Abstract
Thyroid Eye Disease (TED) is an autoimmune disease that affects the extraocular muscles and periorbital fat. It most commonly occurs with Graves’ Disease (GD) as an extrathyroidal manifestation, hence, it is also sometimes used interchangeably with Graves’ Ophthalmopathy (GO). Well-known autoimmune markers for GD include thyroid stimulating hormone (TSH) receptor antibodies (TSH-R-Ab) which contribute to hyperthyroidism and ocular signs. Currently, apart from radiological investigations, detection of TED is based on clinical signs and symptoms which is largely subjective, with no established biomarkers which could differentiate TED from merely GD. We evaluated a total of 28 studies on potential biomarkers for diagnosis of TED. Articles included were published in English, which investigated clinical markers in tear fluid, orbital adipose-connective tissues, orbital fibroblasts and extraocular muscles, serum, thyroid tissue, as well as imaging biomarkers. Results demonstrated that biomarkers with reported diagnostic power have high sensitivity and specificity for TED, including those using a combination of biomarkers to differentiate between TED and GD, as well as the use of magnetic resonance imaging (MRI). Other biomarkers which were upregulated include cytokines, proinflammatory markers, and acute phase reactants in subjects with TED, which are however, deemed less specific to TED. Further clinical investigations for these biomarkers, scrutinising their specificity and sensitivity on a larger sample of patients, may point towards selection of suitable biomarkers for aiding detection and prognosis of TED in the future.
Similar content being viewed by others
Data availability
The authors agree to make all materials, data, and associated protocols promptly available to readers without undue qualifications in material transfer agreements.
Abbreviations
- ADAMTS14:
-
ADAM metallopeptidase with thrombospondin type 1 motif 14
- ADH1B:
-
Alcohol dehydrogenase 1B
- ALDH2:
-
Aldehyde dehydrogenase 2
- AS:
-
Ankylosing spondylitis
- AOC3:
-
Metalloproteinase semicarbazide-sensitive amine oxidase 3
- ApoE:
-
Apolipoprotein E
- AUC:
-
Area under curve
- AZGP1:
-
Zinc-alpha-2 glycoprotein
- C3:
-
Complement 3
- C4A:
-
Complement 4A
- CA-1:
-
Carbonic anhydrase 1
- CA-2:
-
Carbonic anhydrase 2
- CALR:
-
Calreticulin
- CAS:
-
Clinical activity score
- CDCA5:
-
Cell division cycle associated 5
- COL2A1:
-
Collagen type II alpha I
- COL11A2:
-
Collagen type XI alpha 2
- CSRP3:
-
Cysteine and glycine rich protein 3
- CYR61:
-
Cysteine-rich angiogenic inducer 61
- ECM:
-
Extracellular matrix
- ELISA:
-
Enzyme-linked immunosorbent assay
- EOM:
-
Extraocular muscles
- ER:
-
Endoplasmic reticulum
- EUGOGO:
-
European Group on Graves’ Orbitopathy
- FCN1:
-
Ficolin 1
- G proteins:
-
Guanine nucleotide-binding proteins
- GC:
-
Glucocorticoid
- GD:
-
Graves’ disease
- GO:
-
Graves’ ophthalmopathy
- GPDH:
-
Glycerol-3-phosphate dehydrogenase
- GR \(\alpha\) :
-
Glucocorticoid receptor alpha
- GSK-3 \(\beta\) :
-
Glycogen synthase kinase 3 beta
- HIF-1 \(\alpha\) :
-
Hypoxia-induced factor 1\(\alpha\)
- HMGB1:
-
High-mobility group box 1
- HSP 60:
-
Heat shock protein 60
- IDH:
-
Isocitrate dehydrogenase
- IFN-\(\gamma\) :
-
Interferon gamma
- IGF-1:
-
Insulin-like growth factor-1
- IgKC:
-
Immunoglobulin kappa chain C region
- IHC:
-
Immunohistochemistry
- IL:
-
Interleukin
- IMP:
-
Inosine monophosphate
- KIF:
-
Kinesin family member
- LACRT:
-
Lacritin
- LCN1:
-
Lipocalin 1
- LDLR:
-
Low-density lipoprotein receptor
- LGH:
-
Lacrimal gland herniation
- LYZ:
-
Lysozyme C
- MCP-1:
-
Monocyte chemoattractant protein-1
- MHC:
-
Major histocompatibility complex
- MKI67:
-
Marker of proliferation Ki-67
- MMP:
-
Matrix metalloproteinase
- mTOR:
-
Mammalian target of rapamycin
- MRI:
-
Magnetic resonance imaging
- MYH:
-
Myosin heavy chain
- NADPH:
-
Micotinamide adenine dinucleotide phosphate
- NCAPRP:
-
Nasopharyngeal carcinoma-associated proline-rich protein 4
- NLR:
-
Neutrophil-to-lymphocyte ratio
- NPV:
-
Negative predictive value
- P4HB:
-
Protein disulphide-isomerase
- PCR:
-
Polymerase chain reaction
- PCSK9:
-
Proprotein convertase subtilisin/kexin type 9
- PDIA3:
-
Protein disulfide-isomerase A3
- PI3k:
-
Phosphatidylinositol-3-kinase
- PIP:
-
Prolactin induced protein
- POCT:
-
Point-of-care testing
- POTEI:
-
POTE ankyrin domain family member 1
- PPAR:
-
Peroxisome proliferator-activated receptors
- PPV:
-
Positive predictive value
- PRC1:
-
Protein regulator of cytokinesis 1
- PROL1:
-
Proline-rich protein 1
- PROL4:
-
Proline-rich protein 4
- PRP4:
-
Proline-rich protein 4
- PTX3:
-
Pentraxin 3
- RAGE:
-
Receptor for advanced glycation end product
- RAI:
-
Radioactive iodine
- RT-PCR:
-
Reverse transcriptase polymerase chain reaction
- ROC:
-
Receiver operator characteristic
- ROS:
-
Reactive oxygen species
- S100A4:
-
S100 calcium binding protein A4
- S100A8:
-
Calgranulin A
- S100A8/A9:
-
Calprotectin
- SIR:
-
Signal intensity ratio
- SLE:
-
Systemic lupus erythematosus
- SMC3:
-
Structural maintenance of chromosomes protein 3
- SMCA4:
-
Transcription-activator BRG1
- SOD:
-
Superoxide dismutase
- SRR:
-
Specimen-to-reference ratio
- TAO:
-
Thyroid-associated orbitopathy
- TBII:
-
Thyroid stimulating hormone receptor binding inhibitory immunoglobulin
- TED:
-
Thyroid eye disease
- TER ATPase:
-
Transitional endoplasmic reticulum ATPase
- TIRTCS :
-
T1 relaxation time cold spot
- TLR:
-
Toll-like receptor
- TNF-\(\alpha\) :
-
Tumour necrosis factor alpha
- TNF AIP6:
-
Tumour necrosis factor alpha-induced protein 6
- TPX2:
-
Targeting protein for the Xenopuskinesinxklp2
- TRAb:
-
Thyroid stimulating hormone receptor antibodies
- TSH:
-
Thyroid stimulating hormone
- TSHR:
-
Thyroid stimulating hormone receptor
- TSH-R-Ab:
-
Thyroid stimulating hormone receptor antibody
- TSI:
-
Thyroid stimulating hormone receptor stimulating immunoglobulin
- TWEAK:
-
Tumour necrosis factor-like weak inducer of apoptosis
- UBR1:
-
Ubiquitin-protein ligase E3 component N-recognin 1
- VCAN:
-
Versican
- WBC:
-
White blood cell
- ZNF263:
-
Zinc finger protein 263
References
Genere N, Stan MN. Current and emerging treatment strategies for Graves’ orbitopathy. Drugs. 2019;79:109–24.
Bahn RS, Heufelder AE. Pathogenesis of Graves’ ophthalmopathy. N Engl J Med. 1993;329:1468–75.
Bahn RS. Graves’ ophthalmopathy. N Engl J Med. 2010;362:726–38.
Kahaly GJ, Diana T. TSH receptor antibody functionality and nomenclature. Front Endocrinol (Lausanne). 2017;8:28.
Khoo TK, Bahn RS. Pathogenesis of Graves’ ophthalmopathy: The role of autoantibodies. Thyroid. 2007;17:1013–8.
Bartalena L, Baldeschi L, Dickinson A, Eckstein A, Kendall-Taylor P, Marcocci C, Mourits M, Perros P, Boboridis K, Boschi A, Curro N. Consensus statement of the European Group on Graves’ orbitopathy (EUGOGO) on management of GO. Eur J Endocrinol. 2008;158:273–85.
Bartalena L, Marcocci C, Bogazzi F, Manetti L, Tanda ML, Dell’Unto E, Bruno-Bossio G, Nardi M, Bartolomei MP, Lepri A, Rossi G. Relation between therapy for hyperthyroidism and the course of Graves’ ophthalmopathy. N Engl J Med. 1998;338:73–8.
Acharya SH, Avenell A, Philip S, Burr J, Bevan JS, Abraham P. Radioiodine therapy (RAI) for Graves’ disease (GD) and the effect on ophthalmopathy: a systematic review. Clin Endocrinol. 2008;69:943–50.
Traisk F, Tallstedt L, Abraham-Nordling M, Andersson T, Berg G, Calissendorff J, Hallengren B, Hedner P, Lantz M, Nystrom E, Ponjavic V. Thyroid-associated ophthalmopathy after treatment for Graves’ hyperthyroidism with antithyroid drugs or iodine-131. J Clin Endocrinol Metab. 2009;94:3700–7.
Bartalena L, Kahaly GJ, Baldeschi L, Dayan CM, Eckstein A, Marcocci C, et al. The 2021 European Group on Graves’ orbitopathy (EUGOGO) clinical practice guidelines for the medical management of Graves’ orbitopathy. Eur J Endocrinol. 2021;185(4):G43–67.
Doumit G, Abouhassan W, Yaremchuk MJ. Aesthetic refinements in the treatment of graves ophthalmopathy. Plast Reconstr Surg. 2014;134:519–26.
Gerding MN, Terwee CB, Dekker FW, Koornneef L, Prummel MF, Wiersinga WM. Quality of life in patients with Graves’ ophthalmopathy is markedly decreased: Measurement by the medical outcomes study instrument. Thyroid. 1997;7:885–9.
Barrio-Barrio J, Sabater AL, Bonet-Farriol E. Velázquez-Villoria Á, Galofré JC. Graves’ ophthalmopathy: VISA versus EUGOGO classification, assessment, and management. J Ophthalmol. 2015;2015.
Ebbo M, Patient M, Grados A, Groh M, Desblaches J, Hachulla E, et al. Ophthalmic manifestations in IgG4-related disease: Clinical presentation and response to treatment in a French case-series. Medicine (Baltimore). 2017;96(10):e6205.
Costa RM, Dumitrascu OM, Gordon LK. Orbital myositis: Diagnosis and management. Curr Allergy Asthma Rep. 2009;9:316–23.
Chaudhry IA, Shamsi FA, Arat YO, Riley FC. Orbital pseudotumor: distinct diagnostic features and management. Middle East African J Ophthalmol. 2008;15:17.
Goldberg RA, Rootman J, Cline RA. Tumors metastatic to the orbit: a changing picture. Surv Ophthalmol. 1990;35:1–24.
Eckstein AK, Plicht M, Lax H, Neuhäuser M, Mann K, Lederbogen S, Heckmann C, Esser J, Morgenthaler NG. Thyrotropin receptor autoantibodies are independent risk factors for Graves’ ophthalmopathy and help to predict severity and outcome of the disease. J Clin Endocrinol Metab. 2006;91:3464–70.
Stan MN, Bahn RS. Risk factors for development or deterioration of Graves’ ophthalmopathy. Thyroid. 2010;20:777–83.
Hegedüs L, Brix TH, Vestergaard P. Relationship between cigarette smoking and Graves’ ophthalmopathy. J Endocrinol Invest. 2004;27:265–71.
Schott M, Morgenthaler NG, Fritzen R, Feldkamp J, Willenberg HS, Scherbaum WA, Seissler J. Levels of autoantibodies against human TSH receptor predict relapse of hyperthyroidism in Graves’ disease. Horm Metab Res. 2004;36:96–2.
Seo S, Robledo MS. Usefulness of TSH receptor antibodies as biomarkers for Graves’ ophthalmopathy: a systematic review. J Endocrinol Invest. 2018;41:1457–68.
Kahaly GJ, Diana T, Kanitz M, Frommer L, Olivo PD. Prospective trial of functional thyrotropin receptor antibodies in Graves’ disease. J Clin Endocrinol Metab. 2020;105(4).
George A, Diana T, Langericht J, Kahaly GJ. Stimulatory thyrotropin receptor antibodies are a biomarker for Graves’ orbitopathy. Front Endocrinol (Lausanne). 2020;11:629925.
Matheis N, Grus FH, Breitenfeld M, Knych I, Funke S, Pitz S, et al. Proteomics differentiate between thyroid-associated orbitopathy and dry eye syndrome. Invest Ophthalmol Vis Sci. 2015;56(4):2649–56.
Matheis N, Okrojek R, Grus FH, Kahaly GJ. Proteomics of tear fluid in thyroid-associated orbitopathy. Thyroid. 2012;22(10):1039–45.
Dickinson DP, Thiesse M. A major human lacrimal gland mRNA encodes a new proline-rich protein family member. Invest Ophthalmol Vis Sci. 1995;36:2020–31.
Perumal N, Funke S, Wolters D, Pfeiffer N, Grus FH. Characterization of human reflex tear proteome reveals high expression of lacrimal proline-rich protein 4 (PRR4). Proteomics. 2015;15:3370–81.
Kahaly GJ, Bang H, Berg W, Dittmar M. Alpha-fodrin as a putative autoantigen in Graves’ ophthalmopathy. Clin Exp Immunol. 2005;140:166–72.
Chng CL, Seah LL, Yang M, Shen SY, Koh SK, Gao Y, et al. Tear proteins calcium binding protein A4 (S100A4) and prolactin induced protein (PIP) are potential biomarkers for thyroid eye disease. Sci Rep. 2018;8(1):16936.
Torsteinsdóttir I, Håkansson L, Hällgren R, Gudbjörnsson B, Arvidson NG, Venge P. Serum lysozyme: a potential marker of monocyte/macrophage activity in rheumatoid arthritis. Rheumatology. 1999;38(12):1249–54.
Ihedioha OC, Shiu RP, Uzonna JE, Myal Y. Prolactin-inducible protein: From breast cancer biomarker to immune modulator—novel insights from knockout mice. DNA Cell Biol. 2016;35:537–41.
Aass C, Norheim I, Eriksen EF, Bornick EC, Thorsby PM, Pepaj M. Establishment of a tear protein biomarker panel differentiating between Graves’ disease with or without orbitopathy. PLoS One. 2017;12(4):e0175274.
Aass C, Norheim I, Eriksen EF, Bornick EC, Thorsby PM, Pepaj M. Comparative proteomic analysis of tear fluid in Graves’ disease with and without orbitopathy. Clin Endocrinol (Oxf). 2016;85(5):805–12.
Baker GR, Morton M, Rajapaska RS, Bullock M, Gullu S, Mazzi B, Ludgate M. Altered tear composition in smokers and patients with graves ophthalmopathy. Arch Ophthalmol. 2006;124:1451–6.
Hassan MI, Waheed A, Yadav S, Singh TP, Ahmad F. Zinc alpha 2-glycoprotein: a multidisciplinary protein. Mol Cancer Res. 2008;6(6):892–906.
Jiang LH, Wei RL. Analysis of Graves’ ophthalmopathy patients’ tear protein spectrum. Chin Med J. 2013;126:4493–8.
Taverna M, Marie AL, Mira JP, Guidet B. Specific antioxidant properties of human serum albumin. Ann Intensive Care. 2013;3:1–7.
Ananthi S, Chitra T, Bini R, Prajna NV, Lalitha P, Dharmalingam K. Comparative analysis of the tear protein profile in mycotic keratitis patients. Mol Vis. 2008;14:500.
Wassélius J, Håkansson K, Johansson K, Abrahamson M, Ehinger B. Identification and localization of retinal cystatin C. Invest Ophthalmol Vis Sci. 2001;42(8):1901–6.
Padmanabhan J, Levy M, Dickson DW, Potter H. Alpha1-antichymotrypsin, an inflammatory protein overexpressed in Alzheimer’s disease brain, induces tau phosphorylation in neurons. Brain. 2006;129:3020–34.
Kishazi E, Dor M, Eperon S, Oberic A, Hamedani M, Turck N. Thyroid-associated orbitopathy and tears: a proteomics study. J Proteomics. 2018;170:110–6.
Yoshida A, Hsu LC, Davé V. Retinal oxidation activity and biological role of human cytosolic aldehyde dehydrogenase. Enzyme. 1992;46:239–44.
Heizmann CW, Fritz G, Schafer BW. S100 proteins: Structure, functions, and pathology. Front Biosci. 2002;7:1356–68.
Li J, Riau AK, Setiawan M, Mehta JS, Ti SE, Tong L, Tan DT, Beuerman RW. S100A expression in normal corneal-limbal epithelial cells and ocular surface squamous cell carcinoma tissue. Mol Vision. 2011;17:2263.
Yang M, Chung Y, Lang S, Yawata N, Seah LL, Looi A. The tear cytokine profile in patients with active Graves’ orbitopathy. Endocrine. 2018;59(2):402–9.
Roato I, Brunetti G, Gorassini E, Grano M, Colucci S, Bonello L, et al. IL-7 up-regulates TNF-alpha-dependent osteoclastogenesis in patients affected by solid tumor. PLoS One. 2006;1:e124.
Cai K, Wei R. Interleukin-7 expression in tears and orbital tissues of patients with Graves’ ophthalmopathy. Endocrine. 2013;44:140–4.
Matheis N, Lantz M, Grus FH, Ponto KA, Wolters D, Brorson H, et al. Proteomics of orbital tissue in thyroid-associated orbitopathy. J Clin Endocrinol Metab. 2015;100(12):E1523–30.
Rammensee HG, Robinson PJ, Crisanti A, Bevan MJ. Restricted recognition of β 2-microglobulin by cytotoxic T lymphocytes. Nature. 1986;319:502–4.
Demaria S, Bushkin Y. CD8 and β 2-microglobulin-free MHC class I molecules in T cell immunoregulation. Int J Clin Lab Res. 1993;23:61–9.
Carroll MC. The complement system in regulation of adaptive immunity. Nat Immunol. 2004;5:981–6.
Richardson MR, Segu ZM, Price MO, Lai X, Witzmann FA, Mechref Y, Yoder MC, Price FW. Alterations in the aqueous humor proteome in patients with Fuchs endothelial corneal dystrophy. Mol Vis. 2010;16:2376.
Wiersinga WM. Advances in treatment of active, moderate-to-severe Graves’ ophthalmopathy. Lancet Diabetes Endocrinol. 2017;5:134–42.
Kleinau G, Worth CL, Kreuchwig A, Biebermann H, Marcinkowski P, Scheerer P, Krause G. Structural–functional features of the thyrotropin receptor: a class A G-protein-coupled receptor at work. Front Endocrinol. 2017;8:86.
Cheng KC, Huang HH, Hung CT, Chen CC, Wu WC, Suen JL, et al. Proteomic analysis of the differences in orbital protein expression in thyroid orbitopathy. Graefes Arch Clin Exp Ophthalmol. 2013;251(12):2777–87.
Žarković M. The role of oxidative stress on the pathogenesis of Graves’ disease. J Thyroid Res. 2012;2012.
Hondur A, Konuk O, Dincel AS, Bilgihan A, Unal M, Hasanreisoglu B. Oxidative stress and antioxidant activity in orbital fibroadipose tissue in Graves’ ophthalmopathy. Curr Eye Res. 2008;33:421–7.
Raz A, Nakahara S. Biological modulation by lectins and their ligands in tumor progression and metastasis. Anti-Cancer Agents Med Chem (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2008;8:22–36.
Jalkanen S, Karikoski M, Mercier N, Koskinen K, Henttinen T, Elima K, Salmivirta K, Salmi M. The oxidase activity of vascular adhesion protein-1 (VAP-1) induces endothelial E-and P-selectins and leukocyte binding. Blood J Am Soc Hematol. 2007;110:1864–70.
Mou P, Chen Z, Jiang L, Cheng J, Wei R. PTX3: a potential biomarker in thyroid associated ophthalmopathy. Biomed Res Int. 2018;2018:5961974.
Kim JW, Ko J, Kim J, Yoon JS. Proinflammatory effects of calprotectin in Graves’ orbitopathy. Ocul Immunol Inflamm. 2020;28(1):156–63.
Han SY, Choi SH, Shin JS, Lee EJ, Han SH, Yoon JS. High-mobility group box 1 is associated with the inflammatory pathogenesis of graves’ orbitopathy. Thyroid. 2019;29(6):868–78.
Abdulahad DA, Westra J, Bijzet J, Limburg PC, Kallenberg CG, Bijl M. High mobility group box 1 (HMGB1) and anti-HMGB1 antibodies and their relation to disease characteristics in systemic lupus erythematosus. Arthritis Res Ther. 2011;13:1–9.
Cheng KC, Hung CT, Cheng KY, Chen KJ, Wu WC, Suen JL, et al. Proteomic surveillance of putative new autoantigens in thyroid orbitopathy. Br J Ophthalmol. 2015;99(11):1571–6.
Chang X, Han J, Zhao Y, Yan X, Sun S, Cui Y. Increased expression of carbonic anhydrase I in the synovium of patients with ankylosing spondylitis. BMC Musculoskelet Disord. 2010;11:1–11.
Ma Y, Gaken J, McFarlane BM, Foss Y, Farzaneh F, McFarlane IG, Mieli-Vergani G, Vergani D. Alcohol dehydrogenase: a target of humoral autoimmune response in liver disease. Gastroenterology. 1997;112:483–92.
Woo YJ, Seo Y, Kim JJ, Kim JW, Park Y, Yoon JS. Serum CYR61 is associated with disease activity in Graves’ orbitopathy. Ocul Immunol Inflamm. 2018;26(7):1094–100.
Löbel M, Bauer S, Meisel C, Eisenreich A, Kudernatsch R, Tank J, Rauch U, Kühl U, Schultheiss HP, Volk HD, Poller W. CCN1: a novel inflammation-regulated biphasic immune cell migration modulator. Cell Mol Life Sci. 2012;69:3101–13.
Zhang Q, Wu J, Cao Q, Xiao L, Wang L, He D, et al. A critical role of Cyr61 in interleukin-17-dependent proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis Rheum. 2009;60(12):3602–12.
Lin J, Zhou Z, Huo R, Xiao L, Ouyang G, Wang L, et al. Cyr61 induces IL-6 production by fibroblast-like synoviocytes promoting Th17 differentiation in rheumatoid arthritis. J Immunol. 2012;188(11):5776–84.
Ji DY, Park SH, Park SJ, Kim KH, Ku CR, Shin DY, et al. Comparative assessment of Graves’ disease and main extrathyroidal manifestation, Graves’ ophthalmopathy, by non-targeted metabolite profiling of blood and orbital tissue. Sci Rep. 2018;8(1):9262.
Wu L, Zhang S, Li X, Yao J, Ling L, Huang X, et al. Integrative transcriptomics and proteomic analysis of extraocular muscles from patients with thyroid-associated ophthalmopathy. Exp Eye Res. 2020;193:107962.
Hynes RO. The extracellular matrix: Not just pretty fibrils. Science. 2009;326(5957):1216–9.
Naik V, Khadavi N, Naik MN, Hwang C, Goldberg RA, Tsirbas A, Smith TJ, Douglas RS. Biologic therapeutics in thyroid-associated ophthalmopathy: Translating disease mechanism into therapy. Thyroid. 2008;18:967–71.
Lee SJ, Kim J, Ko J, Lee EJ, Koh HJ, Yoon JS. Tumor necrosis factor-like weak inducer of apoptosis induces inflammation in Graves’ orbital fibroblasts. PLoS One. 2018;13(12):e0209583.
Lee GE, Kim J, Lee JS, Ko J, Lee EJ, Yoon JS. Role of proprotein convertase subtilisin/kexin type 9 in the pathogenesis of Graves’ orbitopathy in orbital fibroblasts. Front Endocrinol (Lausanne). 2020;11:607144.
Ding Z, Liu S, Wang X, Deng X, Fan Y, Shahanawaz J, et al. Cross-talk between LOX-1 and PCSK9 in vascular tissues. Cardiovasc Res. 2015;107(4):556–67.
Ding Z, Liu S, Wang X, Theus S, Deng X, Fan Y, et al. PCSK9 regulates expression of scavenger receptors and ox-LDL uptake in macrophages. Cardiovasc Res. 2018;114(8):1145–53.
Gortz GE, Horstmann M, Aniol B, Reyes BD, Fandrey J, Eckstein A, et al. Hypoxia-dependent HIF-1 activation impacts on tissue remodeling in Graves’ ophthalmopathy-implications for smoking. J Clin Endocrinol Metab. 2016;101(12):4834–42.
Yoon JS, Lee HJ, Choi SH, Chang EJ, Lee SY, Lee EJ. Quercetin inhibits IL-1beta-induced inflammation, hyaluronan production and adipogenesis in orbital fibroblasts from Graves’ orbitopathy. PLoS One. 2011;6(10):e26261.
Celik T. Neutrophil-to-lymphocyte ratio in thyroid ophthalmopathy. Bratisl Lek Listy. 2017;118(8):495–8.
Templeton AJ, McNamara MG, Seruga B, Vera-Badillo FE, Aneja P, Ocana A, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst. 2014;106(6):dju124.
Magna M, Pisetsky DS. The role of HMGB1 in the pathogenesis of inflammatory and autoimmune diseases. Mol Med. 2014;20:138–46.
Zhang L, Masetti G, Colucci G, Salvi M, Covelli D, Eckstein A, et al. Combining micro-RNA and protein sequencing to detect robust biomarkers for Graves’ disease and orbitopathy. Sci Rep. 2018;8(1):8386.
Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev. 2011;91(1):151–75.
Kumar S, Nadeem S, Stan MN, Coenen M, Bahn RS. A stimulatory TSH receptor antibody enhances adipogenesis via phosphoinositide 3-kinase activation in orbital preadipocytes from patients with Graves’ ophthalmopathy. J Mol Endocrinol. 2011;46(3):155–63.
Zhang L, Paddon C, Lewis MD, Grennan-Jones F, Ludgate M. Gsalpha signalling suppresses PPARgamma2 generation and inhibits 3T3L1 adipogenesis. J Endocrinol. 2009;202(2):207–15.
Kahaly GJ, Wuster C, Olivo PD, Diana T. High titers of thyrotropin receptor antibodies are associated with orbitopathy in patients with Graves’ disease. J Clin Endocrinol Metab. 2019;104(7):2561–8.
Ponto KA, Kanitz M, Olivo PD, Pitz S, Pfeiffer N, Kahaly GJ. Clinical relevance of thyroid-stimulating immunoglobulins in Graves’ ophthalmopathy. Ophthalmology. 2011;118(11):2279–85.
Lytton SD, Ponto KA, Kanitz M, Matheis N, Kohn LD, Kahaly GJ. A novel thyroid stimulating immunoglobulin bioassay is a functional indicator of activity and severity of Graves’ orbitopathy. J Clin Endocrinol Metab. 2010;95(5):2123–31.
Kampmann E, Diana T, Kanitz M, Hoppe D, Kahaly GJ. Thyroid stimulating but not blocking autoantibodies are highly prevalent in severe and active thyroid-associated orbitopathy: a prospective study. Int J Endocrinol. 2015;2015:678194.
Diana T, Brown RS, Bossowski A, Segni M, Niedziela M, Konig J, et al. Clinical relevance of thyroid-stimulating autoantibodies in pediatric graves’ disease-a multicenter study. J Clin Endocrinol Metab. 2014;99(5):1648–55.
Kular L, Pakradouni J, Kitabgi P, Laurent M, Martinerie C. The CCN family: a new class of inflammation modulators? Biochimie. 2011;93:377–88.
Hughes JM, Kuiper EJ, Klaassen I, Canning P, Stitt AW, Van Bezu J, Schalkwijk CG, Van Noorden CJF, Schlingemann RO. Advanced glycation end products cause increased CCN family and extracellular matrix gene expression in the diabetic rodent retina. Diabetologia. 2007;50:1089–98.
Kang J, Li Y, Zhao Z, Zhang H. Differentiation between thyroid-associated orbitopathy and Graves’ disease by iTRAQ-based quantitative proteomic analysis. FEBS Open Bio. 2021.
Kume K, Iizumi Y, Shimada M, Ito Y, Kishi T, Yamaguchi Y, et al. Role of N-end rule ubiquitin ligases UBR1 and UBR2 in regulating the leucine-mTOR signaling pathway. Genes Cells. 2010;15(4):339–49.
Shen L, Huang F, Ye L, Zhu W, Zhang X, Wang S, et al. Circulating microRNA predicts insensitivity to glucocorticoid therapy in Graves’ ophthalmopathy. Endocrine. 2015;49(2):445–56.
Scisciani C, Vossio S, Guerrieri F, Schinzari V, De Iaco R, D’Onorio de Meo P, et al. Transcriptional regulation of miR-224 upregulated in human HCCs by NFkappaB inflammatory pathways. J Hepatol. 2012;56(4):855–61.
Wilkinson L, Verhoog NJD, Louw A. Disease- and treatment-associated acquired glucocorticoid resistance. Endocr Connect. 2018;7(12):R328–49.
Ricci C, Ruscica M, Camera M, Rossetti L, Macchi C, Colciago A, et al. PCSK9 induces a pro-inflammatory response in macrophages. Sci Rep. 2018;8(1):2267.
Tang ZH, Peng J, Ren Z, Yang J, Li TT, Li TH, et al. New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-kappaB pathway. Atherosclerosis. 2017;262:113–22.
Cheng KC, Wu YJ, Cheng KH, Cheng KY, Chen KJ, Wu WC, et al. Autoantibody against aldehyde dehydrogenase 2 could be a biomarker to monitor progression of Graves’ orbitopathy. Graefes Arch Clin Exp Ophthalmol. 2018;256(6):1195–201.
Jackson B, Brocker C, Thompson DC, Black W, Vasiliou K, Nebert DW, Vasiliou V. Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Hum Genomics. 2011;5:1–21.
Crabb DW, Matsumoto M, Chang D, You M. Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc Nutr Soc. 2004;63(1):49–63.
Kang K, Park B, Oh C, Cho K, Ahn KA. role for protein disulfide isomerase in the early folding and assembly of MHC class I molecules. Antioxid Redox Signal. 2009;11:2553–61.
Yang HB, Jiang J, Li LL, Yang HQ, Zhang XY. Biomarker identification of thyroid associated ophthalmopathy using microarray data. Int J Ophthalmol. 2018;11(9):1482–8.
Ernst J, Plasterer HL, Simon I, Bar-Joseph Z. Integrating multiple evidence sources to predict transcription factor binding in the human genome. Genome Res. 2010;20(4):526–36.
Frietze S, Lan X, Jin VX, Farnham PJ. Genomic targets of the KRAB and SCAN domain-containing zinc finger protein 263. J Biol Chem. 2010;285(2):1393–403.
Gagliardo C, Radellini S, Bubella RM, Falanga G, Richiusa P, Vadala M, et al. Lacrimal gland herniation in Graves ophthalmopathy: a simple and useful MRI biomarker of disease activity. Eur Radiol. 2020;30(4):2138–41.
Bingham CM, Harris MA, Realini T, Nguyen J, Hogg JP, Sivak-Callcott JA. Calculated computed tomography volumes of lacrimal glands and comparison to clinical findings in patients with thyroid eye disease. Ophthalmic Plast Reconstr Surg. 2014;30:116–8.
Eckstein AK, Finkenrath A, Heiligenhaus A, Renzing-Köhler K, Esser J, Krüger C, Quadbeck B, Steuhl KP, Gieseler RK. Dry eye syndrome in thyroid-associated ophthalmo-pathy: lacrimal expression of TSH receptor suggests involvement of TSHR-specific autoantibodies. Acta Ophthalmol Scand. 2004;82:291–7.
Åsman P. Ophthalmological evaluation in thyroid-associated ophthalmopathy. Acta Ophthalmol Scand. 2003;81:437–48.
Siakallis LC, Uddin JM, Miszkiel KA. Imaging investigation of thyroid eye disease. Ophthal Plastic Reconstruct Surg. 2018;34(4S):S41-51.
Jain AP, Gellada N, Ugradar S, Kumar A, Kahaly G, Douglas R. Teprotumumab reduces extraocular muscle and orbital fat volume in thyroid eye disease. Br J Ophthalmol. 2020.
Ugradar S, Wang Y, Mester T, Kahaly GJ, Douglas R. Improvement of asymmetric thyroid eye disease with teprotumumab. Br J Ophthalmol. 2021.
Chen L, Chen W, Chen HH, Wu Q, Xu XQ, Hu H, et al. Radiological staging of thyroid-associated ophthalmopathy: Comparison of T1 mapping with conventional MRI. Int J Endocrinol. 2020;2020:2575710.
Ueda H, Howson JM, Esposito L, Heward J, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G, Herr MH, Dahlman I. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature. 2003;423:506–11.
Wang Y, Smith TJ. Current concepts in the molecular pathogenesis of thyroid-associated ophthalmopathy. Invest Ophthalmol Vis Sci. 2014;55(3):1735–48.
Lacheta D, Miskiewicz P, Gluszko A, Nowicka G, Struga M, Kantor I, et al. Immunological Aspects of Graves’ Ophthalmopathy. Biomed Res Int. 2019;2019:7453260.
Perera C, McNeil HP, Geczy CL. S100 Calgranulins in inflammatory arthritis. Immunol Cell Biol. 2010;88(1):41–9.
Xuan J, Yu Y, Qing T, Guo L, Shi L. Next-generation sequencing in the clinic: promises and challenges. Cancer Lett. 2013;340:284–95.
Christensen KD, Dukhovny D, Siebert U, Green RC. Assessing the costs and cost-effectiveness of genomic sequencing. Journal Personal Med. 2015;5:470–86.
Conneely MF, Hacein-Bey L, Jay WM. Magnetic resonance imaging of the orbit. Seminars Ophthalmol. 2008;23:179–89.
Funding
No funding or grant support. The following authors have no relevant financial disclosures: Stephanie Hiu-Ling Poon, Janice Jing-Chee Cheung, Kendrick Co Shih, Yau-Kei Chan.
Author information
Authors and Affiliations
Contributions
All authors attest that they meet the current ICMJE criteria for authorship. SHLP, JJCC, KCS and YKC were involved in study design, data collection, data analysis, manuscript writing and editing.
Corresponding author
Ethics declarations
Disclaimer
The authors alone are responsible for the content and writing of the paper. This manuscript has not yet been published and is not being simultaneously considered elsewhere for publication.
Conflict of interest
The following authors have no conflict of interest: Stephanie Hiu-Ling Poon, Janice Jing-Chee Cheung, Kendrick Co Shih, Yau-Kei Chan.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Poon, S.H.L., Cheung, J.JC., Shih, K.C. et al. A systematic review of multimodal clinical biomarkers in the management of thyroid eye disease. Rev Endocr Metab Disord 23, 541–567 (2022). https://doi.org/10.1007/s11154-021-09702-9
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11154-021-09702-9