Monteiro CA, Cannon G, Levy RB, Moubarac JC, Louzada MLC, Rauber F, et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019;22:936–41.
PubMed
Google Scholar
Monteiro CA, Cannon G, Levy R, Moubarac J-C. The Food System.NOVA. The star shines bright. Public Health. 2016;7:28–38.
Gupta S, Hawk T, Aggarwal A, Drewnowski A. Characterizing ultra-processed foods by energy density, nutrient density, and cost. Front Nutr. 2019;6:1–9.
Google Scholar
Steele EM, Baraldi LG, Da Costa Louzada ML, Moubarac JC, Mozaffarian D, Monteiro CA. Ultra-processed foods and added sugars in the US diet: Evidence from a nationally representative cross-sectional study. BMJ Open. 2016;6:e009892.
Martínez Steele E, Khandpur N, da Costa Louzada ML, Monteiro CA. Association between dietary contribution of ultra-processed foods and urinary concentrations of phthalates and bisphenol in a nationally representative sample of the US population aged 6 years and older. PLoS ONE. 2020;15:1–21.
Google Scholar
Baraldi LG, Martinez Steele E, Canella DS, Monteiro CA. Consumption of ultra-processed foods and associated sociodemographic factors in the USA between 2007 and 2012: Evidence from a nationally representative cross-sectional study. BMJ Open. 2018;8:e020574.
Moubarac JC, Batal M, Louzada ML, Martinez Steele E, Monteiro CA. Consumption of ultra-processed foods predicts diet quality in Canada. Appetite. 2017;108:512–20.
PubMed
Google Scholar
Rauber F, Louzada ML da C, Steele EM, Millett C, Monteiro CA, Levy RB. Ultra-processed food consumption and chronic non-communicable diseases-related dietary nutrient profile in the UK (2008–2014). Nutrients. 2018;10:587.
Da Costa Louzada ML, Ricardo CZ, Steele EM, Levy RB, Cannon G, Monteiro CA. The share of ultra-processed foods determines the overall nutritional quality of diets in Brazil. Public Health Nutr. 2018;21:94–102.
Google Scholar
Marrón-Ponce JA, Sánchez-Pimienta TG, Da Costa Louzada ML, Batis C. Energy contribution of NOVA food groups and sociodemographic determinants of ultra-processed food consumption in the Mexican population. Public Health Nutr. 2018;21:87–93.
PubMed
Google Scholar
Cediel G, Reyes M, Da Costa Louzada ML, Martinez Steele E, Monteiro CA, Corvalán C, et al. Ultra-processed foods and added sugars in the Chilean diet (2010). Public Health Nutr. 2018;21:125–33.
PubMed
Google Scholar
Baker P, Machado P, Santos T, Sievert K, Backholer K, Hadjikakou M, et al. Ultra-processed foods and the nutrition transition: Global, regional and national trends, food systems transformations and political economy drivers. Obes Rev. 2020;21:e13126.
Zhong G-C, Gu H-T, Peng Y, Wang K, Wu Y-Q-L, Hu T-Y, et al. Association of Ultra-processed Food Consumption With Cardiovascular Mortality in the US Population: Long-term Results From a Large Prospective Multicenter Study. Int J Behav Nutr Phys Act. 2021;18:21.
Bawaked RA, Fernández-Barrés S, Navarrete-Muñoz EM, González-Palacios S, Guxens M, Irizar A, et al. Impact of lifestyle behaviors in early childhood on obesity and cardiometabolic risk in children: Results from the Spanish INMA birth cohort study. Pediatr Obes. 2020;15:1–15.
Google Scholar
Fiolet T, Srour B, Sellem L, Kesse-Guyot E, Allès B, Méjean C, et al. Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Santé prospective cohort. BMJ. 2018;360:k322.
Romaguera D, Fernández-Barrés S, Gracia-Lavedán E, Vendrell E, Azpiri M, Ruiz-Moreno E, et al. Consumption of ultra-processed foods and drinks and colorectal, breast, and prostate cancer. Clin Nutr. 2021;40:1537–45.
CAS
PubMed
Google Scholar
Narula N, Wong ECL, Dehghan M, Mente A, Rangarajan S, Lanas F, et al. Association of ultra-processed food intake with risk of inflammatory bowel disease: Prospective cohort study. BMJ. 2021;374:n1554.
Schnabel L, Kesse-Guyot E, Allès B, Touvier M, Srour B, Hercberg S, et al. Association between Ultraprocessed Food Consumption and Risk of Mortality among Middle-aged Adults in France. JAMA Intern Med. 2019;179:490–8.
PubMed
PubMed Central
Google Scholar
Sandoval-Insausti, H Blanco-Rojo R, Graciani A, López-García E, Moreno-Franco B, Laclaustra M, Donat-Vargas C, et al. Ultra-processed Food Consumption and Incident Frailty: A Prospective Cohort Study of Older Adults. J Gerontol A Biol Sci Med Sci. 2020;75:1126–1133.
Elizabeth L, Machado P, Zinöcker M, Baker P, Lawrence M. Ultra-processed foods and health outcomes: A narrative review. Nutrients. 2020;12:1–36.
Google Scholar
Sadler CR, Grassby T, Hart K, Raats M, Sokolović M, Timotijevic L. Processed food classification: Conceptualisation and challenges. Trends Food Sci Technol. 2021;112:149–62.
CAS
Google Scholar
Cordain L, Eaton S, Sebastian A, Mann N, Lindeberg S, Watkins B, et al. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr. 2005;81:341–54.
CAS
PubMed
Google Scholar
Poti JM, Braga B, Qin B. Ultra-processed Food Intake and Obesity: What Really Matters for Health-Processing or Nutrient Content? Curr Obes Rep. 2017;6:420–31.
PubMed
PubMed Central
Google Scholar
Pagliai G, Dinu M, Madarena MP, Bonaccio M, Iacoviello L, Sofi F. Consumption of ultra-processed foods and health status: A systematic review and meta-Analysis. Br J Nutr. 2021;125:308–18.
CAS
PubMed
Google Scholar
Hall KD, Ayuketah A, Brychta R, Cai H, Cassimatis T, Chen KY, et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 2020;32:690.
CAS
PubMed
Google Scholar
Wang L, Martínez Steele E, Du M, Pomeranz JL, O’Connor LE, Herrick KA, et al. Trends in Consumption of Ultraprocessed Foods among US Youths Aged 2–19 Years, 1999–2018. JAMA - J Am Med Assoc. 2021;326:519–30.
Google Scholar
Fox EL, Timmer A. Children’s and adolescents’ characteristics and interactions with the food system. Glob Food Sec. 2020;27:0–5.
Bhutta ZA, Guerrant RL, Nelson CA. Neurodevelopment, nutrition, and inflammation: The evolving global child health landscape. Pediatrics. 2017;139:S12–22.
PubMed
Google Scholar
Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A. 2004;101:8174–9.
CAS
PubMed
PubMed Central
Google Scholar
Sydnor VJ, Larsen B, Bassett DS, Alexander-Bloch A, Fair DA, Liston C, et al. Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for psychopathology. Neuron. 2021;109:1–27.
Google Scholar
Adjibade M, Julia C, Allès B, Touvier M, Lemogne C, Srour B, et al. Prospective association between ultra-processed food consumption and incident depressive symptoms in the French NutriNet-Santé cohort. BMC Med. 2019;17:78.
PubMed
PubMed Central
Google Scholar
Gómez-Donoso C, Sánchez-Villegas A, Martínez-González MA, Gea A, Mendonça R de D, Lahortiga-Ramos F, et al. Ultra-processed food consumption and the incidence of depression in a Mediterranean cohort: the SUN Project. Eur J Nutr. 2020;59:1093–1103.
Lane MM, Davis JA, Beattie S, Gómez-Donoso C, Loughman A, O’Neil A, et al. Ultraprocessed food and chronic noncommunicable diseases: A systematic review and meta-analysis of 43 observational studies. Obes Rev. 2021;22:1–19.
Google Scholar
Schulte EM, Avena NM, Gearhardt AN. Which foods may be addictive? The roles of processing, fat content, and glycemic load. PLoS ONE. 2015;10:1–18.
CAS
Google Scholar
Filgueiras AR, Pires de Almeida VB, Koch Nogueira PC, Alvares Domene SM, Eduardo da Silva C, Sesso R, et al. Exploring the consumption of ultra-processed foods and its association with food addiction in overweight children. Appetite. 2019;135:137–145.
Pursey KM, Davis C, Burrows TL. Nutritional Aspects of Food Addiction. Curr Addict Reports. 2017;4:142–50.
Google Scholar
Ayton A, Ibrahim A, Dugan J, Galvin E, Wright OW. Ultra-processed foods and binge eating: A retrospective observational study. Nutrition. 2021;84:111023.
Anjos LA Dos, Vieira DiADS, Siqueira BNF, Voci SM, Botelho AJ, Silva DG Da. Low adherence to traditional dietary pattern and food preferences of low-income preschool children with food neophobia. Public Health Nutr. 2021;24:2859–2866.
Vedovato GM, Vilela S, Severo M, Rodrigues S, Lopes C, Oliveira A. Ultra-processed food consumption, appetitive traits and BMI in children: A prospective study. Br J Nutr. 2021;125:1427–36.
CAS
PubMed
Google Scholar
Oliveira N, Coelho GM de O, Cabral MC, Bezerra FF, Faerstein E, Canella DS. Association of body image (dis)satisfaction and perception with food consumption according to the NOVA classification: Pró-Saúde Study. Appetite. 2020;144:104464.
De Deus MR, Souza Lopes AC, Pimenta AM, Gea A, Martinez-Gonzalez MA, Bes-Rastrollo M. Ultra-processed food consumption and the incidence of hypertension in a mediterranean cohort: The seguimiento universidad de navarra project. Am J Hypertens. 2017;30:358–66.
Google Scholar
Martines RM, Machado PP, Neri DA, Levy RB, Rauber F. Association between watching TV whilst eating and children’s consumption of ultraprocessed foods in United Kingdom. Matern Child Nutr. 2019;15:1–10.
Google Scholar
Costa C dos S, Flores TR, Wendt A, Neves RG, Assunção MCF, Santos IS. Sedentary behavior and consumption of ultra-processed foods by Brazilian adolescents: Brazilian National School Health Survey (PeNSE), 2015. Cad Saude Publica. 2018;34:e00021017.
Werneck AO, Hoare E, Silva DR. Do TV-viewing and frequency of ultra-processed food consumption share mediators in relation to adolescent anxiety-induced sleep disturbance? Public Health Nutr. 2021;27:1–7.
Google Scholar
Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, Cunningham K, et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr. 2011;106:S5-78.
CAS
PubMed
Google Scholar
Guillemot-Legris O, Muccioli GG. Obesity-Induced Neuroinflammation: Beyond the Hypothalamus. Trends Neurosci. 2017;40:237–53.
CAS
PubMed
Google Scholar
Dagbasi A, Lett AM, Murphy K, Frost G. Understanding the interplay between food structure, intestinal bacterial fermentation and appetite control. Proc Nutr Soc. 2020;79:514–30.
CAS
Google Scholar
De Graaf C, Kok FJ. Slow food, fast food and the control of food intake. Nat Rev Endocrinol. 2010;6:290–3.
Google Scholar
Lasschuijt MP, de Graaf K, Mars M. Effects of oro-sensory exposure on satiation and underlying neurophysiological mechanisms—what do we know so far? Nutrients. 2021;13:1391.
PubMed
PubMed Central
Google Scholar
Kokkinos A, Le Roux CW, Alexiadou K, Tentolouris N, Vincent RP, Kyriaki D, et al. Eating slowly increases the postprandial response of the anorexigenic gut hormones, peptide YY and glucagon-like peptide-1. J Clin Endocrinol Metab. 2010;95:333–7.
CAS
PubMed
Google Scholar
Krop EM, Hetherington MM, Nekitsing C, Miquel S, Postelnicu L, Sarkar A. Influence of oral processing on appetite and food intake – A systematic review and meta-analysis. Appetite. 2018;125:253–69.
PubMed
Google Scholar
Viskaal-van Dongen M, Kok FJ, de Graaf C. Eating rate of commonly consumed foods promotes food and energy intake. Appetite. 2011;56:25–31.
PubMed
Google Scholar
Bolhuis DP, Forde CG, Cheng Y, Xu H, Martin N, De Graaf C. Slow food: Sustained impact of harder foods on the reduction in energy intake over the course of the day. PLoS ONE. 2014;9:1–7.
Google Scholar
Zhu Y, Hsu WH, Hollis JH. The effect of food form on satiety. Int J Food Sci Nutr. 2013;64:385–91.
CAS
PubMed
Google Scholar
Chambers L, McCrickerd K, Yeomans MR. Optimising foods for satiety. Trends Food Sci Technol. 2015;41:149–60.
CAS
Google Scholar
May CE, Dus M. Confection Confusion: Interplay Between Diet, Taste, and Nutrition. Trends Endocrinol Metab. 2021;32:95–105.
CAS
PubMed
Google Scholar
Liu D, Archer N, Duesing K, Hannan G, Keast R. Mechanism of fat taste perception: Association with diet and obesity. Prog Lipid Res. 2016;63:41–9.
CAS
PubMed
Google Scholar
Archer N, Shaw J, Cochet-Broch M, Bunch R, Poelman A, Barendse W, et al. Obesity is associated with altered gene expression in human tastebuds. Int J Obes. 2019;43:1475–84.
Google Scholar
Ramos-Lopez O, Arpón A, Riezu-Boj JI, Milagro FI, Mansego ML, Martinez JA, et al. DNA methylation patterns at sweet taste transducing genes are associated with BMI and carbohydrate intake in an adult population. Appetite. 2018;120:230–9.
CAS
PubMed
Google Scholar
FDA. Food and drug administration, department of health and human services. Animal drugs, feeds, and related products. Part 570 food additives. https://www.AccessdataFda.Gov/Scripts/Cdrh/Cfdocs/CfCFR/CFRSearchCfm?CFRPart=570&ShowFR=1 Accessed 20 Sept 2021.
Medina-Reyes EI, Rodríguez-Ibarra C, Déciga-Alcaraz A, Díaz-Urbina D, Chirino YI, Pedraza-Chaverri J. Food additives containing nanoparticles induce gastrotoxicity, hepatotoxicity and alterations in animal behavior: The unknown role of oxidative stress. Food Chem Toxicol. 2020;146:111814.
Laster J, Frame LA. Beyond the Calories—Is the Problem in the Processing? Curr Treat Options Gastroenterol. 2019;17:577–86.
PubMed
Google Scholar
Edalati S, Bagherzadeh F, Asghari Jafarabadi M, Ebrahimi-Mamaghani M. Higher ultra-processed food intake is associated with higher DNA damage in healthy adolescents. Br J Nutr. 2021;125:568–76.
CAS
PubMed
Google Scholar
Alonso-Pedrero L, Ojeda-Rodríguez A, Martínez-González M, Zalba G, Bes-Rastrollo M, Marti A. Association between diet quality indexes and the risk of short telomeres in an elderly population of the SUN project. Am J Clin Nutr. 2020;111:1259–66.
PubMed
Google Scholar
Freitas-Simoes TM, Ros E, Sala-Vila A. Telomere length as a biomarker of accelerated aging: Is it influenced by dietary intake? Curr Opin Clin Nutr Metab Care. 2018;21:430–6.
CAS
PubMed
Google Scholar
García-Sánchez A, Gámez-Nava JI, Díaz-De La Cruz EN, Cardona-Muñoz EG, Becerra-Alvarado IN, Aceves-Aceves JA, et al. The effect of visceral abdominal fat volume on oxidative stress and proinflammatory cytokines in subjects with normal weight, overweight and obesity. Diabetes, Metab Syndr Obes. 2020;13:1077–1087.
Cinkajzlová A, Mráz M, Haluzík M. Adipose tissue immune cells in obesity, type 2 diabetes mellitus and cardiovascular diseases. J Endocrinol. 2021;252:R1–22.
PubMed
Google Scholar
Bian X, Chi L, Gao B, Tu P, Ru H, Lu K. Gut microbiome response to sucralose and its potential role in inducing liver inflammation in mice. Front Physiol. 2017;8:1–13.
Google Scholar
Vos MB, Lavine JE. Dietary fructose in nonalcoholic fatty liver disease. Hepatology. 2013;57:2525–31.
CAS
PubMed
Google Scholar
Shil A, Chichger H. Artificial sweeteners negatively regulate pathogenic characteristics of two model gut bacteria, E. Coli and E. faecalis. Int J Mol Sci. 2021;22:5228.
Lee JA, Kim MK, Song JH, Jo MR, Yu J, Kim KM, et al. Biokinetics of food additive silica nanoparticles and their interactions with food components. Colloids Surfaces B Biointerfaces. 2017;150:384–92.
CAS
PubMed
Google Scholar
Bancil AS, Sandall AM, Rossi M, Chassaing B, Lindsay JO, Whelan K. Food Additive Emulsifiers and Their Impact on Gut Microbiome, Permeability, and Inflammation: Mechanistic Insights in Inflammatory Bowel Disease. J Crohns Colitis. 2021 Jun 22;15(6):1068–1079.
Cao Y, Liu H, Qin N, Ren X, Zhu B, Xia X. Impact of food additives on the composition and function of gut microbiota: A review. Trends Food Sci Technol. 2020;99(March):295-310.
Laudisi F, Stolfi C, Monteleone G. Impact of Food Additives on Gut Homeostasis. Nutrients. 2019 Oct1;11(10):2334.
Nettleton JE, Reimer RA, Shearer J. Reshaping the gut microbiota: Impact of low calorie sweeteners and the link to insulin resistance? Physiol Behav. 2016;164:488–93.
CAS
PubMed
Google Scholar
Plaza-Diaz J, Pastor-Villaescusa B, Rueda-Robles A, Abadia-Molina F, Ruiz-Ojeda FJ. Plausible biological interactions of low- and non-calorie sweeteners with the intestinal microbiota: An update of recent studies. Nutrients. 2020;12:1–15.
Google Scholar
FDA. Additional Information about High-Intensity Sweeteners Permitted for Use in Food in the United States. https://www.Fda.Gov/Food/Food-Additives-Petitions/Additional-Information-about-High-Intensity-Sweeteners-Permitted-Use-Food-United-States.
Lohner S, Toews I, Meerpohl JJ. Health outcomes of non-nutritive sweeteners: Analysis of the research landscape. Nutr J. 2017;16:1–21.
Google Scholar
Pepino MY. Physiology & behavior metabolic effects of non-nutritive sweeteners. Physiol Behav. 2015;152:450–5.
CAS
PubMed
PubMed Central
Google Scholar
Magnuson BA, Carakostas MC, Moore NH, Poulos SP, Renwick AG. Biological fate of low-calorie sweeteners. Nutr Rev. 2016;74:670–89.
PubMed
Google Scholar
Smeets PAM, Erkner A, De Graaf C. Cephalic phase responses and appetite. Nutr Rev. 2010;68:643–55.
PubMed
Google Scholar
Silva YP, Bernardi A, Frozza RL. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Lausanne). 2020;11:1–14.
Google Scholar
Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol. 2019;16:461–78.
PubMed
Google Scholar
Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014;514:181–6.
CAS
PubMed
Google Scholar
Alfhili MA, Lee MH. Triclosan: An update on biochemical and molecular mechanisms. Oxid Med Cell Longev. 2019;2019:1607304.
PubMed
PubMed Central
Google Scholar
Yang H, Wang W, Romano KA, Gu M, Katherine Z, Kim D, et al. A common antimicrobial additive increases colonic inflammation and colitis-associated colon tumorigenesis in mice. Sci Transl Med. 2018;10:eaan4116.
Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Urinary concentrations of triclosan in the U.S. population: 2003–2004. Environ Health Perspect. 2008;116:303–307.
Wang DD, Hu FB. Dietary Fat and Risk of Cardiovascular Disease: Recent Controversies and Advances. Annu Rev Nutr. 2017;37:423–46.
PubMed
Google Scholar
Okamura T, Hashimoto Y, Majima S, Senmaru T, Ushigome E, Nakanishi N, et al. Trans Fatty Acid Intake Induces Intestinal Inflammation and Impaired Glucose Tolerance. Front Immunol. 2021;12:1–14.
Google Scholar
Shoshtari-Yeganeh B, Zarean M, Mansourian M, Riahi R, Poursafa P, Teiri H, et al. Systematic review and meta-analysis on the association between phthalates exposure and insulin resistance. Environ Sci Pollut Res. 2019;26:9435–42.
CAS
Google Scholar
Pacyga DC, Sathyanarayana S, Strakovsky RS. Dietary Predictors of Phthalate and Bisphenol Exposures in Pregnant Women. Adv Nutr. 2019;10:803–15.
PubMed
PubMed Central
Google Scholar
Cao XL. Phthalate Esters in Foods: Sources, Occurrence, and Analytical Methods. Compr Rev Food Sci Food Saf. 2010;9:21–43.
CAS
PubMed
Google Scholar
Calafat AM, Longnecker MP, Koch HM, Swan SH, Hauser R, Goldman LR, et al. Optimal Exposure Biomarkers for Nonpersistent Chemicals in Environmental Epidemiology. Environ Health Perspect. 2015;123:166–8.
Google Scholar
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev. 2015;36:1–150.
Google Scholar
Charisiadis P, Andrianou XD, Van Der Meer TP, Den Dunnen WFA, Swaab DF, Wolffenbuttel BHR, et al. Possible obesogenic effects of bisphenols accumulation in the human brain. Sci Rep. 2018;8:1–10.
CAS
Google Scholar
Radke EG, Galizia A, Thayer KA, Cooper GS. Phthalate exposure and metabolic effects: a systematic review of the human epidemiological evidence. Environ Int. 2019;132:1–17.
Google Scholar
Hetherington AW, Ranson SW. Hypothalamic lesions and adiposity in the rat. Anat Rec. 1940;78:149–72.
Google Scholar
Berthoud H-R. Homeostatic and Non-homeostatic Pathways Involved in the Control of Food Intake and Energy Balance. Obesity. 2006;14(197S):200S.
Google Scholar
Kullmann S, Heni M, Linder K, Zipfel S, Häring HU, Veit R, et al. Resting-state functional connectivity of the human hypothalamus. Hum Brain Mapp. 2014;35:6088–96.
PubMed
PubMed Central
Google Scholar
Dagher A, Neseliler S, Han JE. Appetite as motivated choice: Hormonal and environmental influences. Decis Neurosci An Integr Perspect. 2017:397–409.
Avery JA, Liu AG, Ingeholm JE, Riddell CD, Gotts SJ, Martin A. Taste quality representation in the human brain. BioRxiv. 2019;40:1042–52.
Google Scholar
Rolls ET. Taste, olfactory and food texture reward processing in the brain and the control of appetite. Proc Nutr Soc. 2012;71:488–501.
PubMed
Google Scholar
Li J, An R, Zhang Y, Li X, Wang S. Correlations of macronutrient-induced functional magnetic resonance imaging signal changes in human brain and gut hormone responses. Am J Clin Nutr. 2012;96:275–82.
CAS
PubMed
Google Scholar
Kyle Simmons W, Rapuano KM, Kallman SJ, Ingeholm JE, Miller B, Gotts SJ, et al. Category-specific integration of homeostatic signals in caudal but not rostral human insula. Nat Publ Gr. 2013;16:1551–2.
Google Scholar
Nitschke JB, Dixon GE, Sarinopoulos I, Short SJ, Cohen JD, Smith EE, et al. Altering expectancy dampens neural response to aversive taste in primary taste cortex. Nat Neurosci. 2006;9:435–42.
CAS
PubMed
Google Scholar
Wurtman J, Wurtman R. The Trajectory from Mood to Obesity. Curr Obes Rep. 2018;7:1–5.
PubMed
Google Scholar
Berthoud H, Münzberg H, Morrison C. Blaming the brain for obesity: Integration of hedonic and homeostatic mechanisms. Gastroenterology. 2017;152:1728–38.
PubMed
Google Scholar
Dallman MF. Stress-induced obesity and the emotional nervous system. Trends Endocrinol Metab. 2010;21:159–65.
CAS
PubMed
Google Scholar
Contreras-Rodríguez O, Martín-Pérez C, Vilar-López R, Verdejo-Garcia A. Ventral and Dorsal Striatum Networks in Obesity: Link to Food Craving and Weight Gain. Biol Psychiatry. 2017;81:789–96.
PubMed
Google Scholar
Lowe C, Reichelt A, HAll P. The Prefrontal Cortex and Obesity: A Health Neuroscience Perspective. Trends Cogn Sci. 2019;23:349–361.
Jansen JM, Daams JG, Koeter MWJ, Veltman DJ, Van Den Brink W, Goudriaan AE. Effects of non-invasive neurostimulation on craving: A meta-analysis. Neurosci Biobehav Rev. 2013;37:2472–80.
PubMed
Google Scholar
Jensen CD, Kirwan CB. Functional brain response to food images in successful adolescent weight losers compared with normal-weight and overweight controls. Obesity. 2015;23:630–6.
PubMed
Google Scholar
Volkow ND, Wise RA, Baler R. The dopamine motive system: implications for drug and food addiction. Nat Rev Neurosci. 2017;18:741–52.
CAS
PubMed
Google Scholar
Strasser B, Gostner JM, Fuchs D. Mood, food, and cognition: Role of tryptophan and serotonin. Curr Opin Clin Nutr Metab Care. 2016;19:55–61.
CAS
PubMed
Google Scholar
Parsons LH, Hurd YL. Endocannabinoid signalling in reward and addiction. Nat Rev Neurosci. 2015;16:579–94.
CAS
PubMed
PubMed Central
Google Scholar
Lovelace MD, Varney B, Sundaram G, Lennon MJ, Lim CK, Jacobs K, et al. Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology. 2017;112:373–88.
CAS
PubMed
Google Scholar
O’Farrell K, Harkin A. Stress-related regulation of the kynurenine pathway: Relevance to neuropsychiatric and degenerative disorders. Neuropharmacology. 2017;112:307–23.
PubMed
Google Scholar
Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, et al. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: Leads for future research and new drug developments in depression. Metab Brain Dis. 2009;24:27–53.
CAS
PubMed
Google Scholar
Luppino F, de Wit L, Bouvy P, Stijnen T, Cuijpers P, Penninx BW-J-H, et al. Overweight, Obesity, and Depression. A Systematic Review and Meta-analysis of Longitudinal Studies. Arch Gen Psychiatry. 2010;67:220–229.
Castro B, Sánchez P, Torres JM, Ortega E. Bisphenol A, bisphenol F and bisphenol S affect differently 5α-reductase expression and dopamine-serotonin systems in the prefrontal cortex of juvenile female rats. Environ Res. 2015;142:281–7.
CAS
PubMed
Google Scholar
Matsuda S, Matsuzawa D, Ishii D, Tomizawa H, Sajiki J, Shimizu E. Perinatal exposure to bisphenol A enhances contextual fear memory and affects the serotoninergic system in juvenile female mice. Horm Behav. 2013;63:709–16.
CAS
PubMed
Google Scholar
Matsuda S, Matsuzawa D, Ishii D, Tomizawa H, Sutoh C, Nakazawa K, et al. Effects of perinatal exposure to low dose of bisphenol A on anxiety like behavior and dopamine metabolites in brain. Prog Neuro-Psychopharmacology Biol Psychiatry. 2012;39:273–9.
CAS
Google Scholar
Naderi M, Kwong RWM. A comprehensive review of the neurobehavioral effects of bisphenol S and the mechanisms of action: New insights from in vitro and in vivo models. Environ Int. 2020;145:106078.
Matsumoto M, Kibe R, Ooga T, Aiba Y, Sawaki E, Koga Y, et al. Cerebral low-molecular metabolites influenced by intestinal microbiota: A pilot study. Front Syst Neurosci. 2013;7:1–19.
Google Scholar
Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J Psychiatr Res. 2008;43:164–74.
PubMed
Google Scholar
Heidari Z, Mohammadipour A, Haeri P, Ebrahimzadeh-Bideskan A. The effect of titanium dioxide nanoparticles on mice midbrain substantia nigra. Iran J Basic Med Sci. 2019;22:745–51.
PubMed
PubMed Central
Google Scholar
Hu R, Gong X, Duan Y, Li N, Che Y, Cui Y, et al. Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles. Biomaterials. 2010;31:8043–50.
CAS
PubMed
Google Scholar
Button EB, Mitchell AS, Domingos MM, Chung JHJ, Bradley RM, Hashemi A, et al. Microglial cell activation increases saturated and decreases monounsaturated fatty acid content, but both lipid species are proinflammatory. Lipids. 2014;49:305–16.
CAS
PubMed
Google Scholar
Gupta S, Knight AG, Gupta S, Keller JN, Bruce-Keller AJ. Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. J Neurochem. 2012;120:1060–71.
CAS
PubMed
PubMed Central
Google Scholar
Ze Y, Sheng L, Zhao X, Hong J, Ze X, Yu X, et al. TiO2 nanoparticles induced hippocampal neuroinflammation in mice. PLoS ONE. 2014;9:1–8.
Google Scholar
Hu R, Zheng L, Zhang T, Gao G, Cui Y, Cheng Z, et al. Molecular mechanism of hippocampal apoptosis of mice following exposure to titanium dioxide nanoparticles. J Hazard Mater. 2011;191:32–40.
CAS
PubMed
Google Scholar
Van Der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano. 2012;6:7427–42.
PubMed
Google Scholar
Węsierska M, Dziendzikowska K, Gromadzka-Ostrowska J, Dudek J, Polkowska-Motrenko H, Audinot JN, et al. Silver ions are responsible for memory impairment induced by oral administration of silver nanoparticles. Toxicol Lett. 2018;290:133–44.
PubMed
Google Scholar
Waegeneers N, De Vos S, Verleysen E, Ruttens A, Mast J. Estimation of the uncertainties related to the measurement of the size and quantities of individual silver nanoparticles in confectionery. Materials (Basel). 2019;12:2677.
CAS
Google Scholar
Shelby M. NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A. NTP CERHR MON. 2008;v:1‐64 passim.
Patisaul HB. Achieving CLARITY on bisphenol A, brain and behaviour. J Neuroendocrinol. 2020;32:1–12.
Google Scholar
Völkel W, Colnot T, Csanády GA, Filser JG, Dekant W. Metabolism and kinetics of bisphenol a in humans at low doses following oral administration. Chem Res Toxicol. 2002;15:1281–7.
PubMed
Google Scholar
Stahlhut RW, Welshons WV, Swan SH. Bisphenol A data in NHANES suggest longer than expected half-life, substantial nonfood exposure, or both. Environ Health Perspect. 2009;117:784–9.
CAS
PubMed
PubMed Central
Google Scholar
Pase CS, Metz VG, Roversi K, Roversi K, Vey LT, Dias VT, et al. Trans fat intake during pregnancy or lactation increases anxiety-like behavior and alters proinflammatory cytokines and glucocorticoid receptor levels in the hippocampus of adult offspring. Brain Res Bull. 2021;166:110–7.
CAS
PubMed
Google Scholar
Trevizol F, Roversi K, Dias VT, Roversi K, Pase CS, Barcelos RCS, et al. Influence of lifelong dietary fats on the brain fatty acids and amphetamine-induced behavioral responses in adult rat. Prog Neuro-Psychopharmacology Biol Psychiatry. 2013;45:215–22.
CAS
Google Scholar
Trevizol F, Roversi KR, Dias VT, Roversi K, Barcelos RCS, Kuhn FT, et al. Cross-generational trans fat intake facilitates mania-like behavior: Oxidative and molecular markers in brain cortex. Neuroscience. 2015;286:353–63.
CAS
PubMed
Google Scholar
Morris M, Tangney C. Dietary fat composition and dementia risk. Neurobiol Aging. 2014;35:S59–64.
CAS
PubMed
Google Scholar
Ginter E, Simko V. New data on harmful effects of trans-fatty acids. Bratisl Med J. 2016;117:251–3.
CAS
Google Scholar
Tang W, Zhu H, Feng Y, Guo R, Wan D. The impact of gut microbiota disorders on the blood–brain barrier. Infect Drug Resist. 2020;13:3351–63.
CAS
PubMed
PubMed Central
Google Scholar
Burger KS. Frontostriatal and behavioral adaptations to daily sugar-sweetened beverage intake: A randomized controlled trial. Am J Clin Nutr. 2017;105:555–63.
PubMed
PubMed Central
Google Scholar
Burger KS, Stice E. Frequent ice cream consumption is associated with reduced striatal response to receipt of an ice cream-based milkshake. Am J Clin Nutr. 2012;95:810–7.
CAS
PubMed
PubMed Central
Google Scholar
Johnson PM, Kenny PJ. Addiction-like reward dysfunction and compulsive eating in obese rats: Role for dopamine D2 receptors. Nat Neurosci. 2010;13:635–41.
CAS
PubMed
PubMed Central
Google Scholar
Yunker AG, Patel R, Page KA. Effects of Non-nutritive Sweeteners on Sweet Taste Processing and Neuroendocrine Regulation of Eating Behavior. Curr Nutr Rep. 2020;9:278–89.
CAS
PubMed
Google Scholar
Yeung AWK, Wong NSM. How does our brain process sugars and non-nutritive sweeteners differently: A systematic review on functional magnetic resonance imaging studies. Nutrients. 2020;12:1–14.
Google Scholar
Smeets PAM, De Graaf C, Stafleu A, Van Osch MJP, Van Der Grond J. Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. Am J Clin Nutr. 2005;82:1011–6.
CAS
PubMed
Google Scholar
van Opstal AM, Kaal I, van den Berg-Huysmans AA, Hoeksma M, Blonk C, Pijl H, et al. Dietary sugars and non-caloric sweeteners elicit different homeostatic and hedonic responses in the brain. Nutrition. 2019;60:80–6.
PubMed
Google Scholar
Van Opstal AM, Hafkemeijer A, van den Berg-Huysmans AA, Hoeksma M, Mulder TPJ, Pijl H, et al. Brain activity and connectivity changes in response to nutritive natural sugars, non-nutritive natural sugar replacements and artificial sweeteners. Nutr Neurosci. 2021;24:395–405.
PubMed
Google Scholar
Rudenga K, Small D. Amygdala response to sucrose consumption is inversely related to artificial sweetener use. Appetite. 2012;58:504–7.
CAS
PubMed
Google Scholar
Crézé C, Candal L, Cros J, Knebel JF, Seyssel K, Stefanoni N, et al. The impact of caloric and non-caloric sweeteners on food intake and brain responses to food: A randomized crossover controlled trial in healthy humans. Nutrients. 2018;10:615.
PubMed Central
Google Scholar
Crézé C, Notter-Bielser ML, Knebel JF, Campos V, Tappy L, Murray M, et al. The impact of replacing sugar- by artificially-sweetened beverages on brain and behavioral responses to food viewing – An exploratory study. Appetite. 2018;123:160–8.
PubMed
Google Scholar
Folkvord F, Hermans RCJ. Food Marketing in an Obesogenic Environment: a Narrative Overview of the Potential of Healthy Food Promotion to Children and Adults. Curr Addict Reports. 2020;7:431–6.
Google Scholar
Motoki K, Suzuki S. Extrinsic Factors Underlying Food Valuation in the Human Brain. Front Behav Neurosci. 2020;14:1–7.
Google Scholar
Cairns G, Angus K, Hastings G, Caraher M. Systematic reviews of the evidence on the nature, extent and effects of food marketing to children. A retrospective summary Appetite. 2013;62:209–15.
PubMed
Google Scholar
Story M, French S. International Journal of Behavioral Food Advertising and Marketing Directed at Children and Adolescents in the US. Int J Behav Nutr Phys Act. 2004;17:1–17.
Google Scholar
Khonje MG, Ecker O, Qaim M. Effects of modern food retailers on adult and child diets and nutrition. Nutrients. 2020;12:1–17.
Google Scholar
Kelly B, Vandevijvere S, Ng SH, Adams J, Allemandi L, Bahena-Espina L, et al. Global benchmarking of children’s exposure to television advertising of unhealthy foods and beverages across 22 countries. Obes Rev. 2019;20:116–28.
PubMed
PubMed Central
Google Scholar
Spence C, Okajima K, Cheok AD, Petit O, Michel C. Eating with our eyes: From visual hunger to digital satiation. Brain Cogn. 2016;110:53–63.
PubMed
Google Scholar
Pelchat ML, Johnson A, Chan R, Valdez J, Ragland JD. Images of desire: Food-craving activation during fMRI. Neuroimage. 2004;23:1486–93.
PubMed
Google Scholar
Simmons WK, Martin A, Barsalou LW. Pictures of appetizing foods activate gustatory cortices for taste and reward. Cereb Cortex. 2005;15:1602–8.
PubMed
Google Scholar
Burger KS, Stice E. Neural responsivity during soft drink intake, anticipation, and advertisement exposure in habitually consuming youth. Obes (Silver Spring). 2014;22:441–50.
CAS
Google Scholar
Bruce AS, Lepping RJ, Bruce JM, Cherry JBC, Martin LE, Davis AM, et al. Brain responses to food logos in obese and healthy weight children. J Pediatr. 2013;162:759-764.e2.
PubMed
Google Scholar
Bruce AS, Bruce JM, Black WR, Lepping RJ, Henry JM, Bradley J, et al. Branding and a child’s brain: an fMRI study of neural responses to logos. Soc Cogn Affect Neurosci. 2014;9:118–22.
PubMed
Google Scholar
Masterson TD, Stein WM, Beidler E, Bermudez M, English LK, Keller KL. Brain response to food brands correlates with increased intake from branded meals in children: an fMRI study. Brain Imaging Behav. 2019;13:1035–48.
PubMed
PubMed Central
Google Scholar
Gearhardt AN, Yokum S, Harris JL, Epstein LH, Lumeng JC. Neural response to fast food commercials in adolescents predicts intake. Am J Clin Nutr. 2020;111:493–502.
PubMed
PubMed Central
Google Scholar
Gearhardt AN, Yokum S, Stice E, Harris JL, Brownell KD. Relation of obesity to neural activation in response to food commercials. Soc Cogn Affect Neurosci. 2014;9:932–8.
PubMed
Google Scholar
McClure SM, Li J, Tomlin D, Cypert KS, Montague LM, Montague PR. Neural correlates of behavioral preference for culturally familiar drinks. Neuron. 2004;44:379–87.
CAS
PubMed
Google Scholar
Stice E, Burger KS, Yokum S. Reward Region Responsivity Predicts Future Weight Gain and Moderating Effects of the TaqIA Allele. J Neurosci. 2015;35:10316–3024.
CAS
PubMed
PubMed Central
Google Scholar
Hall PA, Lowe C, Vincent C. Executive control resources and snack food consumption in the presence of restraining versus facilitating cues. J Behav Med. 2014;37:587–94.
PubMed
Google Scholar
Jensen CD, Duraccio KM, Carbine KA, Barnett KA, Kirwan CB. Motivational impact of palatable food correlates with functional brain responses to food images in adolescents. J Pediatr Psychol. 2017;42:578–87.
PubMed
Google Scholar
Lawrence NS, Hinton EC, Parkinson JA, Lawrence AD. Nucleus accumbens response to food cues predicts subsequent snack consumption in women and increased body mass index in those with reduced self-control. Neuroimage. 2012;63:415–22.
PubMed
Google Scholar
Liang P, Jiang J, Ding Q, Tang X, Roy S. Memory load influences taste sensitivities. Front Psychol. 2018;9:1–7.
Google Scholar
Hansen H, Melbye EL. Negative Information, Cognitive Load, and Taste Perceptions. J Food Prod Mark. 2020;26:185–96.
Google Scholar
Machín L, Antúnez L, Curutchet MR, Ares G. The heuristics that guide healthiness perception of ultra-processed foods: A qualitative exploration. Public Health Nutr. 2020;23:2932–40.
PubMed
Google Scholar
Grabenhorst F, Rolls ET, Bilderbeck A. How cognition modulates affective responses to taste and flavor: Top-down influences on the orbitofrontal and pregenual cingulate cortices. Cereb Cortex. 2008;18:1549–59.
PubMed
Google Scholar
Patton GC, Sawyer SM, Santelli JS, Ross DA, Afifi R, Allen NB, et al. Our future: a Lancet commission on adolescent health and wellbeing. Lancet. 2016;387:2423–78.
PubMed
PubMed Central
Google Scholar
Tymula A, Rosenberg Belmaker LA, Roy AK, Ruderman L, Manson K, Glimcher PW, et al. Adolescents’ risk-taking behavior is driven by tolerance to ambiguity. Proc Natl Acad Sci U S A. 2012;109:17135–40.
CAS
PubMed
PubMed Central
Google Scholar