulator of Trabecular Bone Mass and bone turnover in male mice. Endocrinology, 2022. 163(1).

  14. Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev. 2010;31(2):139–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lavado-Autric R, et al. Deiodinase activities in thyroids and tissues of iodine-deficient female rats. Endocrinology. 2013;154(1):529–36.

    Article  CAS  PubMed  Google Scholar 

  16. Gouveia CH, et al. Type 2 iodothyronine selenodeiodinase is expressed throughout the mouse skeleton and in the MC3T3-E1 mouse osteoblastic cell line during differentiation. Endocrinology. 2005;146(1):195–200.

    Article  CAS  PubMed  Google Scholar 

  17. Zaitune CR, et al. Abnormal thyroid hormone status differentially affects bone Mass Accrual and Bone Strength in C3H/HeJ mice: a mouse model of type I deiodinase Deficiency. Front Endocrinol (Lausanne). 2019;10:300.

    Article  PubMed  Google Scholar 

  18. Bassett JH, et al. Optimal bone strength and mineralization requires the type 2 iodothyronine deiodinase in osteoblasts. Proc Natl Acad Sci U S A. 2010;107(16):7604–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dentice M, et al. The hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate. Nat Cell Biol. 2005;7(7):698–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Waung JA, Bassett JH, Williams GR. Adult mice lacking the type 2 iodothyronine deiodinase have increased subchondral bone but normal articular cartilage. Thyroid. 2015;25(3):269–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kang YE, et al. Type 2 deiodinase Thr92Ala polymorphism is associated with a reduction in bone mineral density: a community-based korean genome and epidemiology study. Clin Endocrinol (Oxf). 2020;93(3):238–47.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang L, et al. Multistage genome-wide association meta-analyses identified two new loci for bone mineral density. Hum Mol Genet. 2014;23(7):1923–33.

    Article  CAS  PubMed  Google Scholar 

  23. Gogakos A, et al. THRA and DIO2 mutations are unlikely to be a common cause of increased bone mineral density in euthyroid post-menopausal women. Eur J Endocrinol. 2014;170(4):637–44.

    Article  CAS  PubMed  Google Scholar 

  24. Bassett JH, Williams GR, Critical role of the hypothalamic-pituitary-thyroid axis in bone Bone, 2008. 43(3): p. 418 – 26.

  25. Abu EO, et al. The expression of thyroid hormone receptors in human bone. Bone. 1997;21(2):137–42.

    Article  CAS  PubMed  Google Scholar 

  26. Lademann F, et al. Disruption of BMP Signaling prevents Hyperthyroidism-Induced Bone loss in male mice. J Bone Miner Res. 2020;35(10):2058–69.

    Article  CAS  PubMed  Google Scholar 

  27. Siebler T, et al. Thyroid status affects number and localization of thyroid hormone receptor expressing mast cells in bone marrow. Bone. 2002;30(1):259–66.

    Article  CAS  PubMed  Google Scholar 

  28. Nicholls JJ, et al. The skeletal consequences of thyrotoxicosis. J Endocrinol. 2012;213(3):209–21.

    Article  CAS  PubMed  Google Scholar 

  29. Bassett JH, et al. Thyroid hormone excess rather than thyrotropin deficiency induces osteoporosis in hyperthyroidism. Mol Endocrinol. 2007;21(5):1095–107.

    Article  CAS  PubMed  Google Scholar 

  30. Monfoulet LE, et al. Thyroid hormone receptor β mediates thyroid hormone effects on bone remodeling and bone mass. J Bone Miner Res. 2011;26(9):2036–44.

    Article  CAS  PubMed  Google Scholar 

  31. Bassett JH, et al. Thyroid status during skeletal development determines adult bone structure and mineralization. Mol Endocrinol. 2007;21(8):1893–904.

    Article  CAS  PubMed  Google Scholar 

  32. Kaneshige M, et al. Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci U S A. 2000;97(24):13209–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O’Shea PJ, et al. Advanced bone formation in mice with a dominant-negative mutation in the thyroid hormone receptor β gene due to activation of Wnt/β-catenin protein signaling. J Biol Chem. 2012;287(21):17812–22.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lindsey RC, Mohan S. Thyroid hormone acting via TRβ induces expression of browning genes in mouse bone marrow adipose tissue. Endocrine. 2017;56(1):109–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bassett JH, Williams GR. Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev. 2016;37(2):135–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stevens DA, et al. Thyroid hormone activates fibroblast growth factor receptor-1 in bone. Mol Endocrinol. 2003;17(9):1751–66.

    Article  CAS  PubMed  Google Scholar 

  37. Mundy GR, et al. Direct stimulation of bone resorption by thyroid hormones. J Clin Invest. 1976;58(3):529–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Allain TJ, et al. Tri-iodothyronine stimulates rat osteoclastic bone resorption by an indirect effect. J Endocrinol. 1992;133(3):327–31.

    Article  CAS  PubMed  Google Scholar 

  39. Siddiqi A, et al. Serum cytokines in thyrotoxicosis. J Clin Endocrinol Metab. 1999;84(2):435–9.

    CAS  PubMed  Google Scholar 

  40. Lambrinoudaki I, et al. Thyroid function and autoimmunity are associated with the risk of vertebral fractures in postmenopausal women. J Bone Miner Metab. 2017;35(2):227–33.

    Article  CAS  PubMed  Google Scholar 

  41. Mazziotti G, et al. Serum TSH values and risk of vertebral fractures in euthyroid post-menopausal women with low bone mineral density. Bone. 2010;46(3):747–51.

    Article  CAS  PubMed  Google Scholar 

  42. Leader A, et al. Thyrotropin levels within the lower normal range are associated with an increased risk of hip fractures in euthyroid women, but not men, over the age of 65 years. J Clin Endocrinol Metab. 2014;99(8):2665–73.

    Article  CAS  PubMed  Google Scholar 

  43. Abrahamsen B, et al. Low serum thyrotropin level and duration of suppression as a predictor of major osteoporotic fractures-the OPENTHYRO register cohort. J Bone Miner Res. 2014;29(9):2040–50.

    Article  CAS  PubMed  Google Scholar 

  44. Soto-Pedre E, et al. Evidence of a causal relationship between serum thyroid-stimulating hormone and osteoporotic bone fractures. Eur Thyroid J. 2021;10(6):439–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Deng T, et al. Thyroid-stimulating hormone decreases the risk of osteoporosis by regulating osteoblast proliferation and differentiation. BMC Endocr Disord. 2021;21(1):49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Konca Degertekin C, et al. RANKL/Osteoprotegerin system and bone turnover in Hashimoto Thyroiditis. Calcif Tissue Int. 2016;99(4):365–72.

    Article  CAS  PubMed  Google Scholar 

  47. Grimnes G, et al. The relationship between serum TSH and bone mineral density in men and postmenopausal women: the Tromsø study. Thyroid. 2008;18(11):1147–55.

    Article  CAS  PubMed  Google Scholar 

  48. Sun L, et al. Intermittent recombinant TSH injections prevent ovariectomy-induced bone loss. Proc Natl Acad Sci U S A. 2008;105(11):4289–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baliram R, et al. Hyperthyroid-associated osteoporosis is exacerbated by the loss of TSH signaling. J Clin Invest. 2012;122(10):3737–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Abe E, et al. TSH is a negative regulator of skeletal remodeling. Cell. 2003;115(2):151–62.

    Article  CAS  PubMed  Google Scholar 

  51. Hase H, et al. TNFalpha mediates the skeletal effects of thyroid-stimulating hormone. Proc Natl Acad Sci U S A. 2006;103(34):12849–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Baliram R, et al. Thyroid-stimulating hormone induces a Wnt-dependent, feed-forward loop for osteoblastogenesis in embryonic stem cell cultures. Proc Natl Acad Sci U S A. 2011;108(39):16277–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Baliram R, et al. Thyroid and bone: macrophage-derived TSH-β splice variant increases murine osteoblastogenesis. Endocrinology. 2013;154(12):4919–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Boutin A, et al. β-Arrestin-1 mediates thyrotropin-enhanced osteoblast differentiation. Faseb j. 2014;28(8):3446–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iddah MA, Macharia BN. Autoimmune thyroid disorders. ISRN Endocrinol. 2013;2013:509764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dunne C, De Luca F. Long-term Follow-Up of a child with autoimmune thyroiditis and recurrent hyperthyroidism in the absence of TSH receptor antibodies. Case Rep Endocrinol. 2014;2014:749576.

    PubMed  PubMed Central  Google Scholar 

  57. Shahbaz A, et al. Prolonged duration of hashitoxicosis in a patient with Hashimoto’s Thyroiditis: a Case Report and Review of Literature. Cureus. 2018;10(6):e2804.

    PubMed  PubMed Central  Google Scholar 

  58. Hennessey JV, et al. The Association between switching from Synthroid(®) and clinical outcomes: US evidence from a retrospective database analysis. Adv Ther. 2021;38(1):337–49.

    Article  PubMed  Google Scholar 

  59. Eriksen EF, Mosekilde L, Melsen F. Kinetics of trabecular bone resorption and formation in hypothyroidism: evidence for a positive balance per remodeling cycle. Bone. 1986;7(2):101–8.

    Article  CAS  PubMed  Google Scholar 

  60. Vestergaard P, Mosekilde L. Fractures in patients with hyperthyroidism and hypothyroidism: a nationwide follow-up study in 16,249 patients. Thyroid. 2002;12(5):411–9.

    Article  PubMed  Google Scholar 

  61. Bassett JH, et al. A lack of thyroid hormones rather than excess thyrotropin causes abnormal skeletal development in hypothyroidism. Mol Endocrinol. 2008;22(2):501–12.

    Article  CAS  PubMed  Google Scholar 

  62. Obling ML, et al. Restoration of euthyroidism in women with Hashimoto’s thyroiditis changes bone microarchitecture but not estimated bone strength. Endocrine. 2021;71(2):397–406.

    Article  CAS  PubMed  Google Scholar 

  63. Tuchendler D, Bolanowski M. Assessment of bone metabolism in premenopausal females with hyperthyroidism and hypothyroidism. Endokrynol Pol. 2013;64(1):40–4.

    CAS  PubMed  Google Scholar 

  64. Blum MR, et al. Subclinical thyroid dysfunction and fracture risk: a meta-analysis. JAMA. 2015;313(20):2055–65.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Liang LB, et al. Changes of bone mineral density and bone metabolic marker in patients with subclinical hypothyroidism. Sichuan Da Xue Xue Bao Yi Xue Ban. 2014;45(1):83. 66 – 9,, , ( : p.

    PubMed  Google Scholar 

  66. Polovina S, et al. Frax score calculations in postmenopausal women with subclinical hypothyroidism. Horm (Athens). 2013;12(3):439–48.

    Article  Google Scholar 

  67. Nagata M, et al. Subclinical hypothyroidism is related to lower heel QUS in postmenopausal women. Endocr J. 2007;54(4):625–30.

    Article  CAS  PubMed  Google Scholar 

  68. Mosekilde L, Eriksen EF, Charles P. Effects of thyroid hormones on bone and mineral metabolism. Endocrinol Metab Clin North Am. 1990;19(1):35–63.

    Article  CAS  PubMed  Google Scholar 

  69. Reverter JL, et al. Lack of deleterious effect on bone mineral density of long-term thyroxine suppressive therapy for differentiated thyroid carcinoma. Endocr Relat Cancer. 2005;12(4):973–81.

    Article  CAS  PubMed  Google Scholar 

  70. Appetecchia M. Effects on bone mineral density by treatment of benign nodular goiter with mildly suppressive doses of L-thyroxine in a cohort women study. Horm Res. 2005;64(6):293–8.

    CAS  PubMed  Google Scholar 

  71. Mendonça M, de Barros G, et al. Bone mineral density and bone microarchitecture after long-term suppressive levothyroxine treatment of differentiated thyroid carcinoma in young adult patients. J Bone Miner Metab. 2016;34(4):417–21.

    Article  Google Scholar 

  72. Yoon BH, et al. Influence of thyroid-stimulating hormone suppression therapy on bone Mineral density in patients with differentiated thyroid Cancer: a Meta-analysis. J Bone Metab. 2019;26(1):51–60.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ku EJ, et al. Effect of TSH suppression therapy on bone Mineral density in differentiated thyroid Cancer: a systematic review and Meta-analysis. J Clin Endocrinol Metab. 2021;106(12):3655–67.

    PubMed  Google Scholar 

  74. Davidson A, Diamond B. Autoimmune diseases. N Engl J Med. 2001;345(5):340–50.

    Article  CAS  PubMed  Google Scholar 

  75. Ganesh BB, et al. Role of cytokines in the pathogenesis and suppression of thyroid autoimmunity. J Interferon Cytokine Res. 2011;31(10):721–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Crane IJ, Forrester JV. Th1 and Th2 lymphocytes in autoimmune disease. Crit Rev Immunol. 2005;25(2):75–102.

    Article  CAS  PubMed  Google Scholar 

  77. Zake T, et al. Upregulated tissue expression of T helper (th) 17 pathogenic interleukin (IL)-23 and IL-1β in Hashimoto’s thyroiditis but not in Graves’ disease. Endocr J. 2019;66(5):423–30.

    Article  CAS  PubMed  Google Scholar 

  78. Huifang S. Study on the correlation between Hashimoto’s thyroiditis and bone mineral density in postmenopausal women. Qingdao University; 2021.

  79. Polovina SP, et al. The impact of thyroid autoimmunity (TPOAb) on bone density and fracture risk in postmenopausal women. Horm (Athens). 2017;16(1):54–61.

    Google Scholar 

  80. Siris ES, Baim S, Nattiv A. Primary care use of FRAX: absolute fracture risk assessment in postmenopausal women and older men. Postgrad Med. 2010;122(1):82–90.

    Article  PubMed  Google Scholar 

  81. Koehler VF, Filmann N, Mann WA. Vitamin D status and thyroid autoantibodies in Autoimmune Thyroiditis. Horm Metab Res. 2019;51(12):792–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. van de Peppel J, van Leeuwen JP. Vitamin D and gene networks in human osteoblasts. Front Physiol. 2014;5:137.

    PubMed  PubMed Central  Google Scholar 

  83. Takeda S, et al. Stimulation of osteoclast formation by 1,25-dihydroxyvitamin D requires its binding to vitamin D receptor (VDR) in osteoblastic cells: studies using VDR knockout mice. Endocrinology. 1999;140(2):1005–8.

    Article  CAS  PubMed  Google Scholar 

  84. Bikle D. Nonclassic actions of vitamin D. J Clin Endocrinol Metab. 2009;94(1):26–34.

    Article  CAS  PubMed  Google Scholar 

  85. Hossein-nezhad A, Spira A, Holick MF. Influence of vitamin D status and vitamin D3 supplementation on genome wide expression of white blood cells: a randomized double-blind clinical trial. PLoS ONE. 2013;8(3):e58725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lechner J, Aschoff J, Rudi T. The vitamin D receptor and the etiology of RANTES/CCL-expressive fatty-degenerative osteolysis of the jawbone: an interface between osteoimmunology and bone metabolism. Int J Gen Med. 2018;11:155–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chahardoli R, et al., Can Supplementation with Vitamin D Modify Thyroid Autoantibodies (Anti-TPO Ab, Anti-Tg Ab) and Thyroid Profile (T3, T4, TSH) in Hashimoto’s Thyroiditis? A Double Blind, Randomized Clinical Trial Horm Metab Res, 2019. 51(5): p. 296–301.

  88. Fang F, et al. Vitamin D deficiency is associated with thyroid autoimmunity: results from an epidemiological survey in Tianjin, China. Endocrine. 2021;73(2):447–54.

    Article  CAS  PubMed  Google Scholar 

  89. Khozam SA, et al. Association between vitamin D Deficiency and Autoimmune thyroid disorder: a systematic review. Cureus. 2022;14(6):e25869.

    PubMed  PubMed Central  Google Scholar 

  90. Jiang H, et al. Effects of vitamin D treatment on thyroid function and autoimmunity markers in patients with Hashimoto’s thyroiditis-A meta-analysis of randomized controlled trials. J Clin Pharm Ther. 2022;47(6):767–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nodehi M, et al. Effects of vitamin D supplements on frequency of CD4(+) T-cell subsets in women with Hashimoto’s thyroiditis: a double-blind placebo-controlled study. Eur J Clin Nutr. 2019;73(9):1236–43.

    Article  CAS  PubMed  Google Scholar 

  92. Altieri B, et al. Does vitamin D play a role in autoimmune endocrine disorders? A proof of concept. Rev Endocr Metab Disord. 2017;18(3):335–46.

    Article  CAS  PubMed  Google Scholar 

  93. Sarmiento-Ramón MP, et al. Characterization of serum vitamin D levels in pediatric patients with chronic lymphocytic thyroiditis. Bol Med Hosp Infant Mex. 2022;79(3):161–9.

    PubMed  Google Scholar 

  94. Kaan Demircioglu M, et al. Is vitamin D Deficiency Associated with chronic lymphocytic thyroiditis? Sisli Etfal Hastan Tip Bul. 2021;55(4):510–5.

    PubMed  PubMed Central  Google Scholar 

  95. Maciejewski A, et al. Vitamin D receptor gene polymorphisms and autoimmune thyroiditis: are they Associated with Disease occurrence and its features? Biomed Res Int. 2019;2019:8197580.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Behera KK, et al. Effect of vitamin D supplementation on thyroid autoimmunity among subjects of autoimmune thyroid disease in a Coastal Province of India: a Randomized Open-label trial. Niger Med J. 2020;61(5):237–40.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Azam, Amini, et al. The effect of vitamin D replacement on Musculoskeletal Pain in hypothyroid patients with vitamin D Deficiency. Int J Sci Eng Res. 2017;8(5):640–2.

    Google Scholar 

  98. Wang H, et al., Associations between dynamic vitamin D level and thyroid function during pregnancy. Nutrients, 2022. 14(18).

  99. Chen Y, et al. Vitamin D categories and postpartum thyroid function in women with hypothyroidism. Front Nutr. 2022;9:953745.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Xu Z, et al. SMURF2 regulates bone homeostasis by disrupting SMAD3 interaction with vitamin D receptor in osteoblasts. Nat Commun. 2017;8:14570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hofbauer LC, et al. Detection and characterization of RANK ligand and osteoprotegerin in the thyroid gland. J Cell Biochem. 2002;86(4):642–50.

    Article  CAS  PubMed  Google Scholar 

  102. Nagasaki T, et al. Increased levels of serum osteoprotegerin in hypothyroid patients and its normalization with restoration of normal thyroid function. Eur J Endocrinol. 2005;152(3):347–53.

    Article  CAS  PubMed  Google Scholar 

  103. Guang-da X, et al. Changes in plasma concentrations of osteoprotegerin before and after levothyroxine replacement therapy in hypothyroid patients. J Clin Endocrinol Metab. 2005;90(10):5765–8.

    Article  PubMed  Google Scholar 

  104. Giusti M, et al. Serum osteoprotegerin and soluble receptor activator of nuclear factor kappaB ligand levels in patients with a history of differentiated thyroid carcinoma: a case-controlled cohort study. Metabolism. 2007;56(5):699–707.

    Article  CAS  PubMed  Google Scholar 

  105. Giusti M, et al. Recombinant human thyroid stimulating hormone does not acutely change serum osteoprotegerin and soluble receptor activator of nuclear factor-kappabeta ligand in patients under evaluation for differentiated thyroid carcinoma. Horm (Athens). 2007;6(4):304–13.

    Article  Google Scholar 

  106. Ginaldi L, De Martinis M. Osteoimmunology and Beyond. Curr Med Chem. 2016;23(33):3754–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Brincat SD, et al. The role of cytokines in postmenopausal osteoporosis. Minerva Ginecol. 2014;66(4):391–407.

    CAS  PubMed  Google Scholar 

  108. Chen B, Li HZ. Association of IL-6 174G/C (rs1800795) and 572 C/G (rs1800796) polymorphisms with risk of osteoporosis: a meta-analysis. BMC Musculoskelet Disord. 2020;21(1):330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Poli V, et al. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. Embo j. 1994;13(5):1189–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sims NA, et al. Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways. J Clin Invest. 2004;113(3):379–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu XH, et al. Interactive effect of interleukin-6 and prostaglandin E2 on osteoclastogenesis via the OPG/RANKL/RANK system. Ann N Y Acad Sci. 2006;1068:225–33.

    Article  CAS  PubMed  Google Scholar 

  112. Honda K. Interleukin-6 and soluble interleukin-6 receptor suppress osteoclastic differentiation by inducing PGE(2) production in chondrocytes. J Oral Sci. 2011;53(1):87–96.

    Article  CAS  PubMed  Google Scholar 

  113. Lakatos P, et al. Serum interleukin-6 and bone metabolism in patients with thyroid function disorders. J Clin Endocrinol Metab. 1997;82(1):78–81.

    CAS  PubMed  Google Scholar 

  114. Gerenova J, Manolova I, Stanilova S. SERUM LEVELS OF INTERLEUKIN – 23 AND INTERLEUKIN – 17 IN HASHIMOTO’S THYROIDITIS. Acta Endocrinol (Buchar). 2019;-5(1):74–9.

    Article  CAS  PubMed  Google Scholar 

  115. Li Q, et al. The pathogenesis of thyroid autoimmune diseases: new T lymphocytes - cytokines circuits beyond the Th1-Th2 paradigm. J Cell Physiol. 2019;234(3):2204–16.

    Article  CAS  PubMed  Google Scholar 

  116. Pan Y, et al. A chinese patent Medicine JiaYanKangTai alleviates inflammatory lesions of experimental autoimmune thyroiditis by regulating Interleukin-17 signaling. Front Endocrinol (Lausanne). 2021;12:794568.

    Article  PubMed  Google Scholar 

  117. Liu Y, et al. Elevated MicroRNA-326 levels regulate the IL-23/IL-23R/Th17 cell Axis in Hashimoto’s Thyroiditis by targeting a disintegrin and metalloprotease 17. Thyroid. 2020;30(9):1327–37.

    Article  CAS  PubMed  Google Scholar 

  118. Figueroa-Vega N, et al. Increased circulating pro-inflammatory cytokines and Th17 lymphocytes in Hashimoto’s thyroiditis. J Clin Endocrinol Metab. 2010;95(2):953–62.

    Article  CAS  PubMed  Google Scholar 

  119. Bhadricha H, et al. Increased frequency of Th17 cells and IL-17 levels are associated with low bone mineral density in postmenopausal women. Sci Rep. 2021;11(1):16155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ikeuchi T, Moutsopoulos NM. Osteoimmunology in periodontitis; a paradigm for Th17/IL-17 inflammatory bone loss. Bone, 2022: p. 116500.

  121. Kim YG, et al. IL-17 inhibits osteoblast differentiation and bone regeneration in rat. Arch Oral Biol. 2014;59(9):897–905.

    Article  CAS  PubMed  Google Scholar 

  122. Zhang JR, et al. Different Modulatory Effects of IL-17, IL-22, and IL-23 on osteoblast differentiation. Mediators Inflamm. 2017;2017:5950395.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kim HJ, et al. IL-17 promotes osteoblast differentiation, bone regeneration, and remodeling in mice. Biochem Biophys Res Commun. 2020;524(4):1044–50.

    Article  CAS  PubMed  Google Scholar 

  124. Uluçkan Ö, et al. Chronic skin inflammation leads to bone loss by IL-17-mediated inhibition of wnt signaling in osteoblasts. Sci Transl Med. 2016;8(330):330ra37.

    Article  PubMed  Google Scholar 

  125. Gaffen SL, et al. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14(9):585–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ruggeri RM, et al. Serum interleukin-23 (IL-23) is increased in Hashimoto’s thyroiditis. Endocr J. 2014;61(4):359–63.

    Article  CAS  PubMed  Google Scholar 

  127. Shukla P, Mansoori MN, Singh D. Efficacy of anti-IL-23 monotherapy versus combination therapy with anti-IL-17 in estrogen deficiency induced bone loss conditions. Bone. 2018;110:84–95.

    Article  CAS  PubMed  Google Scholar 

  128. Adamopoulos IE, et al. IL-23 is critical for induction of arthritis, osteoclast formation, and maintenance of bone mass. J Immunol. 2011;187(2):951–9.

    Article  CAS  PubMed  Google Scholar 

  129. Ju JH, et al. IL-23 induces receptor activator of NF-kappaB ligand expression on CD4 + T cells and promotes osteoclastogenesis in an autoimmune arthritis model. J Immunol. 2008;181(2):1507–18.

    Article  CAS  PubMed  Google Scholar 

  130. Kang YK, Zhang MC. IL-23 promotes osteoclastogenesis in osteoblast-osteoclast co-culture system. Genet Mol Res. 2014;13(2):4673–9.

    Article  CAS  PubMed  Google Scholar 

  131. Razawy W, et al. IL-23 receptor deficiency results in lower bone mass via indirect regulation of bone formation. Sci Rep. 2021;11(1):10244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kamiya S, et al. Effects of IL-23 and IL-27 on osteoblasts and osteoclasts: inhibitory effects on osteoclast differentiation. J Bone Miner Metab. 2007;25(5):277–85.

    Article  CAS  PubMed  Google Scholar 

  133. Wang X, et al. Dysregulated interleukin – 33/ST2 pathway perpetuates chronic inflammation in Hashimoto’s Thyroiditis. Endocr Metab Immune Disord Drug Targets. 2019;19(7):1012–21.

    Article  CAS  PubMed  Google Scholar 

  134. Mun SH, et al. Interleukin-33 stimulates formation of functional osteoclasts from human CD14(+) monocytes. Cell Mol Life Sci. 2010;67(22):3883–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Malcolm J, et al. IL-33 exacerbates Periodontal Disease through induction of RANKL. J Dent Res. 2015;94(7):968–75.

    Article  CAS  PubMed  Google Scholar 

  136. Zaiss MM, et al. IL-33 shifts the balance from osteoclast to alternatively activated macrophage differentiation and protects from TNF-alpha-mediated bone loss. J Immunol. 2011;186(11):6097–105.

    Article  CAS  PubMed  Google Scholar 

  137. Kaneko N, et al. The role of interleukin-1 in general pathology. Inflamm Regen. 2019;39:12.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Mine M, et al. Interleukin-1 stimulates thyroid cell growth and increases the concentration of the c-myc proto-oncogene mRNA in thyroid follicular cells in culture. Endocrinology. 1987;120(3):1212–4.

    Article  CAS  PubMed  Google Scholar 

  139. Enomoto T, et al. Prolonged effects of recombinant human interleukin-1 alpha on mouse thyroid function. Endocrinology. 1990;127(5):2322–7.

    Article  CAS  PubMed  Google Scholar 

  140. Nilsson M, et al. Cytokines and thyroid epithelial integrity: interleukin-1alpha induces dissociation of the junctional complex and paracellular leakage in filter-cultured human thyrocytes. J Clin Endocrinol Metab. 1998;83(3):945–52.

    CAS  PubMed  Google Scholar 

  141. Yamashita S, et al. Interleukin-1 inhibits thyrotrophin-induced human thyroglobulin gene expression. J Endocrinol. 1989;122(1):177–83.

    Article  CAS  PubMed  Google Scholar 

  142. Ashizawa K, et al. Inhibition of human thyroid peroxidase gene expression by interleukin 1. Acta Endocrinol (Copenh). 1989;121(4):465–9.

    CAS  PubMed  Google Scholar 

  143. Zhao R, Zhou H, Su SB. A critical role for interleukin-1β in the progression of autoimmune diseases. Int Immunopharmacol. 2013;17(3):658–69.

    Article  CAS  PubMed  Google Scholar 

  144. Sun L, et al. Elevated interleukin-1β in peripheral blood mononuclear cells contributes to the pathogenesis of autoimmune thyroid diseases, especially of Hashimoto thyroiditis. Endocr Res. 2016;41(3):185–92.

    Article  CAS  PubMed  Google Scholar 

  145. Levescot A, et al., IL-1β-driven osteoclastogenic Tregs accelerate bone erosion in arthritis. J Clin Invest, 2021. 131(18).

  146. Hengartner NE, et al. IL-1β inhibits human osteoblast migration. Mol Med. 2013;19(1):36–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ebe Y, et al. Effect of interleukin-1β on bone morphogenetic protein-9-induced osteoblastic differentiation of human periodontal ligament fibroblasts. Eur J Oral Sci. 2021;129(4):e12792.

    Article  CAS  PubMed  Google Scholar 

  148. Huang J, Chen L. IL-1β inhibits osteogenesis of human bone marrow-derived mesenchymal stem cells by activating FoxD3/microRNA-496 to repress wnt signaling. Genesis, 2017. 55(7).

  149. Ye W, et al. IL-1β-Treated bone marrow mesenchymal stem cells enhances osteogenetic potential via NF-κB pathway. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2017;25(3):890–5.

    PubMed  Google Scholar 

  150. Hong SH, Braley-Mullen H. Follicular B cells in thyroids of mice with spontaneous autoimmune thyroiditis contribute to disease pathogenesis and are targets of anti-CD20 antibody therapy. J Immunol. 2014;192(3):897–905.

    Article  CAS  PubMed  Google Scholar 

  151. Mariotti S, et al. Recent advances in the understanding of humoral and cellular mechanisms implicated in thyroid autoimmune disorders. Clin Immunol Immunopathol. 1989;50(1 Pt 2):S73–84.

    Article  CAS  PubMed  Google Scholar 

  152. Yongshuang Xie WQ. Researching on the relation between autoimmune thyroid disesae and tumor necrosis factors-alpha/interleukin-6 ratio. J Practical Med Techniques. 2009;16:425–6.

    Google Scholar 

  153. Braley-Mullen H, Yu S. NOD.H-2h4 mice: an important and underutilized animal model of autoimmune thyroiditis and Sjogren’s syndrome. Adv Immunol. 2015;126:1–43.

    Article  CAS  PubMed  Google Scholar 

  154. Brennan FM, McInnes IB. Evidence that cytokines play a role in rheumatoid arthritis. J Clin Invest. 2008;118(11):3537–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Boehm U, et al. Cellular responses to interferon-gamma. Annu Rev Immunol. 1997;15:749–95.

    Article  CAS  PubMed  Google Scholar 

  156. Yu S, Sharp GC, Braley-Mullen H. Dual roles for IFN-gamma, but not for IL-4, in spontaneous autoimmune thyroiditis in NOD.H-2h4 mice. J Immunol. 2002;169(7):3999–4007.

    Article  CAS  PubMed  Google Scholar 

  157. Yu S, Sharp GC, Braley-Mullen H. Thyrocytes responding to IFN-gamma are essential for development of lymphocytic spontaneous autoimmune thyroiditis and inhibition of thyrocyte hyperplasia. J Immunol. 2006;176(2):1259–65.

    Article  CAS  PubMed  Google Scholar 

  158. Zhang X, Zhu L, Sun L, IFN-y mediates thyroid injury by upregulating Fas expression in Hashimoto thyroiditis Acta Universitatis Medicinalis Anhui, 2017. 52(06): p. 806–809.

  159. Gao Y, et al. IFN-gamma stimulates osteoclast formation and bone loss in vivo via antigen-driven T cell activation. J Clin Invest. 2007;117(1):122–32.

    Article  CAS  PubMed  Google Scholar 

  160. Takayanagi H, et al. T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature. 2000;408(6812):600–5.

    Article  CAS  PubMed  Google Scholar 

  161. Maruhashi T, et al. DCIR maintains bone homeostasis by regulating IFN-γ production in T cells. J Immunol. 2015;194(12):5681–91.

    Article  CAS  PubMed  Google Scholar 

  162. Hu Y, et al. Effect of selenium on thyroid autoimmunity and regulatory T cells in patients with Hashimoto’s thyroiditis: a prospective randomized-controlled trial. Clin Transl Sci. 2021;14(4):1390–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Kryczyk-Kozioł J, et al., Assessment of the Effect of Selenium supplementation on production of selected cytokines in women with Hashimoto’s Thyroiditis. Nutrients, 2022. 14(14).

  164. Poleboina S, et al. Selenium nanoparticles stimulate osteoblast differentiation via BMP-2/MAPKs/β-catenin pathway in diabetic osteoporosis. Nanomed (Lond). 2022;17(9):607–25.

    Article  CAS  Google Scholar 

  165. Wei M, et al. Manganese, iron, copper, and selenium co-exposure and osteoporosis risk in chinese adults. J Trace Elem Med Biol. 2022;72:126989.

    Article  CAS  PubMed  Google Scholar 

  166. Beukhof CM, et al. Selenium Status is positively Associated with Bone Mineral density in healthy aging european men. PLoS ONE. 2016;11(4):e0152748.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Hoeg A, et al. Bone turnover and bone mineral density are independently related to selenium status in healthy euthyroid postmenopausal women. J Clin Endocrinol Metab. 2012;97(11):4061–70.

    Article  CAS  PubMed  Google Scholar 

  168. Wu CC, et al. Selenium status is independently related to bone mineral density, FRAX score, and bone fracture history: NHANES, 2013 to 2014. Bone. 2021;143:115631.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijie Yu.

Ethics declarations

Statements and declarations

Funding.

This work was supported by grants from the National Natural Science Foundation of China [No. 82273294]; the Science and Technology Department of Sichuan Province (2022YFS0136); the Chengdu Bureau of Science and Technology (2022-YF05-01316-SN); the Sichuan University [No. 2018SCUH0093]; and the 1.3.5 project for discipline of excellence, West China Hospital, Sichuan University [No. 2020HXFH008, No. ZYJC18003].

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Huang, H. & Yu, X. How does Hashimoto’s thyroiditis affect bone metabolism?. Rev Endocr Metab Disord 24, 191–205 (2023). https://doi.org/10.1007/s11154-022-09778-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-022-09778-x

Keywords

Navigation