Skip to main content

Advertisement

Log in

Interactions between nuclear receptors glucocorticoid receptor α and peroxisome proliferator–activated receptor α form a negative feedback loop

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Both nuclear receptors glucocorticoid receptor α (GRα) and peroxisome proliferator–activated receptor α (PPARα) are involved in energy and lipid metabolism, and possess anti-inflammation effects. Previous studies indicate that a regulatory loop may exist between them. In vivo and in vitro studies showed that glucocorticoids stimulate hepatic PPARα expression via GRα at the transcriptional level. This stimulation of PPARα by GRα has physiological relevance and PPARα is involved in many glucocorticoid-induced pathophysiological processes, including gluconeogenesis and ketogenesis during fasting, insulin resistance, hypertension and anti-inflammatory effects. PPARα also synergizes with GRα to promote erythroid progenitor self-renewal. As the feedback, PPARα inhibits glucocorticoid actions at pre-receptor and receptor levels. PPARα decreases glucocorticoid production through inhibiting the expression and activity of type-1 11β-hydroxysteroid dehydrogenase, which converts inactive glucocorticoids to active glucocorticoids at local tissues, and also down-regulates hepatic GRα expression, thus forming a complete and negative feedback loop. This negative feedback loop sheds light on prospective multi-drug therapeutic treatments in inflammatory diseases through a combination of glucocorticoids and PPARα agonists. This combination may potentially enhance the anti-inflammatory effects while alleviating side effects on glucose and lipid metabolism due to GRα activation. More investigations are needed to clarify the underlying mechanism and the relevant physiological or pathological significance of this regulatory loop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GRα :

Glucocorticoid receptor α.

PPARα:

Peroxisome proliferator–activated receptor α.

GCs:

Glucocorticoid hormones.

GREs:

glucocorticoid-responsive elements.

3′ UTR:

3′-untranslated region.

hGR:

Human GRα.

mGR:

Mouse GR.

rGR:

Rat GR.

PPREs:

Peroxisome proliferator response elements.

RXR:

Retinoid X receptor.

AP-1:

Activator protein 1.

NF-κB:

Nuclear factor kappa B.

ACO:

Acyl CoA oxidase.

FFA:

Free fatty acid.

NAFLD:

Non-alcoholic fatty liver disease.

HFD:

High fat diet.

DEX:

Dexamethasone.

Epo:

Erythropoietin.

DBA:

Diamond-Blackfan Anemia.

BFU-E:

Burst-forming unit erythroid.

iNOS:

Inducible nitric-oxide synthase.

IBDs:

Inflammatory bowel diseases.

DNBS:

Dinitrobenzene sulfonic acid.

TNF-α:

Tumor necrosis factor.

IL-6:

Interleukin-6.

MCP-1:

Monocyte chemoattractant protein-1.

MMP-9:

Matrix metalloproteinase-9.

HO:

Heme oxygenase.

BVR:

Biliverdin reductase.

UGT:

Uridine diphosphate glucuronyltransferase.

UGT1A1:

UDP-glucuronosyltransferase 1A1.

ECs:

Endothelial cells.

FGF21:

Fibroblast growth factor 21.

IκBα:

NF-κB inhibitor alpha.

i.p:

Intraperitoneal.

11β-HSD1:

Type-1 11β-hydroxysteroid dehydrogenase.

GILZ:

Glucocorticoid-induced leucine zipper.

TG:

Triglyceride.

PEPCK:

Phosphoenolpyruvate carboxykinase.

CRH:

Corticotropin-releasing hormone.

ACTH:

Adrenocorticotropin.

LPL:

Lipoprotein lipase.

RE:

Response element.

References

  1. De Bosscher K, Desmet SJ, Clarisse D, Estebanez-Perpina E, Brunsveld L. Nuclear receptor crosstalk - defining the mechanisms for therapeutic innovation. Nat Rev Endocrinol. 2020;16(7):363–77.

    Article  PubMed  Google Scholar 

  2. Helsen C, Claessens F. Looking at nuclear receptors from a new angle. Mol Cell Endocrinol. 2014;382(1):97–106.

    Article  CAS  PubMed  Google Scholar 

  3. Oakley RH, Cidlowski JA. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol. 2013;132(5):1033–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Caratti G, Matthews L, Poolman T, Kershaw S, Baxter M, Ray D. Glucocorticoid receptor function in health and disease. Clin Endocrinol (Oxf). 2015;83(4):441–8.

    Article  CAS  Google Scholar 

  5. Anbalagan M, Huderson B, Murphy L, Rowan BG. Post-translational modifications of nuclear receptors and human disease. Nucl Recept Signal. 2012;10:e001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grontved L, John S, Baek S, Liu Y, Buckley JR, Vinson C, Aguilera G, Hager GL. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements. EMBO J. 2013;32(11):1568–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ratman D, Vanden Berghe W, Dejager L, Libert C, Tavernier J, Beck IM, De Bosscher K. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol Cell Endocrinol. 2013;380(1–2):41–54.

    Article  CAS  PubMed  Google Scholar 

  8. Vandevyver S, Dejager L, Libert C. Comprehensive overview of the structure and regulation of the glucocorticoid receptor. Endocr Rev. 2014;35(4):671–93.

    Article  CAS  PubMed  Google Scholar 

  9. Whorwood CB, Donovan SJ, Wood PJ, Phillips DI. Regulation of glucocorticoid receptor alpha and beta isoforms and type I 11beta-hydroxysteroid dehydrogenase expression in human skeletal muscle cells: a key role in the pathogenesis of insulin resistance? J Clin Endocrinol Metab. 2001;86(5):2296–308.

    CAS  PubMed  Google Scholar 

  10. Bockmuhl Y, Murgatroyd CA, Kuczynska A, Adcock IM, Almeida OF, Spengler D. Differential regulation and function of 5’-untranslated GR-exon 1 transcripts. Mol Endocrinol. 2011;25(7):1100–10.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hinds TD Jr, Ramakrishnan S, Cash HA, Stechschulte LA, Heinrich G, Najjar SM, Sanchez ER. Discovery of glucocorticoid receptor-beta in mice with a role in metabolism. Mol Endocrinol. 2010;24(9):1715–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. DuBois DC, Sukumaran S, Jusko WJ, Almon RR. Evidence for a glucocorticoid receptor beta splice variant in the rat and its physiological regulation in liver. Steroids. 2013;78(2):312–20.

    Article  CAS  PubMed  Google Scholar 

  13. Ramos-Ramirez P, Tliba O. Glucocorticoid Receptor beta (GRbeta): Beyond Its Dominant-Negative Function, Int J Mol Sci 22(7) (2021).

  14. Tahri-Joutey M, Andreoletti P, Surapureddi S, Nasser B, Cherkaoui-Malki M, Latruffe N. Mechanisms Mediating the Regulation of Peroxisomal Fatty Acid Beta-Oxidation by PPARalpha, Int J Mol Sci 22(16) (2021).

  15. Lambe KG, Woodyatt NJ, Macdonald N, Chevalier S, Roberts RA. Species differences in sequence and activity of the peroxisome proliferator response element (PPRE) within the acyl CoA oxidase gene promoter. Toxicol Lett. 1999;110(1–2):119–27.

    Article  CAS  PubMed  Google Scholar 

  16. Pawlak M, Lefebvre P, Staels B. Molecular mechanism of PPARalpha action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2015;62(3):720–33.

    Article  CAS  PubMed  Google Scholar 

  17. Kersten S, Stienstra R. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie. 2017;136:75–84.

    Article  CAS  PubMed  Google Scholar 

  18. Kersten S. Integrated physiology and systems biology of PPARalpha. Mol Metab. 2014;3(4):354–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Regnier M, Polizzi A, Smati S, Lukowicz C, Fougerat A, Lippi Y, Fouche E, Lasserre F, Naylies C, Betoulieres C, Barquissau V, Mouisel E, Bertrand-Michel J, Batut A, Saati TA, Canlet C, Tremblay-Franco M, Ellero-Simatos S, Langin D, Postic C, Wahli W, Loiseau N, Guillou H, Montagner A. Hepatocyte-specific deletion of Pparalpha promotes NAFLD in the context of obesity. Sci Rep. 2020;10(1):6489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Montagner A, Polizzi A, Fouche E, Ducheix S, Lippi Y, Lasserre F, Barquissau V, Regnier M, Lukowicz C, Benhamed F, Iroz A, Bertrand-Michel J, Al Saati T, Cano P, Mselli-Lakhal L, Mithieux G, Rajas F, Lagarrigue S, Pineau T, Loiseau N, Postic C, Langin D, Wahli W, Guillou H. Liver PPARalpha is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut. 2016;65(7):1202–14.

    Article  CAS  PubMed  Google Scholar 

  21. Hinds TD Jr, Kipp ZA, Xu M, Yiannikouris FB, Morris AJ, Stec DF, Wahli W, Stec DE. Adipose-Specific PPARalpha Knockout Mice Have Increased Lipogenesis by PASK-SREBP1 Signaling and a Polarity Shift to Inflammatory Macrophages in White Adipose Tissue, Cells 11(1) (2021).

  22. Ratman D, Mylka V, Bougarne N, Pawlak M, Caron S, Hennuyer N, Paumelle R, De Cauwer L, Thommis J, Rider MH, Libert C, Lievens S, Tavernier J, Staels B, De Bosscher K. Chromatin recruitment of activated AMPK drives fasting response genes co-controlled by GR and PPARalpha. Nucleic Acids Res. 2016;44(22):10539–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rando G, Tan CK, Khaled N, Montagner A, Leuenberger N, Bertrand-Michel J, Paramalingam E, Guillou H, Wahli W. Glucocorticoid receptor-PPARalpha axis in fetal mouse liver prepares neonates for milk lipid catabolism, Elife 5 (2016).

  24. Decara J, Rivera P, Lopez-Gambero AJ, Serrano A, Pavon FJ, Baixeras E, Rodriguez F, de Fonseca J. Suarez, Peroxisome Proliferator-Activated Receptors: Experimental Targeting for the Treatment of Inflammatory Bowel Diseases. Front Pharmacol. 2020;11:730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflamm Res. 2000;49(10):497–505.

    Article  CAS  PubMed  Google Scholar 

  26. Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular Actions of PPARalpha in Lipid Metabolism and Inflammation. Endocr Rev. 2018;39(5):760–802.

    Article  PubMed  Google Scholar 

  27. Li MD, Yang X, A Retrospective on Nuclear Receptor Regulation of Inflammation: Lessons from GR and PPARs, PPAR Res 2011 (2011) 742785.

  28. Shimba A, Ejima A, Ikuta K. Pleiotropic Effects of Glucocorticoids on the Immune System in Circadian Rhythm and Stress. Front Immunol. 2021;12:706951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shimba A, Ikuta K. Glucocorticoids Regulate Circadian Rhythm of Innate and Adaptive Immunity. Front Immunol. 2020;11:2143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Quatrini L, Ricci B, Ciancaglini C, Tumino N, Moretta L. Regulation of the Immune System Development by Glucocorticoids and Sex Hormones. Front Immunol. 2021;12:672853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lemberger T, Staels B, Saladin R, Desvergne B, Auwerx J, Wahli W. Regulation of the peroxisome proliferator-activated receptor alpha gene by glucocorticoids. J Biol Chem. 1994;269(40):24527–30.

    Article  CAS  PubMed  Google Scholar 

  32. Chen X, Li M, Sun W, Bi Y, Cai M, Liang H, Yu Q, He X, Weng J. Peroxisome proliferator-activated receptor alpha agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats. Biochem Biophys Res Commun. 2008;368(4):865–70.

    Article  CAS  PubMed  Google Scholar 

  33. Hermanowski-Vosatka A, Gerhold D, Mundt SS, Loving VA, Lu M, Chen Y, Elbrecht A, Wu M, Doebber T, Kelly L, Milot D, Guo Q, Wang PR, Ippolito M, Chao YS, Wright SD, Thieringer R. PPARalpha agonists reduce 11beta-hydroxysteroid dehydrogenase type 1 in the liver. Biochem Biophys Res Commun. 2000;279(2):330–6.

    Article  CAS  PubMed  Google Scholar 

  34. Lemberger T, Saladin R, Vazquez M, Assimacopoulos F, Staels B, Desvergne B, Wahli W, Auwerx J. Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. J Biol Chem. 1996;271(3):1764–9.

    Article  CAS  PubMed  Google Scholar 

  35. Bernal-Mizrachi C, Weng S, Feng C, Finck BN, Knutsen RH, Leone TC, Coleman T, Mecham RP, Kelly DP, Semenkovich CF. Dexamethasone induction of hypertension and diabetes is PPAR-alpha dependent in LDL receptor-null mice. Nat Med. 2003;9(8):1069–75.

    Article  CAS  PubMed  Google Scholar 

  36. Genovese T, Esposito E, Mazzon E, Crisafulli C, Paterniti I, Di Paola R, Galuppo M, Bramanti P, Cuzzocrea S. PPAR-alpha modulate the anti-inflammatory effect of glucocorticoids in the secondary damage in experimental spinal cord trauma. Pharmacol Res. 2009;59(5):338–50.

    Article  CAS  PubMed  Google Scholar 

  37. Riccardi L, Mazzon E, Bruscoli S, Esposito E, Crisafulli C, Di Paola R, Caminiti R, Riccardi C, Cuzzocrea S. Peroxisome proliferator-activated receptor-alpha modulates the anti-inflammatory effect of glucocorticoids in a model of inflammatory bowel disease in mice. Shock. 2009;31(3):308–16.

    Article  CAS  PubMed  Google Scholar 

  38. Cuzzocrea S, Bruscoli S, Mazzon E, Crisafulli C, Donato V, Di Paola R, Velardi E, Esposito E, Nocentini G, Riccardi C. Peroxisome proliferator-activated receptor-alpha contributes to the anti-inflammatory activity of glucocorticoids. Mol Pharmacol. 2008;73(2):323–37.

    Article  CAS  PubMed  Google Scholar 

  39. Bougarne N, Paumelle R, Caron S, Hennuyer N, Mansouri R, Gervois P, Staels B, Haegeman G, De Bosscher K. PPARalpha blocks glucocorticoid receptor alpha-mediated transactivation but cooperates with the activated glucocorticoid receptor alpha for transrepression on NF-kappaB. Proc Natl Acad Sci U S A. 2009;106(18):7397–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Breslin MB, Vedeckis WV. The glucocorticoid receptor and c-jun promoters contain AP-1 sites that bind different AP-1 transcription factors. Endocrine. 1996;5(1):15–22.

    Article  CAS  PubMed  Google Scholar 

  41. Adcock IM. Glucocorticoid-regulated transcription factors. Pulm Pharmacol Ther. 2001;14(3):211–9.

    Article  CAS  PubMed  Google Scholar 

  42. Da Costa L, Narla A, Mohandas N. An update on the pathogenesis and diagnosis of Diamond-Blackfan anemia, F1000Res 7 (2018).

  43. Lee HY, Gao X, Barrasa MI, Li H, Elmes RR, Peters LL, Lodish HF. PPAR-alpha and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal. Nature. 2015;522(7557):474–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bonora BM, Albiero M, Morieri ML, Cappellari R, Amendolagine FI, Mazzucato M, Zambon A, Iori E, Avogaro A, Fadini GP. Fenofibrate increases circulating haematopoietic stem cells in people with diabetic retinopathy: a randomised, placebo-controlled trial. Diabetologia. 2021;64(10):2334–44.

    Article  CAS  PubMed  Google Scholar 

  45. Bigo C, Kaeding J, Husseini DE, Rudkowska I, Verreault M, Vohl MC, Barbier O, PPARalpha: A Master Regulator of Bilirubin Homeostasis, PPAR Res 2014 (2014) 747014.

  46. Usui T, Kuno T, Mizutani T. Induction of human UDP-glucuronosyltransferase 1A1 by cortisol-GR. Mol Biol Rep. 2006;33(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  47. Stec DE, John K, Trabbic CJ, Luniwal A, Hankins MW, Baum J, Hinds TD Jr. Bilirubin Binding to PPARalpha Inhibits Lipid Accumulation. PLoS ONE. 2016;11(4):e0153427.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gordon DM, Neifer KL, Hamoud AA, Hawk CF, Nestor-Kalinoski AL, Miruzzi SA, Morran MP, Adeosun SO, Sarver JG, Erhardt PW, McCullumsmith RE, Stec DE, Hinds TD Jr. Bilirubin remodels murine white adipose tissue by reshaping mitochondrial activity and the coregulator profile of peroxisome proliferator-activated receptor alpha. J Biol Chem. 2020;295(29):9804–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu X, Otsuki M, Sumitani S, Saito H, Kouhara H, Kasayama S. RU486 antagonizes the inhibitory effect of peroxisome proliferator-activated receptor alpha on interleukin-6 production in vascular endothelial cells. J Steroid Biochem Mol Biol. 2002;81(2):141–6.

    Article  CAS  PubMed  Google Scholar 

  50. Marino JS, Stechschulte LA, Stec DE, Nestor-Kalinoski A, Coleman S, Hinds TD Jr. Glucocorticoid Receptor beta Induces Hepatic Steatosis by Augmenting Inflammation and Inhibition of the Peroxisome Proliferator-activated Receptor (PPAR) alpha. J Biol Chem. 2016;291(50):25776–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nwaneri AC, McBeth L, Hinds TD Jr. Sweet-P inhibition of glucocorticoid receptor beta as a potential cancer therapy, Cancer Cell Microenviron 3(3) (2016).

  52. McBeth L, Nwaneri AC, Grabnar M, Demeter J, Nestor-Kalinoski A, Hinds TD Jr. Glucocorticoid receptor beta increases migration of human bladder cancer cells. Oncotarget. 2016;7(19):27313–24.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hughes KA, Webster SP, Walker BR. 11-Beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) inhibitors in type 2 diabetes mellitus and obesity. Expert Opin Investig Drugs. 2008;17(4):481–96.

    Article  CAS  PubMed  Google Scholar 

  54. Masuzaki H, Flier JS. Tissue-specific glucocorticoid reactivating enzyme, 11 beta-hydroxysteroid dehydrogenase type 1 (11 beta-HSD1)--a promising drug target for the treatment of metabolic syndrome. Curr Drug Targets Immune Endocr Metabol Disord. 2003;3(4):255–62.

    Article  CAS  PubMed  Google Scholar 

  55. Bereshchenko O, Migliorati G, Bruscoli S, Riccardi C. Glucocorticoid-Induced Leucine Zipper: A Novel Anti-inflammatory Molecule. Front Pharmacol. 2019;10:308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Thiagarajah AS, Eades LE, Thomas PR, Guymer EK, Morand EF, Clarke DM, Leech M. GILZ: Glitzing up our understanding of the glucocorticoid receptor in psychopathology. Brain Res. 2014;1574:60–9.

    Article  CAS  PubMed  Google Scholar 

  57. Ayroldi E, Macchiarulo A, Riccardi C. Targeting glucocorticoid side effects: selective glucocorticoid receptor modulator or glucocorticoid-induced leucine zipper? A perspective. FASEB J. 2014;28(12):5055–70.

    Article  CAS  PubMed  Google Scholar 

  58. Sulcova J, Stulc T, Hill M, Hampl R, Masek Z, Vondra K, Ceska R. Decrease in serum dehydroepiandrosterone level after fenofibrate treatment in males with hyperlipidemia. Physiol Res. 2005;54(2):151–7.

    Article  CAS  PubMed  Google Scholar 

  59. Oakley RH, Cidlowski JA. Homologous down regulation of the glucocorticoid receptor: the molecular machinery. Crit Rev Eukaryot Gene Expr. 1993;3(2):63–88.

    CAS  PubMed  Google Scholar 

  60. Pineda Torra I, Gervois P, Staels B. Peroxisome proliferator-activated receptor alpha in metabolic disease, inflammation, atherosclerosis and aging. Curr Opin Lipidol. 1999;10(2):151–9.

    Article  CAS  PubMed  Google Scholar 

  61. Djouadi F, Weinheimer CJ, Saffitz JE, Pitchford C, Bastin J, Gonzalez FJ, Kelly DP. A gender-related defect in lipid metabolism and glucose homeostasis in peroxisome proliferator- activated receptor alpha- deficient mice. J Clin Invest. 1998;102(6):1083–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Guerre-Millo M, Gervois P, Raspe E, Madsen L, Poulain P, Derudas B, Herbert JM, Winegar DA, Willson TM, Fruchart JC, Berge RK, Staels B. Peroxisome proliferator-activated receptor alpha activators improve insulin sensitivity and reduce adiposity. J Biol Chem. 2000;275(22):16638–42.

    Article  CAS  PubMed  Google Scholar 

  63. Simo R, Hernandez C. Prevention and treatment of diabetic retinopathy: evidence from large, randomized trials. The emerging role of fenofibrate. Rev Recent Clin Trials. 2012;7(1):71–80.

    Article  CAS  PubMed  Google Scholar 

  64. Stewart S, Lois N. Fenofibrate for Diabetic Retinopathy. Asia Pac J Ophthalmol (Phila). 2018;7(6):422–6.

    CAS  Google Scholar 

  65. Srivastava RA. Fenofibrate ameliorates diabetic and dyslipidemic profiles in KKAy mice partly via down-regulation of 11beta-HSD1, PEPCK and DGAT2. Comparison of PPARalpha, PPARgamma, and liver x receptor agonists. Eur J Pharmacol. 2009;607(1–3):258–63.

    Article  CAS  PubMed  Google Scholar 

  66. Wake DJ, Stimson RH, Tan GD, Homer NZ, Andrew R, Karpe F, Walker BR. Effects of peroxisome proliferator-activated receptor-alpha and -gamma agonists on 11beta-hydroxysteroid dehydrogenase type 1 in subcutaneous adipose tissue in men. J Clin Endocrinol Metab. 2007;92(5):1848–56.

    Article  CAS  PubMed  Google Scholar 

  67. Mir N, Chin SA, Riddell MC, Beaudry JL. Genomic and Non-Genomic Actions of Glucocorticoids on Adipose Tissue Lipid Metabolism, Int J Mol Sci 22(16) (2021).

  68. Kuo T, McQueen A, Chen TC, Wang JC. Regulation of Glucose Homeostasis by Glucocorticoids. Adv Exp Med Biol. 2015;872:99–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Geer EB, Islam J, Buettner C. Mechanisms of glucocorticoid-induced insulin resistance: focus on adipose tissue function and lipid metabolism. Endocrinol Metab Clin North Am. 2014;43(1):75–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Takahashi H, Sanada K, Nagai H, Li Y, Aoki Y, Ara T, Seno S, Matsuda H, Yu R, Kawada T, Goto T. Over-expression of PPARalpha in obese mice adipose tissue improves insulin sensitivity. Biochem Biophys Res Commun. 2017;493(1):108–14.

    Article  CAS  PubMed  Google Scholar 

  71. Han L, Shen WJ, Bittner S, Kraemer FB, Azhar S. PPARs: regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I: PPAR-alpha. Future Cardiol. 2017;13(3):259–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Morgan SA, Gathercole LL, Simonet C, Hassan-Smith ZK, Bujalska I, Guest P, Abrahams L, Smith DM, Stewart PM, Lavery GG, Tomlinson JW. Regulation of lipid metabolism by glucocorticoids and 11beta-HSD1 in skeletal muscle. Endocrinology. 2013;154(7):2374–84.

    Article  CAS  PubMed  Google Scholar 

  73. Ide T, Shimano H, Yoshikawa T, Yahagi N, Amemiya-Kudo M, Matsuzaka T, Nakakuki M, Yatoh S, Iizuka Y, Tomita S, Ohashi K, Takahashi A, Sone H, Gotoda T, Osuga J, Ishibashi S, Yamada N. Cross-talk between peroxisome proliferator-activated receptor (PPAR) alpha and liver X receptor (LXR) in nutritional regulation of fatty acid metabolism. II. LXRs suppress lipid degradation gene promoters through inhibition of PPAR signaling. Mol Endocrinol. 2003;17(7):1255–67.

    Article  CAS  PubMed  Google Scholar 

  74. Gearing KL, Gottlicher M, Widmark E, Banner CD, Tollet P, Stromstedt M, Rafter JJ, Berge RK, Gustafsson JA. Fatty acid activation of the peroxisome proliferator activated receptor, a member of the nuclear receptor gene superfamily. J Nutr. 1994;124(8 Suppl):1284S–1288S.

    Article  CAS  PubMed  Google Scholar 

  75. Hughes ML, Liu B, Halls ML, Wagstaff KM, Patil R, Velkov T, Jans DA, Bunnett NW, Scanlon MJ, Porter CJ. Fatty Acid-binding Proteins 1 and 2 Differentially Modulate the Activation of Peroxisome Proliferator-activated Receptor alpha in a Ligand-selective Manner. J Biol Chem. 2015;290(22):13895–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Manca C, Pintus S, Murru E, Fantola G, Vincis M, Batetta B, Moroni E, Carta G, Banni S. Fatty Acid Metabolism and Derived-Mediators Distinctive of PPAR-alpha Activation in Obese Subjects Post Bariatric Surgery, Nutrients 13(12) (2021).

  77. Ribet C, Montastier E, Valle C, Bezaire V, Mazzucotelli A, Mairal A, Viguerie N, Langin D. Peroxisome proliferator-activated receptor-alpha control of lipid and glucose metabolism in human white adipocytes. Endocrinology. 2010;151(1):123–33.

    Article  CAS  PubMed  Google Scholar 

  78. Cotter DG, Ercal B, d’Avignon DA, Dietzen DJ, Crawford PA. Impairments of hepatic gluconeogenesis and ketogenesis in PPARalpha-deficient neonatal mice. Am J Physiol Endocrinol Metab. 2014;307(2):E176-85.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by China Postdoctoral Science Foundation (grant no. 2021M702339 to Y Li) and Health Commission of Sichuan Province (grant no. 21PJ029 to Y Li).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Chen PhD.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of the West China Hospital.

Informed consent

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Li, Y. & Chen, X. Interactions between nuclear receptors glucocorticoid receptor α and peroxisome proliferator–activated receptor α form a negative feedback loop. Rev Endocr Metab Disord 23, 893–903 (2022). https://doi.org/10.1007/s11154-022-09725-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-022-09725-w

Keywords

Navigation