Skip to main content

Advertisement

Log in

A systematic review of multimodal clinical biomarkers in the management of thyroid eye disease

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Thyroid Eye Disease (TED) is an autoimmune disease that affects the extraocular muscles and periorbital fat. It most commonly occurs with Graves’ Disease (GD) as an extrathyroidal manifestation, hence, it is also sometimes used interchangeably with Graves’ Ophthalmopathy (GO). Well-known autoimmune markers for GD include thyroid stimulating hormone (TSH) receptor antibodies (TSH-R-Ab) which contribute to hyperthyroidism and ocular signs. Currently, apart from radiological investigations, detection of TED is based on clinical signs and symptoms which is largely subjective, with no established biomarkers which could differentiate TED from merely GD. We evaluated a total of 28 studies on potential biomarkers for diagnosis of TED. Articles included were published in English, which investigated clinical markers in tear fluid, orbital adipose-connective tissues, orbital fibroblasts and extraocular muscles, serum, thyroid tissue, as well as imaging biomarkers. Results demonstrated that biomarkers with reported diagnostic power have high sensitivity and specificity for TED, including those using a combination of biomarkers to differentiate between TED and GD, as well as the use of magnetic resonance imaging (MRI). Other biomarkers which were upregulated include cytokines, proinflammatory markers, and acute phase reactants in subjects with TED, which are however, deemed less specific to TED. Further clinical investigations for these biomarkers, scrutinising their specificity and sensitivity on a larger sample of patients, may point towards selection of suitable biomarkers for aiding detection and prognosis of TED in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors agree to make all materials, data, and associated protocols promptly available to readers without undue qualifications in material transfer agreements.

Abbreviations

ADAMTS14:

ADAM metallopeptidase with thrombospondin type 1 motif 14

ADH1B:

Alcohol dehydrogenase 1B

ALDH2:

Aldehyde dehydrogenase 2

AS:

Ankylosing spondylitis

AOC3:

Metalloproteinase semicarbazide-sensitive amine oxidase 3

ApoE:

Apolipoprotein E

AUC:

Area under curve

AZGP1:

Zinc-alpha-2 glycoprotein

C3:

Complement 3

C4A:

Complement 4A

CA-1:

Carbonic anhydrase 1

CA-2:

Carbonic anhydrase 2

CALR:

Calreticulin

CAS:

Clinical activity score

CDCA5:

Cell division cycle associated 5

COL2A1:

Collagen type II alpha I

COL11A2:

Collagen type XI alpha 2

CSRP3:

Cysteine and glycine rich protein 3

CYR61:

Cysteine-rich angiogenic inducer 61

ECM:

Extracellular matrix

ELISA:

Enzyme-linked immunosorbent assay

EOM:

Extraocular muscles

ER:

Endoplasmic reticulum

EUGOGO:

European Group on Graves’ Orbitopathy

FCN1:

Ficolin 1

G proteins:

Guanine nucleotide-binding proteins

GC:

Glucocorticoid

GD:

Graves’ disease

GO:

Graves’ ophthalmopathy

GPDH:

Glycerol-3-phosphate dehydrogenase

GR \(\alpha\) :

Glucocorticoid receptor alpha

GSK-3 \(\beta\) :

Glycogen synthase kinase 3 beta

HIF-1 \(\alpha\) :

Hypoxia-induced factor 1\(\alpha\) 

HMGB1:

High-mobility group box 1

HSP 60:

Heat shock protein 60

IDH:

Isocitrate dehydrogenase

IFN-\(\gamma\) :

Interferon gamma

IGF-1:

Insulin-like growth factor-1

IgKC:

Immunoglobulin kappa chain C region

IHC:

Immunohistochemistry

IL:

Interleukin

IMP:

Inosine monophosphate

KIF:

Kinesin family member

LACRT:

Lacritin

LCN1:

Lipocalin 1

LDLR:

Low-density lipoprotein receptor

LGH:

Lacrimal gland herniation

LYZ:

Lysozyme C

MCP-1:

Monocyte chemoattractant protein-1

MHC:

Major histocompatibility complex

MKI67:

Marker of proliferation Ki-67

MMP:

Matrix metalloproteinase

mTOR:

Mammalian target of rapamycin

MRI:

Magnetic resonance imaging

MYH:

Myosin heavy chain

NADPH:

Micotinamide adenine dinucleotide phosphate

NCAPRP:

Nasopharyngeal carcinoma-associated proline-rich protein 4

NLR:

Neutrophil-to-lymphocyte ratio

NPV:

Negative predictive value

P4HB:

Protein disulphide-isomerase

PCR:

Polymerase chain reaction

PCSK9:

Proprotein convertase subtilisin/kexin type 9

PDIA3:

Protein disulfide-isomerase A3

PI3k:

Phosphatidylinositol-3-kinase

PIP:

Prolactin induced protein

POCT:

Point-of-care testing

POTEI:

POTE ankyrin domain family member 1

PPAR:

Peroxisome proliferator-activated receptors

PPV:

Positive predictive value

PRC1:

Protein regulator of cytokinesis 1

PROL1:

Proline-rich protein 1

PROL4:

Proline-rich protein 4

PRP4:

Proline-rich protein 4

PTX3:

Pentraxin 3

RAGE:

Receptor for advanced glycation end product

RAI:

Radioactive iodine

RT-PCR:

Reverse transcriptase polymerase chain reaction

ROC:

Receiver operator characteristic

ROS:

Reactive oxygen species

S100A4:

S100 calcium binding protein A4

S100A8:

Calgranulin A

S100A8/A9:

Calprotectin

SIR:

Signal intensity ratio

SLE:

Systemic lupus erythematosus

SMC3:

Structural maintenance of chromosomes protein 3

SMCA4:

Transcription-activator BRG1

SOD:

Superoxide dismutase

SRR:

Specimen-to-reference ratio

TAO:

Thyroid-associated orbitopathy

TBII:

Thyroid stimulating hormone receptor binding inhibitory immunoglobulin

TED:

Thyroid eye disease

TER ATPase:

Transitional endoplasmic reticulum ATPase

TIRTCS :

T1 relaxation time cold spot

TLR:

Toll-like receptor

TNF-\(\alpha\) :

Tumour necrosis factor alpha

TNF AIP6:

Tumour necrosis factor alpha-induced protein 6

TPX2:

Targeting protein for the Xenopuskinesinxklp2

TRAb:

Thyroid stimulating hormone receptor antibodies

TSH:

Thyroid stimulating hormone

TSHR:

Thyroid stimulating hormone receptor

TSH-R-Ab:

Thyroid stimulating hormone receptor antibody

TSI:

Thyroid stimulating hormone receptor stimulating immunoglobulin

TWEAK:

Tumour necrosis factor-like weak inducer of apoptosis

UBR1:

Ubiquitin-protein ligase E3 component N-recognin 1

VCAN:

Versican

WBC:

White blood cell

ZNF263:

Zinc finger protein 263

References

  1. Genere N, Stan MN. Current and emerging treatment strategies for Graves’ orbitopathy. Drugs. 2019;79:109–24.

    Article  CAS  PubMed  Google Scholar 

  2. Bahn RS, Heufelder AE. Pathogenesis of Graves’ ophthalmopathy. N Engl J Med. 1993;329:1468–75.

    Article  CAS  PubMed  Google Scholar 

  3. Bahn RS. Graves’ ophthalmopathy. N Engl J Med. 2010;362:726–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kahaly GJ, Diana T. TSH receptor antibody functionality and nomenclature. Front Endocrinol (Lausanne). 2017;8:28.

    Article  Google Scholar 

  5. Khoo TK, Bahn RS. Pathogenesis of Graves’ ophthalmopathy: The role of autoantibodies. Thyroid. 2007;17:1013–8.

    Article  CAS  PubMed  Google Scholar 

  6. Bartalena L, Baldeschi L, Dickinson A, Eckstein A, Kendall-Taylor P, Marcocci C, Mourits M, Perros P, Boboridis K, Boschi A, Curro N. Consensus statement of the European Group on Graves’ orbitopathy (EUGOGO) on management of GO. Eur J Endocrinol. 2008;158:273–85.

    Article  CAS  PubMed  Google Scholar 

  7. Bartalena L, Marcocci C, Bogazzi F, Manetti L, Tanda ML, Dell’Unto E, Bruno-Bossio G, Nardi M, Bartolomei MP, Lepri A, Rossi G. Relation between therapy for hyperthyroidism and the course of Graves’ ophthalmopathy. N Engl J Med. 1998;338:73–8.

    Article  CAS  PubMed  Google Scholar 

  8. Acharya SH, Avenell A, Philip S, Burr J, Bevan JS, Abraham P. Radioiodine therapy (RAI) for Graves’ disease (GD) and the effect on ophthalmopathy: a systematic review. Clin Endocrinol. 2008;69:943–50.

    Article  Google Scholar 

  9. Traisk F, Tallstedt L, Abraham-Nordling M, Andersson T, Berg G, Calissendorff J, Hallengren B, Hedner P, Lantz M, Nystrom E, Ponjavic V. Thyroid-associated ophthalmopathy after treatment for Graves’ hyperthyroidism with antithyroid drugs or iodine-131. J Clin Endocrinol Metab. 2009;94:3700–7.

    Article  CAS  PubMed  Google Scholar 

  10. Bartalena L, Kahaly GJ, Baldeschi L, Dayan CM, Eckstein A, Marcocci C, et al. The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur J Endocrinol. 2021;185(4):G43–67.

    Article  CAS  PubMed  Google Scholar 

  11. Doumit G, Abouhassan W, Yaremchuk MJ. Aesthetic refinements in the treatment of graves ophthalmopathy. Plast Reconstr Surg. 2014;134:519–26.

    Article  CAS  PubMed  Google Scholar 

  12. Gerding MN, Terwee CB, Dekker FW, Koornneef L, Prummel MF, Wiersinga WM. Quality of life in patients with Graves’ ophthalmopathy is markedly decreased: Measurement by the medical outcomes study instrument. Thyroid. 1997;7:885–9.

    Article  CAS  PubMed  Google Scholar 

  13. Barrio-Barrio J, Sabater AL, Bonet-Farriol E. Velázquez-Villoria Á, Galofré JC. Graves’ ophthalmopathy: VISA versus EUGOGO classification, assessment, and management. J Ophthalmol. 2015;2015.

  14. Ebbo M, Patient M, Grados A, Groh M, Desblaches J, Hachulla E, et al. Ophthalmic manifestations in IgG4-related disease: Clinical presentation and response to treatment in a French case-series. Medicine (Baltimore). 2017;96(10):e6205.

  15. Costa RM, Dumitrascu OM, Gordon LK. Orbital myositis: Diagnosis and management. Curr Allergy Asthma Rep. 2009;9:316–23.

    Article  PubMed  Google Scholar 

  16. Chaudhry IA, Shamsi FA, Arat YO, Riley FC. Orbital pseudotumor: distinct diagnostic features and management. Middle East African J Ophthalmol. 2008;15:17.

  17. Goldberg RA, Rootman J, Cline RA. Tumors metastatic to the orbit: a changing picture. Surv Ophthalmol. 1990;35:1–24.

    Article  CAS  PubMed  Google Scholar 

  18. Eckstein AK, Plicht M, Lax H, Neuhäuser M, Mann K, Lederbogen S, Heckmann C, Esser J, Morgenthaler NG. Thyrotropin receptor autoantibodies are independent risk factors for Graves’ ophthalmopathy and help to predict severity and outcome of the disease. J Clin Endocrinol Metab. 2006;91:3464–70.

    Article  CAS  PubMed  Google Scholar 

  19. Stan MN, Bahn RS. Risk factors for development or deterioration of Graves’ ophthalmopathy. Thyroid. 2010;20:777–83.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hegedüs L, Brix TH, Vestergaard P. Relationship between cigarette smoking and Graves’ ophthalmopathy. J Endocrinol Invest. 2004;27:265–71.

    Article  Google Scholar 

  21. Schott M, Morgenthaler NG, Fritzen R, Feldkamp J, Willenberg HS, Scherbaum WA, Seissler J. Levels of autoantibodies against human TSH receptor predict relapse of hyperthyroidism in Graves’ disease. Horm Metab Res. 2004;36:96–2.

  22. Seo S, Robledo MS. Usefulness of TSH receptor antibodies as biomarkers for Graves’ ophthalmopathy: a systematic review. J Endocrinol Invest. 2018;41:1457–68.

    Article  CAS  PubMed  Google Scholar 

  23. Kahaly GJ, Diana T, Kanitz M, Frommer L, Olivo PD. Prospective trial of functional thyrotropin receptor antibodies in Graves’ disease. J Clin Endocrinol Metab. 2020;105(4).

  24. George A, Diana T, Langericht J, Kahaly GJ. Stimulatory thyrotropin receptor antibodies are a biomarker for Graves’ orbitopathy. Front Endocrinol (Lausanne). 2020;11:629925.

  25. Matheis N, Grus FH, Breitenfeld M, Knych I, Funke S, Pitz S, et al. Proteomics differentiate between thyroid-associated orbitopathy and dry eye syndrome. Invest Ophthalmol Vis Sci. 2015;56(4):2649–56.

    Article  CAS  PubMed  Google Scholar 

  26. Matheis N, Okrojek R, Grus FH, Kahaly GJ. Proteomics of tear fluid in thyroid-associated orbitopathy. Thyroid. 2012;22(10):1039–45.

    Article  CAS  PubMed  Google Scholar 

  27. Dickinson DP, Thiesse M. A major human lacrimal gland mRNA encodes a new proline-rich protein family member. Invest Ophthalmol Vis Sci. 1995;36:2020–31.

    CAS  PubMed  Google Scholar 

  28. Perumal N, Funke S, Wolters D, Pfeiffer N, Grus FH. Characterization of human reflex tear proteome reveals high expression of lacrimal proline-rich protein 4 (PRR4). Proteomics. 2015;15:3370–81.

    Article  CAS  PubMed  Google Scholar 

  29. Kahaly GJ, Bang H, Berg W, Dittmar M. Alpha-fodrin as a putative autoantigen in Graves’ ophthalmopathy. Clin Exp Immunol. 2005;140:166–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chng CL, Seah LL, Yang M, Shen SY, Koh SK, Gao Y, et al. Tear proteins calcium binding protein A4 (S100A4) and prolactin induced protein (PIP) are potential biomarkers for thyroid eye disease. Sci Rep. 2018;8(1):16936.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Torsteinsdóttir I, Håkansson L, Hällgren R, Gudbjörnsson B, Arvidson NG, Venge P. Serum lysozyme: a potential marker of monocyte/macrophage activity in rheumatoid arthritis. Rheumatology. 1999;38(12):1249–54.

  32. Ihedioha OC, Shiu RP, Uzonna JE, Myal Y. Prolactin-inducible protein: From breast cancer biomarker to immune modulator—novel insights from knockout mice. DNA Cell Biol. 2016;35:537–41.

    Article  CAS  PubMed  Google Scholar 

  33. Aass C, Norheim I, Eriksen EF, Bornick EC, Thorsby PM, Pepaj M. Establishment of a tear protein biomarker panel differentiating between Graves’ disease with or without orbitopathy. PLoS One. 2017;12(4):e0175274.

  34. Aass C, Norheim I, Eriksen EF, Bornick EC, Thorsby PM, Pepaj M. Comparative proteomic analysis of tear fluid in Graves’ disease with and without orbitopathy. Clin Endocrinol (Oxf). 2016;85(5):805–12.

    Article  CAS  Google Scholar 

  35. Baker GR, Morton M, Rajapaska RS, Bullock M, Gullu S, Mazzi B, Ludgate M. Altered tear composition in smokers and patients with graves ophthalmopathy. Arch Ophthalmol. 2006;124:1451–6.

    Article  CAS  PubMed  Google Scholar 

  36. Hassan MI, Waheed A, Yadav S, Singh TP, Ahmad F. Zinc alpha 2-glycoprotein: a multidisciplinary protein. Mol Cancer Res. 2008;6(6):892–906.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang LH, Wei RL. Analysis of Graves’ ophthalmopathy patients’ tear protein spectrum. Chin Med J. 2013;126:4493–8.

    CAS  PubMed  Google Scholar 

  38. Taverna M, Marie AL, Mira JP, Guidet B. Specific antioxidant properties of human serum albumin. Ann Intensive Care. 2013;3:1–7.

    Article  CAS  Google Scholar 

  39. Ananthi S, Chitra T, Bini R, Prajna NV, Lalitha P, Dharmalingam K. Comparative analysis of the tear protein profile in mycotic keratitis patients. Mol Vis. 2008;14:500.

  40. Wassélius J, Håkansson K, Johansson K, Abrahamson M, Ehinger B. Identification and localization of retinal cystatin C. Invest Ophthalmol Vis Sci. 2001;42(8):1901–6.

  41. Padmanabhan J, Levy M, Dickson DW, Potter H. Alpha1-antichymotrypsin, an inflammatory protein overexpressed in Alzheimer’s disease brain, induces tau phosphorylation in neurons. Brain. 2006;129:3020–34.

    Article  PubMed  Google Scholar 

  42. Kishazi E, Dor M, Eperon S, Oberic A, Hamedani M, Turck N. Thyroid-associated orbitopathy and tears: a proteomics study. J Proteomics. 2018;170:110–6.

    Article  CAS  PubMed  Google Scholar 

  43. Yoshida A, Hsu LC, Davé V. Retinal oxidation activity and biological role of human cytosolic aldehyde dehydrogenase. Enzyme. 1992;46:239–44.

    Article  CAS  PubMed  Google Scholar 

  44. Heizmann CW, Fritz G, Schafer BW. S100 proteins: Structure, functions, and pathology. Front Biosci. 2002;7:1356–68.

    Google Scholar 

  45. Li J, Riau AK, Setiawan M, Mehta JS, Ti SE, Tong L, Tan DT, Beuerman RW. S100A expression in normal corneal-limbal epithelial cells and ocular surface squamous cell carcinoma tissue. Mol Vision. 2011;17:2263.

  46. Yang M, Chung Y, Lang S, Yawata N, Seah LL, Looi A. The tear cytokine profile in patients with active Graves’ orbitopathy. Endocrine. 2018;59(2):402–9.

    Article  CAS  PubMed  Google Scholar 

  47. Roato I, Brunetti G, Gorassini E, Grano M, Colucci S, Bonello L, et al. IL-7 up-regulates TNF-alpha-dependent osteoclastogenesis in patients affected by solid tumor. PLoS One. 2006;1:e124.

  48. Cai K, Wei R. Interleukin-7 expression in tears and orbital tissues of patients with Graves’ ophthalmopathy. Endocrine. 2013;44:140–4.

  49. Matheis N, Lantz M, Grus FH, Ponto KA, Wolters D, Brorson H, et al. Proteomics of orbital tissue in thyroid-associated orbitopathy. J Clin Endocrinol Metab. 2015;100(12):E1523–30.

    Article  CAS  PubMed  Google Scholar 

  50. Rammensee HG, Robinson PJ, Crisanti A, Bevan MJ. Restricted recognition of β 2-microglobulin by cytotoxic T lymphocytes. Nature. 1986;319:502–4.

    Article  CAS  PubMed  Google Scholar 

  51. Demaria S, Bushkin Y. CD8 and β 2-microglobulin-free MHC class I molecules in T cell immunoregulation. Int J Clin Lab Res. 1993;23:61–9.

    Article  CAS  PubMed  Google Scholar 

  52. Carroll MC. The complement system in regulation of adaptive immunity. Nat Immunol. 2004;5:981–6.

    Article  CAS  PubMed  Google Scholar 

  53. Richardson MR, Segu ZM, Price MO, Lai X, Witzmann FA, Mechref Y, Yoder MC, Price FW. Alterations in the aqueous humor proteome in patients with Fuchs endothelial corneal dystrophy. Mol Vis. 2010;16:2376.

  54. Wiersinga WM. Advances in treatment of active, moderate-to-severe Graves’ ophthalmopathy. Lancet Diabetes Endocrinol. 2017;5:134–42.

    Article  CAS  PubMed  Google Scholar 

  55. Kleinau G, Worth CL, Kreuchwig A, Biebermann H, Marcinkowski P, Scheerer P, Krause G. Structural–functional features of the thyrotropin receptor: a class A G-protein-coupled receptor at work. Front Endocrinol. 2017;8:86.

  56. Cheng KC, Huang HH, Hung CT, Chen CC, Wu WC, Suen JL, et al. Proteomic analysis of the differences in orbital protein expression in thyroid orbitopathy. Graefes Arch Clin Exp Ophthalmol. 2013;251(12):2777–87.

    Article  CAS  PubMed  Google Scholar 

  57. Žarković M. The role of oxidative stress on the pathogenesis of Graves’ disease. J Thyroid Res. 2012;2012.

  58. Hondur A, Konuk O, Dincel AS, Bilgihan A, Unal M, Hasanreisoglu B. Oxidative stress and antioxidant activity in orbital fibroadipose tissue in Graves’ ophthalmopathy. Curr Eye Res. 2008;33:421–7.

    Article  CAS  PubMed  Google Scholar 

  59. Raz A, Nakahara S. Biological modulation by lectins and their ligands in tumor progression and metastasis. Anti-Cancer Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2008;8:22–36.

  60. Jalkanen S, Karikoski M, Mercier N, Koskinen K, Henttinen T, Elima K, Salmivirta K, Salmi M. The oxidase activity of vascular adhesion protein-1 (VAP-1) induces endothelial E-and P-selectins and leukocyte binding. Blood J Am Soc Hematol. 2007;110:1864–70.

    CAS  Google Scholar 

  61. Mou P, Chen Z, Jiang L, Cheng J, Wei R. PTX3: a potential biomarker in thyroid associated ophthalmopathy. Biomed Res Int. 2018;2018:5961974.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kim JW, Ko J, Kim J, Yoon JS. Proinflammatory effects of calprotectin in Graves’ orbitopathy. Ocul Immunol Inflamm. 2020;28(1):156–63.

    Article  CAS  PubMed  Google Scholar 

  63. Han SY, Choi SH, Shin JS, Lee EJ, Han SH, Yoon JS. High-mobility group box 1 is associated with the inflammatory pathogenesis of graves’ orbitopathy. Thyroid. 2019;29(6):868–78.

    Article  CAS  PubMed  Google Scholar 

  64. Abdulahad DA, Westra J, Bijzet J, Limburg PC, Kallenberg CG, Bijl M. High mobility group box 1 (HMGB1) and anti-HMGB1 antibodies and their relation to disease characteristics in systemic lupus erythematosus. Arthritis Res Ther. 2011;13:1–9.

    Article  CAS  Google Scholar 

  65. Cheng KC, Hung CT, Cheng KY, Chen KJ, Wu WC, Suen JL, et al. Proteomic surveillance of putative new autoantigens in thyroid orbitopathy. Br J Ophthalmol. 2015;99(11):1571–6.

    Article  PubMed  Google Scholar 

  66. Chang X, Han J, Zhao Y, Yan X, Sun S, Cui Y. Increased expression of carbonic anhydrase I in the synovium of patients with ankylosing spondylitis. BMC Musculoskelet Disord. 2010;11:1–11.

    Article  Google Scholar 

  67. Ma Y, Gaken J, McFarlane BM, Foss Y, Farzaneh F, McFarlane IG, Mieli-Vergani G, Vergani D. Alcohol dehydrogenase: a target of humoral autoimmune response in liver disease. Gastroenterology. 1997;112:483–92.

    Article  CAS  PubMed  Google Scholar 

  68. Woo YJ, Seo Y, Kim JJ, Kim JW, Park Y, Yoon JS. Serum CYR61 is associated with disease activity in Graves’ orbitopathy. Ocul Immunol Inflamm. 2018;26(7):1094–100.

    Article  CAS  PubMed  Google Scholar 

  69. Löbel M, Bauer S, Meisel C, Eisenreich A, Kudernatsch R, Tank J, Rauch U, Kühl U, Schultheiss HP, Volk HD, Poller W. CCN1: a novel inflammation-regulated biphasic immune cell migration modulator. Cell Mol Life Sci. 2012;69:3101–13.

    Article  PubMed  CAS  Google Scholar 

  70. Zhang Q, Wu J, Cao Q, Xiao L, Wang L, He D, et al. A critical role of Cyr61 in interleukin-17-dependent proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2009;60(12):3602–12.

    Article  CAS  PubMed  Google Scholar 

  71. Lin J, Zhou Z, Huo R, Xiao L, Ouyang G, Wang L, et al. Cyr61 induces IL-6 production by fibroblast-like synoviocytes promoting Th17 differentiation in rheumatoid arthritis. J Immunol. 2012;188(11):5776–84.

    Article  CAS  PubMed  Google Scholar 

  72. Ji DY, Park SH, Park SJ, Kim KH, Ku CR, Shin DY, et al. Comparative assessment of Graves’ disease and main extrathyroidal manifestation, Graves’ ophthalmopathy, by non-targeted metabolite profiling of blood and orbital tissue. Sci Rep. 2018;8(1):9262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Wu L, Zhang S, Li X, Yao J, Ling L, Huang X, et al. Integrative transcriptomics and proteomic analysis of extraocular muscles from patients with thyroid-associated ophthalmopathy. Exp Eye Res. 2020;193:107962.

  74. Hynes RO. The extracellular matrix: Not just pretty fibrils. Science. 2009;326(5957):1216–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Naik V, Khadavi N, Naik MN, Hwang C, Goldberg RA, Tsirbas A, Smith TJ, Douglas RS. Biologic therapeutics in thyroid-associated ophthalmopathy: Translating disease mechanism into therapy. Thyroid. 2008;18:967–71.

    Article  CAS  PubMed  Google Scholar 

  76. Lee SJ, Kim J, Ko J, Lee EJ, Koh HJ, Yoon JS. Tumor necrosis factor-like weak inducer of apoptosis induces inflammation in Graves’ orbital fibroblasts. PLoS One. 2018;13(12):e0209583.

  77. Lee GE, Kim J, Lee JS, Ko J, Lee EJ, Yoon JS. Role of proprotein convertase subtilisin/kexin type 9 in the pathogenesis of Graves’ orbitopathy in orbital fibroblasts. Front Endocrinol (Lausanne). 2020;11:607144.

  78. Ding Z, Liu S, Wang X, Deng X, Fan Y, Shahanawaz J, et al. Cross-talk between LOX-1 and PCSK9 in vascular tissues. Cardiovasc Res. 2015;107(4):556–67.

    Article  PubMed  Google Scholar 

  79. Ding Z, Liu S, Wang X, Theus S, Deng X, Fan Y, et al. PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Cardiovasc Res. 2018;114(8):1145–53.

    Article  CAS  PubMed  Google Scholar 

  80. Gortz GE, Horstmann M, Aniol B, Reyes BD, Fandrey J, Eckstein A, et al. Hypoxia-dependent HIF-1 activation impacts on tissue remodeling in Graves’ ophthalmopathy-implications for smoking. J Clin Endocrinol Metab. 2016;101(12):4834–42.

    Article  PubMed  CAS  Google Scholar 

  81. Yoon JS, Lee HJ, Choi SH, Chang EJ, Lee SY, Lee EJ. Quercetin inhibits IL-1beta-induced inflammation, hyaluronan production and adipogenesis in orbital fibroblasts from Graves’ orbitopathy. PLoS One. 2011;6(10):e26261.

  82. Celik T. Neutrophil-to-lymphocyte ratio in thyroid ophthalmopathy. Bratisl Lek Listy. 2017;118(8):495–8.

    CAS  PubMed  Google Scholar 

  83. Templeton AJ, McNamara MG, Seruga B, Vera-Badillo FE, Aneja P, Ocana A, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst. 2014;106(6):dju124.

  84. Magna M, Pisetsky DS. The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol Med. 2014;20:138–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Zhang L, Masetti G, Colucci G, Salvi M, Covelli D, Eckstein A, et al. Combining micro-RNA and protein sequencing to detect robust biomarkers for Graves’ disease and orbitopathy. Sci Rep. 2018;8(1):8386.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev. 2011;91(1):151–75.

    Article  CAS  PubMed  Google Scholar 

  87. Kumar S, Nadeem S, Stan MN, Coenen M, Bahn RS. A stimulatory TSH receptor antibody enhances adipogenesis via phosphoinositide 3-kinase activation in orbital preadipocytes from patients with Graves’ ophthalmopathy. J Mol Endocrinol. 2011;46(3):155–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang L, Paddon C, Lewis MD, Grennan-Jones F, Ludgate M. Gsalpha signalling suppresses PPARgamma2 generation and inhibits 3T3L1 adipogenesis. J Endocrinol. 2009;202(2):207–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kahaly GJ, Wuster C, Olivo PD, Diana T. High titers of thyrotropin receptor antibodies are associated with orbitopathy in patients with Graves’ disease. J Clin Endocrinol Metab. 2019;104(7):2561–8.

    Article  PubMed  Google Scholar 

  90. Ponto KA, Kanitz M, Olivo PD, Pitz S, Pfeiffer N, Kahaly GJ. Clinical relevance of thyroid-stimulating immunoglobulins in Graves’ ophthalmopathy. Ophthalmology. 2011;118(11):2279–85.

    Article  PubMed  Google Scholar 

  91. Lytton SD, Ponto KA, Kanitz M, Matheis N, Kohn LD, Kahaly GJ. A novel thyroid stimulating immunoglobulin bioassay is a functional indicator of activity and severity of Graves’ orbitopathy. J Clin Endocrinol Metab. 2010;95(5):2123–31.

    Article  CAS  PubMed  Google Scholar 

  92. Kampmann E, Diana T, Kanitz M, Hoppe D, Kahaly GJ. Thyroid stimulating but not blocking autoantibodies are highly prevalent in severe and active thyroid-associated orbitopathy: a prospective study. Int J Endocrinol. 2015;2015:678194.

  93. Diana T, Brown RS, Bossowski A, Segni M, Niedziela M, Konig J, et al. Clinical relevance of thyroid-stimulating autoantibodies in pediatric graves’ disease-a multicenter study. J Clin Endocrinol Metab. 2014;99(5):1648–55.

    Article  CAS  PubMed  Google Scholar 

  94. Kular L, Pakradouni J, Kitabgi P, Laurent M, Martinerie C. The CCN family: a new class of inflammation modulators? Biochimie. 2011;93:377–88.

    Article  CAS  PubMed  Google Scholar 

  95. Hughes JM, Kuiper EJ, Klaassen I, Canning P, Stitt AW, Van Bezu J, Schalkwijk CG, Van Noorden CJF, Schlingemann RO. Advanced glycation end products cause increased CCN family and extracellular matrix gene expression in the diabetic rodent retina. Diabetologia. 2007;50:1089–98.

  96. Kang J, Li Y, Zhao Z, Zhang H. Differentiation between thyroid-associated orbitopathy and Graves’ disease by iTRAQ-based quantitative proteomic analysis. FEBS Open Bio. 2021.

  97. Kume K, Iizumi Y, Shimada M, Ito Y, Kishi T, Yamaguchi Y, et al. Role of N-end rule ubiquitin ligases UBR1 and UBR2 in regulating the leucine-mTOR signaling pathway. Genes Cells. 2010;15(4):339–49.

    Article  CAS  PubMed  Google Scholar 

  98. Shen L, Huang F, Ye L, Zhu W, Zhang X, Wang S, et al. Circulating microRNA predicts insensitivity to glucocorticoid therapy in Graves’ ophthalmopathy. Endocrine. 2015;49(2):445–56.

    Article  CAS  PubMed  Google Scholar 

  99. Scisciani C, Vossio S, Guerrieri F, Schinzari V, De Iaco R, D’Onorio de Meo P, et al. Transcriptional regulation of miR-224 upregulated in human HCCs by NFkappaB inflammatory pathways. J Hepatol. 2012;56(4):855–61.

  100. Wilkinson L, Verhoog NJD, Louw A. Disease- and treatment-associated acquired glucocorticoid resistance. Endocr Connect. 2018;7(12):R328–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ricci C, Ruscica M, Camera M, Rossetti L, Macchi C, Colciago A, et al. PCSK9 induces a pro-inflammatory response in macrophages. Sci Rep. 2018;8(1):2267.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Tang ZH, Peng J, Ren Z, Yang J, Li TT, Li TH, et al. New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-kappaB pathway. Atherosclerosis. 2017;262:113–22.

    Article  CAS  PubMed  Google Scholar 

  103. Cheng KC, Wu YJ, Cheng KH, Cheng KY, Chen KJ, Wu WC, et al. Autoantibody against aldehyde dehydrogenase 2 could be a biomarker to monitor progression of Graves’ orbitopathy. Graefes Arch Clin Exp Ophthalmol. 2018;256(6):1195–201.

    Article  CAS  PubMed  Google Scholar 

  104. Jackson B, Brocker C, Thompson DC, Black W, Vasiliou K, Nebert DW, Vasiliou V. Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Hum Genomics. 2011;5:1–21.

    Article  Google Scholar 

  105. Crabb DW, Matsumoto M, Chang D, You M. Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc Nutr Soc. 2004;63(1):49–63.

    Article  CAS  PubMed  Google Scholar 

  106. Kang K, Park B, Oh C, Cho K, Ahn KA. role for protein disulfide isomerase in the early folding and assembly of MHC class I molecules. Antioxid Redox Signal. 2009;11:2553–61.

    Article  CAS  PubMed  Google Scholar 

  107. Yang HB, Jiang J, Li LL, Yang HQ, Zhang XY. Biomarker identification of thyroid associated ophthalmopathy using microarray data. Int J Ophthalmol. 2018;11(9):1482–8.

    PubMed  PubMed Central  Google Scholar 

  108. Ernst J, Plasterer HL, Simon I, Bar-Joseph Z. Integrating multiple evidence sources to predict transcription factor binding in the human genome. Genome Res. 2010;20(4):526–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Frietze S, Lan X, Jin VX, Farnham PJ. Genomic targets of the KRAB and SCAN domain-containing zinc finger protein 263. J Biol Chem. 2010;285(2):1393–403.

    Article  CAS  PubMed  Google Scholar 

  110. Gagliardo C, Radellini S, Bubella RM, Falanga G, Richiusa P, Vadala M, et al. Lacrimal gland herniation in Graves ophthalmopathy: a simple and useful MRI biomarker of disease activity. Eur Radiol. 2020;30(4):2138–41.

    Article  PubMed  Google Scholar 

  111. Bingham CM, Harris MA, Realini T, Nguyen J, Hogg JP, Sivak-Callcott JA. Calculated computed tomography volumes of lacrimal glands and comparison to clinical findings in patients with thyroid eye disease. Ophthalmic Plast Reconstr Surg. 2014;30:116–8.

    Article  PubMed  Google Scholar 

  112. Eckstein AK, Finkenrath A, Heiligenhaus A, Renzing-Köhler K, Esser J, Krüger C, Quadbeck B, Steuhl KP, Gieseler RK. Dry eye syndrome in thyroid-associated ophthalmo-pathy: lacrimal expression of TSH receptor suggests involvement of TSHR-specific autoantibodies. Acta Ophthalmol Scand. 2004;82:291–7.

    Article  CAS  PubMed  Google Scholar 

  113. Åsman P. Ophthalmological evaluation in thyroid-associated ophthalmopathy. Acta Ophthalmol Scand. 2003;81:437–48.

    Article  PubMed  Google Scholar 

  114. Siakallis LC, Uddin JM, Miszkiel KA. Imaging investigation of thyroid eye disease. Ophthal Plastic Reconstruct Surg. 2018;34(4S):S41-51.

  115. Jain AP, Gellada N, Ugradar S, Kumar A, Kahaly G, Douglas R. Teprotumumab reduces extraocular muscle and orbital fat volume in thyroid eye disease. Br J Ophthalmol. 2020.

  116. Ugradar S, Wang Y, Mester T, Kahaly GJ, Douglas R. Improvement of asymmetric thyroid eye disease with teprotumumab. Br J Ophthalmol. 2021.

  117. Chen L, Chen W, Chen HH, Wu Q, Xu XQ, Hu H, et al. Radiological staging of thyroid-associated ophthalmopathy: Comparison of T1 mapping with conventional MRI. Int J Endocrinol. 2020;2020:2575710.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ueda H, Howson JM, Esposito L, Heward J, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G, Herr MH, Dahlman I. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423:506–11.

  119. Wang Y, Smith TJ. Current concepts in the molecular pathogenesis of thyroid-associated ophthalmopathy. Invest Ophthalmol Vis Sci. 2014;55(3):1735–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lacheta D, Miskiewicz P, Gluszko A, Nowicka G, Struga M, Kantor I, et al. Immunological Aspects of Graves’ Ophthalmopathy. Biomed Res Int. 2019;2019:7453260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Perera C, McNeil HP, Geczy CL. S100 Calgranulins in inflammatory arthritis. Immunol Cell Biol. 2010;88(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  122. Xuan J, Yu Y, Qing T, Guo L, Shi L. Next-generation sequencing in the clinic: promises and challenges. Cancer Lett. 2013;340:284–95.

    Article  CAS  PubMed  Google Scholar 

  123. Christensen KD, Dukhovny D, Siebert U, Green RC. Assessing the costs and cost-effectiveness of genomic sequencing. Journal Personal Med. 2015;5:470–86.

    Article  Google Scholar 

  124. Conneely MF, Hacein-Bey L, Jay WM. Magnetic resonance imaging of the orbit. Seminars Ophthalmol. 2008;23:179–89.

    Article  Google Scholar 

Download references

Funding

No funding or grant support. The following authors have no relevant financial disclosures: Stephanie Hiu-Ling Poon, Janice Jing-Chee Cheung, Kendrick Co Shih, Yau-Kei Chan.

Author information

Authors and Affiliations

Authors

Contributions

All authors attest that they meet the current ICMJE criteria for authorship. SHLP, JJCC, KCS and YKC were involved in study design, data collection, data analysis, manuscript writing and editing.

Corresponding author

Correspondence to Kendrick Co Shih.

Ethics declarations

Disclaimer

The authors alone are responsible for the content and writing of the paper. This manuscript has not yet been published and is not being simultaneously considered elsewhere for publication.

Conflict of interest

The following authors have no conflict of interest: Stephanie Hiu-Ling Poon, Janice Jing-Chee Cheung, Kendrick Co Shih, Yau-Kei Chan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poon, S.H.L., Cheung, J.JC., Shih, K.C. et al. A systematic review of multimodal clinical biomarkers in the management of thyroid eye disease. Rev Endocr Metab Disord 23, 541–567 (2022). https://doi.org/10.1007/s11154-021-09702-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-021-09702-9

Keywords

Navigation