Skip to main content

Advertisement

Log in

Interactions between emotions and eating behaviors: Main issues, neuroimaging contributions, and innovative preventive or corrective strategies

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Emotional eating is commonly defined as the tendency to (over)eat in response to emotion. Insofar as it involves the (over)consumption of high-calorie palatable foods, emotional eating is a maladaptive behavior that can lead to eating disorders, and ultimately to metabolic disorders and obesity. Emotional eating is associated with eating disorder subtypes and with abnormalities in emotion processing at a behavioral level. However, not enough is known about the neural pathways involved in both emotion processing and food intake. In this review, we provide an overview of recent neuroimaging studies, highlighting the brain correlates between emotions and eating behavior that may be involved in emotional eating. Interaction between neural and neuro-endocrine pathways (HPA axis) may be involved. In addition to behavioral interventions, there is a need for a holistic approach encompassing both neural and physiological levels to prevent emotional eating. Based on recent imaging, this review indicates that more attention should be paid to prefrontal areas, the insular and orbitofrontal cortices, and reward pathways, in addition to regions that play a major role in both the cognitive control of emotions and eating behavior. Identifying these brain regions could allow for neuromodulation interventions, including neurofeedback training, which deserves further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

5-HT:

Tryptophan

ACC:

Anterior cingulate cortex

BED:

Binge eating disorder

BLA:

Basolateral amygdala

BMI:

Body mass index

BOLD:

Blood-oxygen-level-dependent

CRH:

Corticotrophin-releasing hormone

DA:

Dopamine

DEBQ:

Dutch Eating Behavior Questionnaire

dlPFC:

Dorsolateral prefrontal cortex

dmPFC:

Dorsomedial prefrontal cortex

ED:

Eating disorder

EEG:

Electroencephalography

ENS:

Enteric nervous system

fMRI:

Functional magnetic resonance imaging

HPA:

Hypothalamic-pituitary-adrenal

IFG:

Inferior frontal gyrus

LPP:

Late positive potential

NAcc:

Nucleus accumbens

NE:

Norepinephrine

NF:

Neurofeedback

OFC:

Orbitofrontal cortex

PCC:

Posterior cingulate cortex

PET:

Positron emission tomography

PFC:

Prefrontal cortex

rs-FC:

Resting-state functional connectivity

SMA:

Supplementary motor area

tDCS:

Transcranial direct-current stimulation

TFEQ:

Three-Factor Eating Questionnaire

vlPFC:

Ventrolateral prefrontal cortex

vmPFC:

Ventromedial prefrontal cortex

VTA:

Ventral tegmental area

References

  1. Temple NJ. Fat, Sugar, Whole Grains and Heart Disease: 50 Years of Confusion. Nutrients. 2018. https://doi.org/10.3390/nu10010039.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Debras C, Chazelas E, Srour B, Kesse-Guyot E, Julia C, Zelek L, et al. Total and added sugar intakes, sugar types, and cancer risk: Results from the prospective NutriNet-Santé cohort. Am J Clin Nutr. 2020. https://doi.org/10.1093/ajcn/nqaa246.

    Article  PubMed  Google Scholar 

  3. Afshin A, Sur PJ, Fay KA, Cornaby L, Ferrara G, Salama JS, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2019. https://doi.org/10.1016/S0140-6736(19)30041-8.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hofmann W, Friese M, Wiers RW. Impulsive versus reflective influences on health behavior: a theoretical framework and empirical review. Health Psychol Rev. 2008. https://doi.org/10.1080/17437190802617668.

    Article  Google Scholar 

  5. Mitchell DGV. The nexus between decision making and emotion regulation: A review of convergent neurocognitive substrates. Behav Brain Res. 2011. https://doi.org/10.1016/j.bbr.2010.10.030.

    Article  PubMed  Google Scholar 

  6. Morawetz C, Steyrl D, Berboth S, Heekeren HR, Bode S. Emotion Regulation Modulates Dietary Decision-Making via Activity in the Prefrontal-Striatal Valuation System. Cereb Cortex. 2020. https://doi.org/10.1093/cercor/bhaa147.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Macht M. How emotions affect eating: A five-way model. Appetite. 2008. https://doi.org/10.1016/j.appet.2007.07.002.

    Article  PubMed  Google Scholar 

  8. Arnow B, Kenardy J, Agras WS. The emotional eating scale: The development of a measure to assess coping with negative affect by eating. Int J Eat Disord. 1995. https://doi.org/10.1002/1098-108X(199507)18:1/3C79::AID-EAT2260180109/3E3.0.CO;2-V

  9. Evers C, Dingemans A, Junghans AF, Boevé A. Feeling bad or feeling good, does emotion affect your consumption of food? A meta-analysis of the experimental evidence. Neurosci Biobehav Rev. 2018. https://doi.org/10.1016/j.neubiorev.2018.05.028.

    Article  PubMed  Google Scholar 

  10. Macht M, Simons G. Emotional Eating. In: Nyklíček I, Vingerhoets A, Zeelenberg M, editors. Emotion Regulation and Well-Being. New York, NY: Springer New York; 2011. p. 281–95. https://doi.org/10.1007/978-1-4419-6953-8_17

  11. Sultson H, Kukk K, Akkermann K. Positive and negative emotional eating have different associations with overeating and binge eating: Construction and validation of the Positive-Negative Emotional Eating Scale. Appetite. 2017. https://doi.org/10.1016/j.appet.2017.05.035.

    Article  PubMed  Google Scholar 

  12. Zeeck A, Stelzer N, Linster HW, Joos A, Hartmann A. Emotion and eating in binge eating disorder and obesity. Eur Eat Disord Rev. 2011. https://doi.org/10.1002/erv.1066.

    Article  PubMed  Google Scholar 

  13. Koenders PG, Van Strien T. Emotional eating, rather than lifestyle behavior, drives weight gain in a prospective study in 1562 employees. J Occup Environ Med. 2011. https://doi.org/10.1097/JOM.0b013e31823078a2.

    Article  PubMed  Google Scholar 

  14. Berridge KC, Robinson TE. Liking, wanting, and the incentive-sensitization theory of addiction. Am Psychol. 2016. https://doi.org/10.1037/amp0000059.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Berthoud H-R. Metabolic and hedonic drives in the neural control of appetite: who is the boss? Curr Opin Neurobiol. 2011. https://doi.org/10.1016/j.conb.2011.09.004.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ulrich-Lai YM, Fulton S, Wilson M, Petrovich G, Rinaman L. Stress exposure, food intake and emotional state. Stress. 2015. https://doi.org/10.3109/10253890.2015.1062981.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kleinginna PR, Kleinginna AM. A categorized list of motivation definitions, with a suggestion for a consensual definition. Motiv Emot. 1981. https://doi.org/10.1007/BF00993889.

    Article  Google Scholar 

  18. Brosch T, Scherer K, Grandjean D, Sander D. The impact of emotion on perception, attention, memory, and decision-making. Swiss Med Wkly. 2013. https://doi.org/10.4414/smw.2013.13786.

    Article  PubMed  Google Scholar 

  19. Gross JJ, Sheppes G, Urry HL. Cognition and Emotion Lecture at the 2010 SPSP Emotion Preconference. Cogn Emot. 2011. https://doi.org/10.1080/02699931.2011.555753

  20. Ochnser K, Gross J. The cognitive control of emotion. Trends Cogn Sci. 2005. https://doi.org/10.1016/j.tics.2005.03.010

  21. Kober H, Barrett LF, Joseph J, Bliss-Moreau E, Lindquist K, Wager TD. Functional grouping and cortical–subcortical interactions in emotion: A meta-analysis of neuroimaging studies. Neuroimage. 2008. https://doi.org/10.1016/j.neuroimage.2008.03.059.

    Article  PubMed  Google Scholar 

  22. Buhle JT, Silvers JA, Wager TD, Lopez R, Onyemekwu C, Kober H, et al. Cognitive Reappraisal of Emotion: A Meta-Analysis of Human Neuroimaging Studies. Cereb Cortex. 2014. https://doi.org/10.1093/cercor/bht154.

    Article  PubMed  Google Scholar 

  23. Gross JJ, Feldman BL. Emotion Generation and Emotion Regulation: One or Two Depends on Your Point of View. Emot Rev. 2011. https://doi.org/10.1177/1754073910380974.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ochsner KN, Silvers JA, Buhle JT. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann N Y Acad Sci. 2012. https://doi.org/10.1111/j.1749-6632.2012.06751.x.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Etkin A, Büchel C, Gross JJ. The neural bases of emotion regulation. Nat Rev Neurosci. 2015. https://doi.org/10.1038/nrn4044.

    Article  PubMed  Google Scholar 

  26. Helion C, Krueger SM, Ochsner KN. Emotion regulation across the life span [Internet]. 1st ed. Vol. 163, Handbook of Clinical Neurology. Elsevier B.V.; 2019. 257–280 p. https://doi.org/10.1016/B978-0-12-804281-6.00014-8

  27. Craig AD. How do you feel — now? The anterior insula and human awareness. Nat Rev Neurosci. 2009. https://doi.org/10.1038/nrn2555.

    Article  PubMed  Google Scholar 

  28. Gross JJ. The Emerging Field of Emotion Regulation: An Integrative Review. Rev Gen Psychol. 1998. https://doi.org/10.1037/1089-2680.2.3.271

  29. Gross JJ. Supplemental Material for Emotion Regulation. Emotion. 2020. https://doi.org/10.1037/emo0000703.supp.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Peña-Sarrionandia A, Mikolajczak M, Gross JJ. Integrating emotion regulation and emotional intelligence traditions: a meta-analysis. Front Psychol. 2015. https://doi.org/10.3389/fpsyg.2015.00160.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Morawetz C, Bode S, Derntl B, Heekeren HR. The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: A meta-analysis of fMRI studies. Neurosci Biobehav Rev. 2017. https://doi.org/10.1016/j.neubiorev.2016.11.014.

    Article  PubMed  Google Scholar 

  32. Park C, Rosenblat JD, Lee Y, Pan Z, Cao B, Iacobucci M, et al. The neural systems of emotion regulation and abnormalities in major depressive disorder. Behav Brain Res. 2019. https://doi.org/10.1016/j.bbr.2019.04.002.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dixon ML, Thiruchselvam R, Todd R, Christoff K. Emotion and the prefrontal cortex: An integrative review. Psychol Bull. 2017. https://doi.org/10.1037/bul0000096.

    Article  PubMed  Google Scholar 

  34. Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci. 2011. https://doi.org/10.1016/j.tics.2010.11.004

  35. Rolls ET. The orbitofrontal cortex and emotion in health and disease, including depression. Neuropsychologia. 2019. https://doi.org/10.1016/j.neuropsychologia.2017.09.021.

    Article  PubMed  Google Scholar 

  36. Kohn N, Eickhoff SB, Scheller M, Laird AR, Fox PT, Habel U. Neural network of cognitive emotion regulation — An ALE meta-analysis and MACM analysis. Neuroimage. 2014. https://doi.org/10.1016/j.neuroimage.2013.11.001.

    Article  PubMed  Google Scholar 

  37. Goldin PR, McRae K, Ramel W, Gross JJ. The Neural Bases of Emotion Regulation: Reappraisal and Suppression of Negative Emotion. Biol Psychiatry. 2008. https://doi.org/10.1016/j.biopsych.2007.05.031.

    Article  PubMed  Google Scholar 

  38. Diekhof EK, Geier K, Falkai P, Gruber O. Fear is only as deep as the mind allows. Neuroimage. 2011. https://doi.org/10.1016/j.neuroimage.2011.05.073.

    Article  PubMed  Google Scholar 

  39. Zilverstand A, Parvaz MA, Goldstein RZ. Neuroimaging cognitive reappraisal in clinical populations to define neural targets for enhancing emotion regulation. A systematic review Neuroimage. 2017. https://doi.org/10.1016/j.neuroimage.2016.06.009.

    Article  PubMed  Google Scholar 

  40. Picó-Pérez M, Radua J, Steward T, Menchón JM, Soriano-Mas C. Emotion regulation in mood and anxiety disorders: A meta-analysis of fMRI cognitive reappraisal studies. Prog Neuro-Psychopharmacology Biol Psychiatry. 2017. https://doi.org/10.1016/j.pnpbp.2017.06.001.

    Article  Google Scholar 

  41. Paschke LM, Dörfel D, Steimke R, Trempler I, Magrabi A, Ludwig VU, et al. Individual differences in self-reported self-control predict successful emotion regulation. Soc Cogn Affect Neurosci. 2016. https://doi.org/10.1093/scan/nsw036.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gross JJ, John OP. Individual differences in two emotion regulation processes: implications for affect, relationships, and well-being. J Pers Soc Psychol. 2003. https://doi.org/10.1037/0022-3514.85.2.348.

    Article  PubMed  Google Scholar 

  43. Picó-Pérez M, Alonso P, Contreras-Rodríguez O, Martínez-Zalacaín I, López-Solà C, Jiménez-Murcia S, et al. Dispositional use of emotion regulation strategies and resting-state cortico-limbic functional connectivity. Brain Imaging Behav. 2018. https://doi.org/10.1007/s11682-017-9762-3

  44. Uchida M, Biederman J, Gabrieli JDE, Micco J, de Los AC, Brown A, et al. Emotion regulation ability varies in relation to intrinsic functional brain architecture. Soc Cogn Affect Neurosci. 2015. https://doi.org/10.1093/scan/nsv059.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-Scale Network Dysfunction in Major Depressive Disorder. JAMA Psychiat. 2015. https://doi.org/10.1001/jamapsychiatry.2015.0071.

    Article  Google Scholar 

  46. Steward T, Picó-Pérez M, Mestre-Bach G, Martínez-Zalacaín I, Suñol M, Jiménez-Murcia S, et al. A multimodal MRI study of the neural mechanisms of emotion regulation impairment in women with obesity. Transl Psychiatry. 2019. https://doi.org/10.1038/s41398-019-0533-3.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Duncan S, Barrett LF. Affect is a form of cognition: A neurobiological analysis. Cogn Emot. 2007. https://doi.org/10.1080/02699930701437931.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Okon-Singer H, Hendler T, Pessoa L, Shackman AJ. The neurobiology of emotion-cognition interactions: fundamental questions and strategies for future research. Front Hum Neurosci. 2015. https://doi.org/10.3389/fnhum.2015.00058.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pessoa L. A Network Model of the Emotional Brain. Trends Cogn Sci. 2017. https://doi.org/10.1016/j.tics.2017.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ochsner KN, Gross JJ. Cognitive Emotion Regulation. Curr Dir Psychol Sci. 2008. https://doi.org/10.1111/j.1467-8721.2008.00566.x.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mishra A, Anand M, Umesh S. Neurobiology of eating disorders - an overview. Asian J Psychiatr. 2017. https://doi.org/10.1016/j.ajp.2016.10.009.

    Article  PubMed  Google Scholar 

  52. Shin AC, Zheng H, Berthoud H-R. An expanded view of energy homeostasis: Neural integration of metabolic, cognitive, and emotional drives to eat. Physiol Behav. 2009. https://doi.org/10.1016/j.physbeh.2009.02.010.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu CM, Kanoski SE. Homeostatic and non-homeostatic controls of feeding behavior: Distinct vs. common neural systems. Physiol Behav. 2018. https://doi.org/10.1016/j.physbeh.2018.02.011

  54. Hollmann M, Pleger B, Villringer A, Horstmann A. Brain imaging in the context of food perception and eating. Curr Opin Lipidol. 2013. https://doi.org/10.1097/MOL.0b013e32835b61a4.

    Article  PubMed  Google Scholar 

  55. Rolls E. Functions of the orbitofrontal and pregenual cingulate cortex in taste, olfaction, appetite and emotion. Acta Physiol Hung. 2008. https://doi.org/10.1556/APhysiol.95.2008.2.1.

    Article  PubMed  Google Scholar 

  56. Schmidt L, Tusche A, Manoharan N, Hutcherson C, Hare T, Plassmann H. Neuroanatomy of the vmPFC and dlPFC Predicts Individual Differences in Cognitive Regulation During Dietary Self-Control Across Regulation Strategies. J Neurosci. 2018. https://doi.org/10.1523/JNEUROSCI.3402-17.2018.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Petrovich GD, Ross CA, Holland PC, Gallagher M. Medial Prefrontal Cortex Is Necessary for an Appetitive Contextual Conditioned Stimulus to Promote Eating in Sated Rats. J Neurosci. 2007. https://doi.org/10.1523/JNEUROSCI.5001-06.2007.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Le DSNT, Pannacciulli N, Chen K, Del Parigi A, Salbe AD, Reiman EM, et al. Less activation of the left dorsolateral prefrontal cortex in response to a meal: a feature of obesity. Am J Clin Nutr. 2006. https://doi.org/10.1093/ajcn/84.4.725.

    Article  PubMed  Google Scholar 

  59. Chan KL, Cathomas F, Russo SJ. Central and Peripheral Inflammation Link Metabolic Syndrome and Major Depressive Disorder. Physiology. 2019. https://doi.org/10.1152/physiol.00047.2018.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Luppino FS, de Wit LM, Bouvy PF, Stijnen T, Cuijpers P, Penninx BWJH, et al. Overweight, Obesity, and Depression. Arch Gen Psychiatry. 2010. https://doi.org/10.1001/archgenpsychiatry.2010.2.

    Article  PubMed  Google Scholar 

  61. Milaneschi Y, Simmons WK, van Rossum EFC, Penninx BW. Depression and obesity: evidence of shared biological mechanisms. Mol Psychiatry. 2019. https://doi.org/10.1038/s41380-018-0017-5.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Donofry SD, Roecklein KA, Wildes JE, Miller MA, Erickson KI. Alterations in emotion generation and regulation neurocircuitry in depression and eating disorders: A comparative review of structural and functional neuroimaging studies. Neurosci Biobehav Rev. 2016. https://doi.org/10.1016/j.neubiorev.2016.07.011.

    Article  PubMed  Google Scholar 

  63. Singh M. Mood, food, and obesity. Front Psychol. 2014. https://doi.org/10.3389/fpsyg.2014.00925.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Flaskerud JH. Mood and Food. Issues Ment Health Nurs. 2015. https://doi.org/10.3109/01612840.2014.962677.

    Article  PubMed  Google Scholar 

  65. Spencer SJ, Korosi A, Layé S, Shukitt-Hale B, Barrientos RM. Food for thought: how nutrition impacts cognition and emotion. npj Sci Food. 2017. https://doi.org/10.1038/s41538-017-0008-y

  66. Berthoud H-R. Homeostatic and non-homeostatic pathways involved in the control of food intake and energy balance. Obesity (Silver Spring). 2006. https://doi.org/10.1038/oby.2006.308

  67. White FJ. Synaptic regulation of mesocorticolimbic dopamine neurons. Annu Rev Neurosci. 1996. https://doi.org/10.1146/annurev.ne.19.030196.002201

  68. Hajnal A, Smith GP, Norgren R. Oral sucrose stimulation increases accumbens dopamine in the rat. Am J Physiol Integr Comp Physiol. 2004. https://doi.org/10.1152/ajpregu.00282.2003.

    Article  Google Scholar 

  69. Small DM, Jones-Gotman M, Dagher A. Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage. 2003. https://doi.org/10.1016/S1053-8119(03)00253-2.

    Article  PubMed  Google Scholar 

  70. Wang G-J, Geliebter A, Volkow ND, Telang FW, Logan J, Jayne MC, et al. Enhanced striatal dopamine release during food stimulation in binge eating disorder. Obesity (Silver Spring). 2011. https://doi.org/10.1038/oby.2011.27/nature06264.

    Article  Google Scholar 

  71. Canetti L, Bachar E, Berry EM. Food and emotion. Behav Processes. 2002. https://doi.org/10.1016/S0376-6357(02)00082-7.

    Article  PubMed  Google Scholar 

  72. Bruch H. Obesity and anorexia nervosa: psychosocial aspects. Aust N Z J Psychiatry. 1975. https://doi.org/10.3109/00048677509159842.

    Article  PubMed  Google Scholar 

  73. Ganley RM. Emotion and eating in obesity: A review of the literature. Int J Eat Disord. 1989. https://doi.org/10.1002/1098-108X(198905)8:3%3C343::AID-EAT2260080310%3E3.0.CO;2-C.

    Article  Google Scholar 

  74. Constant A, Gautier Y, Coquery N, Thibault R, Moirand R, Val-Laillet D. Emotional overeating is common and negatively associated with alcohol use in normal-weight female university students. Appetite. 2018. https://doi.org/10.1016/j.appet.2018.07.012.

    Article  PubMed  Google Scholar 

  75. Prefit A-B, Cândea DM, Szentagotai-Tătar A. Emotion regulation across eating pathology: A meta-analysis. Appetite. 2019. https://doi.org/10.1016/j.appet.2019.104438.

    Article  PubMed  Google Scholar 

  76. Kittel R, Brauhardt A, Hilbert A. Cognitive and emotional functioning in binge-eating disorder: A systematic review. Int J Eat Disord. 2015. https://doi.org/10.1002/eat.22419.

    Article  PubMed  Google Scholar 

  77. Micanti F, Iasevoli F, Cucciniello C, Costabile R, Loiarro G, Pecoraro G, et al. The relationship between emotional regulation and eating behaviour: a multidimensional analysis of obesity psychopathology. Eat Weight Disord. 2017. https://doi.org/10.1007/s40519-016-0275-7.

    Article  PubMed  Google Scholar 

  78. Svaldi J, Griepenstroh J, Tuschen-Caffier B, Ehring T. Emotion regulation deficits in eating disorders: a marker of eating pathology or general psychopathology? Psychiatry Res. 2012. https://doi.org/10.1016/j.psychres.2011.11.009.

    Article  PubMed  Google Scholar 

  79. D’Agata F, Caroppo P, Amianto F, Spalatro A, Caglio MM, Bergui M, et al. Brain correlates of alexithymia in eating disorders: A voxel-based morphometry study. Psychiatry Clin Neurosci. 2015. https://doi.org/10.1111/pcn.12318.

    Article  PubMed  Google Scholar 

  80. Mikhail ME, Keel PK, Burt SA, Neale M, Boker S, Klump KL. Low emotion differentiation: An affective correlate of binge eating? Int J Eat Disord. 2020. https://doi.org/10.1002/eat.23207.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sierra I, Senín-Calderón C, Roncero M, Perpiñá C. The Role of Negative Affect in Emotional Processing of Food-Related Images in Eating Disorders and Obesity. Front Psychol. 2021. https://doi.org/10.3389/fpsyg.2021.723732.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Aldao A, Nolen-Hoeksema S, Schweizer S. Emotion-regulation strategies across psychopathology: A meta-analytic review. Clin Psychol Rev. 2010. https://doi.org/10.1016/j.cpr.2009.11.004.

    Article  PubMed  Google Scholar 

  83. Giuliani NR, Berkman ET. Craving Is an Affective State and Its Regulation Can Be Understood in Terms of the Extended Process Model of Emotion Regulation. Psychol Inq. 2015. https://doi.org/10.1080/1047840X.2015.955072.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Brandl F, Le Houcq CZ, Mulej Bratec S, Sorg C. Cognitive reward control recruits medial and lateral frontal cortices, which are also involved in cognitive emotion regulation: A coordinate-based meta-analysis of fMRI studies. Neuroimage. 2019. https://doi.org/10.1016/j.neuroimage.2019.07.008.

    Article  PubMed  Google Scholar 

  85. Han JE, Boachie N, Garcia-Garcia I, Michaud A, Dagher A. Neural correlates of dietary self-control in healthy adults: A meta-analysis of functional brain imaging studies. Physiol Behav. 2018. https://doi.org/10.1016/j.physbeh.2018.02.037.

    Article  PubMed  Google Scholar 

  86. Steward T, Martínez-Zalacaín I, Mestre-Bach G, Sánchez I, Riesco N, Jiménez-Murcia S, et al. Dorsolateral prefrontal cortex and amygdala function during cognitive reappraisal predicts weight restoration and emotion regulation impairment in anorexia nervosa. Psychol Med. 2020. https://doi.org/10.1017/S0033291720002457.

    Article  PubMed  Google Scholar 

  87. de Kloet ER, Joëls M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005. https://doi.org/10.1038/nrn1683.

    Article  PubMed  Google Scholar 

  88. Rabasa C, Dickson SL. Impact of stress on metabolism and energy balance. Curr Opin Behav Sci. 2016. https://doi.org/10.1016/j.cobeha.2016.01.011.

    Article  Google Scholar 

  89. Dallman MF. Stress-induced obesity and the emotional nervous system. Trends Endocrinol Metab. 2010. https://doi.org/10.1016/j.tem.2009.10.004.

    Article  PubMed  Google Scholar 

  90. Ulrich-Lai YM, Christiansen AM, Ostrander MM, Jones AA, Jones KR, Choi DC, et al. Pleasurable behaviors reduce stress via brain reward pathways. Proc Natl Acad Sci. 2010. https://doi.org/10.1073/pnas.1007740107.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ulrich-Lai YM, Ostrander MM, Thomas IM, Packard BA, Furay AR, Dolgas CM, et al. Daily limited access to sweetened drink attenuates hypothalamic-pituitary-adrenocortical axis stress responses. Endocrinology. 2007. https://academic.oup.com/endo/article/148/4/1823/2502010

  92. Egan AE, Thompson AMK, Buesing D, Fourman SM, Packard AEB, Terefe T, et al. Palatable Food Affects HPA Axis Responsivity and Forebrain Neurocircuitry in an Estrous Cycle-specific Manner in Female Rats. Neuroscience. 2018. https://doi.org/10.1016/j.neuroscience.2018.05.030.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Packard AEB, Di S, Egan AE, Fourman SM, Tasker JG, Ulrich-Lai YM. Sucrose-induced plasticity in the basolateral amygdala in a ‘comfort’ feeding paradigm. Brain Struct Funct. 2017. https://doi.org/10.1007/s00429-017-1454-7.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ozier AD, Kendrick OW, Leeper JD, Knol LL, Perko M, Burnham J. Overweight and obesity are associated with emotion- and stress-related eating as measured by the eating and appraisal due to emotions and stress questionnaire. J Am Diet Assoc. 2008. https://doi.org/10.1016/j.jada.2007.10.011.

    Article  PubMed  Google Scholar 

  95. Lazarevich I, Irigoyen Camacho ME, Velázquez-Alva M del C, Zepeda Zepeda M. Relationship among obesity, depression, and emotional eating in young adults. Appetite. 2016. https://doi.org/10.1016/j.appet.2016.09.011

  96. Konttinen H, van Strien T, Männistö S, Jousilahti P, Haukkala A. Depression, emotional eating and long-term weight changes: a population-based prospective study. Int J Behav Nutr Phys Act. 2019. https://doi.org/10.1186/s12966-019-0791-8.

    Article  PubMed  PubMed Central  Google Scholar 

  97. van Strien T, Roelofs K, de Weerth C. Cortisol reactivity and distress-induced emotional eating. Psychoneuroendocrinology. 2013. https://doi.org/10.1016/j.psyneuen.2012.08.008.

    Article  PubMed  Google Scholar 

  98. Joëls M. Corticosteroids and the brain. J Endocrinol. 2018. https://doi.org/10.1530/JOE-18-0226.

    Article  PubMed  Google Scholar 

  99. Roos LG, Janson J, Sturmbauer SC, Bennett JM, Rohleder N. Higher trait reappraisal predicts stronger HPA axis habituation to repeated stress. Psychoneuroendocrinology. 2019. https://doi.org/10.1016/j.psyneuen.2018.10.018.

    Article  PubMed  Google Scholar 

  100. Langer K, Wolf OT, Jentsch VL. Delayed effects of acute stress on cognitive emotion regulation. Psychoneuroendocrinology. 2021. https://doi.org/10.1016/j.psyneuen.2020.105101.

    Article  PubMed  Google Scholar 

  101. Jentsch VL, Merz CJ, Wolf OT. Restoring emotional stability: Cortisol effects on the neural network of cognitive emotion regulation. Behav Brain Res. 2019. https://doi.org/10.1016/j.bbr.2019.03.049.

    Article  PubMed  Google Scholar 

  102. Peters AT, Van Meter A, Pruitt PJ, Briceño EM, Ryan KA, Hagan M, et al. Acute cortisol reactivity attenuates engagement of fronto-parietal and striatal regions during emotion processing in negative mood disorders. Psychoneuroendocrinology. 2016. https://doi.org/10.1016/j.psyneuen.2016.07.215.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Nusslock R, Brody GH, Armstrong CC, Carroll AL, Sweet LH, Yu T, et al. Higher Peripheral Inflammatory Signaling Associated With Lower Resting-State Functional Brain Connectivity in Emotion Regulation and Central Executive Networks. Biol Psychiatry. 2019. https://doi.org/10.1016/j.biopsych.2019.03.968.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Glaser R, Kiecolt-Glaser JK. Stress-induced immune dysfunction: implications for health. Nat Rev Immunol. 2005. https://doi.org/10.1038/nri1571.

    Article  PubMed  Google Scholar 

  105. Raff H, Carroll T. Cushing’s syndrome: from physiological principles to diagnosis and clinical care. J Physiol. 2015. https://doi.org/10.1113/jphysiol.2014.282871.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Pivonello R, Simeoli C, De Martino MC, Cozzolino A, De Leo M, Iacuaniello D, et al. Neuropsychiatric disorders in Cushing’s syndrome. Front Neurosci. 2015. https://doi.org/10.3389/fnins.2015.00129.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Castanon N, Luheshi G, Layé S. Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity. Front Neurosci. 2015. https://doi.org/10.3389/fnins.2015.00229.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Castanon N, Lasselin J, Capuron L. Neuropsychiatric Comorbidity in Obesity: Role of Inflammatory Processes. Front Endocrinol (Lausanne). 2014. https://doi.org/10.3389/fendo.2014.00074.

    Article  Google Scholar 

  109. Tsigos C, Chrousos GP. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J Psychosom Res. 2002. https://doi.org/10.1016/s0022-3999(02)00429-4.

    Article  PubMed  Google Scholar 

  110. Jenkins TA, Nguyen JCD, Polglaze KE, Bertrand PP. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients. 2016. https://doi.org/10.3390/nu8010056

  111. Kelly JR, Borre Y, O’ Brien C, Patterson E, El Aidy S, Deane J, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psychiatr Res. 2016. https://doi.org/10.1016/j.jpsychires.2016.07.019

  112. Agustí A, García-Pardo MP, López-Almela I, Campillo I, Maes M, Romaní-Pérez M, et al. Interplay Between the Gut-Brain Axis. Obesity and Cognitive Function Front Neurosci. 2018. https://doi.org/10.3389/fnins.2018.00155.

    Article  PubMed  Google Scholar 

  113. Martins LB, Monteze NM, Calarge C, Ferreira AVM, Teixeira AL. Pathways linking obesity to neuropsychiatric disorders. Nutrition. 2019. https://doi.org/10.1016/j.nut.2019.03.017.

    Article  PubMed  Google Scholar 

  114. Fung TC, Olson CA, Hsiao EY. Interactions between the microbiota, immune and nervous systems in health and disease. Nat Neurosci. 2017. https://doi.org/10.1038/nn.4476.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Asano Y, Hiramoto T, Nishino R, Aiba Y, Kimura T, Yoshihara K, et al. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol. 2012. https://doi.org/10.1152/ajpgi.00341.2012.

    Article  PubMed  Google Scholar 

  116. Salamone JD, Correa M. The Mysterious Motivational Functions of Mesolimbic Dopamine. Neuron. 2012. https://doi.org/10.1016/j.neuron.2012.10.021.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Appelhans BM, Whited MC, Schneider KL, Ma Y, Oleski JL, Merriam PA, et al. Depression Severity, Diet Quality, and Physical Activity in Women with Obesity and Depression. J Acad Nutr Diet. 2012. https://doi.org/10.1016/j.jand.2012.02.006.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Li M, van Esch BCAM, Wagenaar GTM, Garssen J, Folkerts G, Henricks PAJ. Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur J Pharmacol. 2018. https://doi.org/10.1016/j.ejphar.2018.05.003.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G, et al. High-fat diet alters gut microbiota physiology in mice. ISME J. 2014. https://doi.org/10.1038/ismej.2013.155.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Menneson S, Ménicot S, Ferret-Bernard S, Guérin S, Romé V, Le Normand L, et al. Validation of a Psychosocial Chronic Stress Model in the Pig Using a Multidisciplinary Approach at the Gut-Brain and Behavior Levels. Front Behav Neurosci. 2019. https://doi.org/10.3389/fnbeh.2019.00161.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Panduro A, Rivera-Iñiguez I, Sepulveda-Villegas M, Roman S. Genes, emotions and gut microbiota: The next frontier for the gastroenterologist. World J Gastroenterol. 2017. https://doi.org/10.3748/wjg.v23.i17.3030.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Orsal AS, Blois SM, Bermpohl D, Schaefer M, Coquery N. Administration of interferon-alpha in mice provokes peripheral and central modulation of immune cells, accompanied by behavioral effects. Neuropsychobiology. 2008. https://doi.org/10.1159/000201718.

    Article  PubMed  Google Scholar 

  123. Carbone EA, D’Amato P, Vicchio G, De Fazio P, Segura-Garcia C. A systematic review on the role of microbiota in the pathogenesis and treatment of eating disorders. Eur Psychiatry. 2020. https://doi.org/10.1192/j.eurpsy.2020.109.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Mayer EA. Gut feelings: the emerging biology of gut-brain communication. Nat Rev Neurosci. 2011. https://doi.org/10.1038/nrn3071.

    Article  PubMed  PubMed Central  Google Scholar 

  125. van Strien T, Frijters JER, Bergers GPA, Defares PB. The Dutch Eating Behavior Questionnaire (DEBQ) for assessment of restrained, emotional, and external eating behavior. Int J Eat Disord. 1986. https://doi.org/10.1002/1098-108X(198602)5:2%3C295::AID-EAT2260050209%3E3.0.CO;2-T.

    Article  Google Scholar 

  126. Karlsson J, Persson LO, Sjöström L, Sullivan M. Psychometric properties and factor structure of the Three-Factor Eating Questionnaire (TFEQ) in obese men and women. Results from the Swedish Obese Subjects (SOS) study. Int J Obes. 2000

  127. Schembre S, Greene G, Melanson K. Development and validation of a weight-related eating questionnaire. Eat Behav. 2009. https://doi.org/10.1016/j.eatbeh.2009.03.006.

    Article  PubMed  Google Scholar 

  128. Masheb RM, Grilo CM. Emotional overeating and its associations with eating disorder psychopathology among overweight patients with Binge eating disorder. Int J Eat Disord. 2006. https://doi.org/10.1002/eat.20221.

    Article  PubMed  Google Scholar 

  129. Song S, Zhang Y, Qiu J, Li X, Ma K, Chen S, et al. Brain structures associated with eating behaviors in normal-weight young females. Neuropsychologia. 2019. https://doi.org/10.1016/j.neuropsychologia.2019.107171.

    Article  PubMed  Google Scholar 

  130. Chen F, He Q, Han Y, Zhang Y, Gao X. Increased BOLD Signals in dlPFC Is Associated With Stronger Self-Control in Food-Related Decision-Making. Front Psychiatry. 2018. https://doi.org/10.3389/fpsyt.2018.00689.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Wood SMW, Schembre SM, He Q, Engelmann JM, Ames SL, Bechara A. Emotional eating and routine restraint scores are associated with activity in brain regions involved in urge and self-control. Physiol Behav. 2016. https://doi.org/10.1016/j.physbeh.2016.08.024.

    Article  PubMed  PubMed Central  Google Scholar 

  132. van Bloemendaal L, Veltman DJ, ten Kulve JS, Drent ML, Barkhof F, Diamant M, et al. Emotional eating is associated with increased brain responses to food-cues and reduced sensitivity to GLP-1 receptor activation. Obesity (Silver Spring). 2015. https://doi.org/10.1002/oby.21200.

    Article  Google Scholar 

  133. Bohon C. Greater emotional eating scores associated with reduced frontolimbic activation to palatable taste in adolescents. Obesity. 2014. https://doi.org/10.1002/oby.20759.

    Article  PubMed  Google Scholar 

  134. Kerr KL, Moseman SE, Avery JA, Bodurka J, Zucker NL, Simmons WK. Altered Insula Activity during Visceral Interoception in Weight-Restored Patients with Anorexia Nervosa. Neuropsychopharmacology. 2016. https://doi.org/10.1038/npp.2015.174.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Steward T, Menchon JM, Jiménez-Murcia S, Soriano-Mas C, Fernandez-Aranda F. Neural Network Alterations Across Eating Disorders: A Narrative Review of fMRI Studies. Curr Neuropharmacol. 2018. https://doi.org/10.2174/1570159x15666171017111532.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Herwig U, Dhum M, Hittmeyer A, Opialla S, Scherpiet S, Keller C, et al. Neural Signaling of Food Healthiness Associated with Emotion Processing. Front Aging Neurosci. 2016. https://doi.org/10.3389/fnagi.2016.00016.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Bongers P, Jansen A. Emotional Eating Is Not What You Think It Is and Emotional Eating Scales Do Not Measure What You Think They Measure. Front Psychol. 2016. https://doi.org/10.3389/fpsyg.2016.01932.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Bongers P, de Graaff A, Jansen A. “Emotional” does not even start to cover it: Generalization of overeating in emotional eaters. Appetite. 2016. https://doi.org/10.1016/j.appet.2015.11.004.

    Article  PubMed  Google Scholar 

  139. Bohon C, Stice E, Spoor S. Female emotional eaters show abnormalities in consummatory and anticipatory food reward: a functional magnetic resonance imaging study. Int J Eat Disord. 2009. https://doi.org/10.1002/eat.20615.

    Article  PubMed  PubMed Central  Google Scholar 

  140. García-García I, Kube J, Morys F, Schrimpf A, Kanaan AS, Gaebler M, et al. Liking and left amygdala activity during food versus nonfood processing are modulated by emotional context. Cogn Affect Behav Neurosci. 2020. https://doi.org/10.3758/s13415-019-00754-8.

    Article  PubMed  Google Scholar 

  141. Blechert J, Goltsche JE, Herbert BM, Wilhelm FH. Eat your troubles away: Electrocortical and experiential correlates of food image processing are related to emotional eating style and emotional state. Biol Psychol. 2014. https://doi.org/10.1016/j.biopsycho.2013.12.007.

    Article  PubMed  Google Scholar 

  142. Schnepper R, Georgii C, Eichin K, Arend A-K, Wilhelm FH, Vögele C, et al. Fight, Flight, – Or Grab a Bite! Trait Emotional and Restrained Eating Style Predicts Food Cue Responding Under Negative Emotions. Front Behav Neurosci. 2020. https://doi.org/10.3389/fnbeh.2020.00091.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Martín-Pérez C, Contreras-Rodríguez O, Vilar-López R, Verdejo-García A. Hypothalamic Networks in Adolescents With Excess Weight: Stress-Related Connectivity and Associations With Emotional Eating. J Am Acad Child Adolesc Psychiatry. 2019. https://doi.org/10.1016/j.jaac.2018.06.039.

    Article  PubMed  Google Scholar 

  144. Sweeney P, Yang Y. Neural Circuit Mechanisms Underlying Emotional Regulation of Homeostatic Feeding. Trends Endocrinol Metab. 2017. https://doi.org/10.1016/j.tem.2017.02.006.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Yang X, Casement M, Yokum S, Stice E. Negative affect amplifies the relation between appetitive-food-related neural responses and weight gain over three-year follow-up among adolescents. NeuroImage Clin. 2019. https://doi.org/10.1016/j.nicl.2019.102067.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Maier SU, Makwana AB, Hare TA. Acute Stress Impairs Self-Control in Goal-Directed Choice by Altering Multiple Functional Connections within the Brain’s Decision Circuits. Neuron. 2015. https://doi.org/10.1016/j.neuron.2015.07.005.

    Article  PubMed  Google Scholar 

  147. Tryon MS, Carter CS, Decant R, Laugero KD. Chronic stress exposure may affect the brain’s response to high calorie food cues and predispose to obesogenic eating habits. Physiol Behav. 2013. https://doi.org/10.1016/j.physbeh.2013.08.010.

    Article  PubMed  Google Scholar 

  148. Val-Laillet D, Aarts E, Weber B, Ferrari M, Quaresima V, Stoeckel LE, et al. Neuroimaging and neuromodulation approaches to study eating behavior and prevent and treat eating disorders and obesity. NeuroImage Clin. 2015. https://doi.org/10.1016/j.nicl.2015.03.016.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Reichenberger J, Schnepper R, Arend A-K, Blechert J. Emotional eating in healthy individuals and patients with an eating disorder: evidence from psychometric, experimental and naturalistic studies. Proc Nutr Soc. 2020. https://doi.org/10.1017/S0029665120007004.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Cosme D, Mobasser A, Zeithamova D, Berkman ET, Pfeifer JH. Choosing to regulate: does choice enhance craving regulation? Soc Cogn Affect Neurosci. 2018. https://doi.org/10.1093/scan/nsy010.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Giuliani NR, Mann T, Tomiyama AJ, Berkman ET. Neural Systems Underlying the Reappraisal of Personally Craved Foods. J Cogn Neurosci. 2014. https://doi.org/10.1162/jocn_a_00563.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Giuliani NR, Cosme D, Merchant JS, Dirks B, Berkman ET. Brain Activity Associated With Regulating Food Cravings Predicts Changes in Self-Reported Food Craving and Consumption Over Time. Front Hum Neurosci. 2020. https://doi.org/10.3389/fnhum.2020.577669.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Hollmann M, Hellrung L, Pleger B, Schlögl H, Kabisch S, Stumvoll M, et al. Neural correlates of the volitional regulation of the desire for food. Int J Obes (Lond). 2012. https://doi.org/10.1038/ijo.2011.125.

    Article  Google Scholar 

  154. Siep N, Roefs A, Roebroeck A, Havermans R, Bonte M, Jansen A. Fighting food temptations: the modulating effects of short-term cognitive reappraisal, suppression and up-regulation on mesocorticolimbic activity related to appetitive motivation. Neuroimage. 2012. https://doi.org/10.1073/pnas.1007779107.

    Article  PubMed  Google Scholar 

  155. Maier SU, Hare TA. Social Neurobiology of Eating BOLD activity during emotion reappraisal positively correlates with dietary self-control success. Soc Cogn Affect Neurosci. 2020. https://doi.org/10.1093/scan/nsaa097.

    Article  PubMed  Google Scholar 

  156. Yokum S, Stice E. Cognitive regulation of food craving: effects of three cognitive reappraisal strategies on neural response to palatable foods. Int J Obes (Lond). 2013. https://doi.org/10.1038/ijo.2013.39.

    Article  Google Scholar 

  157. Wolz I, Nannt J, Svaldi J. Laboratory-based interventions targeting food craving: A systematic review and meta-analysis. Obes Rev. 2020. https://doi.org/10.1111/obr.12996.

    Article  PubMed  Google Scholar 

  158. Meule A, Kübler A, Blechert J. Time course of electrocortical food-cue responses during cognitive regulation of craving. Front Psychol. 2013. https://doi.org/10.3389/fpsyg.2013.00669.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Hutcherson CA, Plassmann H, Gross JJ, Rangel A. Cognitive Regulation during Decision Making Shifts Behavioral Control between Ventromedial and Dorsolateral Prefrontal Value Systems. J Neurosci. 2012. https://doi.org/10.1523/JNEUROSCI.6387-11.2012.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Ferreira S, Veiga C, Moreira P, Magalhães R, Coelho A, Marques P, et al. Reduced Hedonic Valuation of Rewards and Unaffected Cognitive Regulation in Chronic Stress. Front Neurosci. 2019. https://doi.org/10.3389/fnins.2019.00724.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Ferreira S, Moreira P, Magalhães R, Coelho A, Marques P, Portugal-Nunes C, et al. Frontoparietal hyperconnectivity during cognitive regulation in obsessive-compulsive disorder followed by reward valuation inflexibility. J Psychiatr Res. 2021. https://doi.org/10.1016/j.jpsychires.2020.11.008.

    Article  PubMed  Google Scholar 

  162. Dalton B, Bartholdy S, Campbell IC, Schmidt U. Neurostimulation in Clinical and Sub-clinical Eating Disorders: A Systematic Update of the Literature. Curr Neuropharmacol. 2018. https://doi.org/10.2174/1570159x16666180108111532.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Jáuregui-Lobera I, Martínez-Quiñones JV. Neuromodulation in eating disorders and obesity: a promising way of treatment? Neuropsychiatr Dis Treat. 2018. https://doi.org/10.2147/NDT.S180231.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Bartholdy S, Musiat P, Campbell IC, Schmidt U. The potential of neurofeedback in the treatment of eating disorders: a review of the literature. Eur Eat Disord Rev. 2013. https://doi.org/10.1002/erv.2250.

    Article  PubMed  Google Scholar 

  165. Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, Lewis-Peacock J, et al. Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci. 2017. https://doi.org/10.1038/nrn.2016.164.

    Article  PubMed  Google Scholar 

  166. Lioi G, Cury C, Perronnet L, Mano M, Bannier E, Lécuyer A, et al. Simultaneous EEG-fMRI during a neurofeedback task, a brain imaging dataset for multimodal data integration. Sci Data. 2020. https://doi.org/10.1038/s41597-020-0498-3.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Zotev V, Phillips R, Yuan H, Misaki M, Bodurka J. Self-regulation of human brain activity using simultaneous real-time fMRI and EEG neurofeedback. Neuroimage. 2014. https://doi.org/10.1016/j.neuroimage.2013.04.126.

    Article  PubMed  Google Scholar 

  168. Zotev V, Mayeli A, Misaki M, Bodurka J. Emotion self-regulation training in major depressive disorder using simultaneous real-time fMRI and EEG neurofeedback. NeuroImage Clin. 2020. https://doi.org/10.1016/j.nicl.2020.102331.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Herwig U, Lutz J, Scherpiet S, Scheerer H, Kohlberg J, Opialla S, et al. Training emotion regulation through real-time fMRI neurofeedback of amygdala activity. Neuroimage. 2019. https://doi.org/10.1016/j.neuroimage.2018.09.068.

    Article  PubMed  Google Scholar 

  170. Paret C, Ruf M, Gerchen MF, Kluetsch R, Demirakca T, Jungkunz M, et al. fMRI neurofeedback of amygdala response to aversive stimuli enhances prefrontal-limbic brain connectivity. Neuroimage. 2016. https://doi.org/10.1016/j.neuroimage.2015.10.027.

    Article  PubMed  Google Scholar 

  171. Yu L, Long Q, Tang Y, Yin S, Chen Z, Zhu C, et al. Improving Emotion Regulation Through Real-Time Neurofeedback Training on the Right Dorsolateral Prefrontal Cortex: Evidence From Behavioral and Brain Network Analyses. Front Hum Neurosci. 2021. https://doi.org/10.3389/fnhum.2021.620342.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Zotev V, Krueger F, Phillips R, Alvarez RP, Simmons WK, Bellgowan P, et al. Self-regulation of amygdala activation using real-time FMRI neurofeedback. Domschke K, editor. PLoS One. 2011. https://doi.org/10.1371/journal.pone.0024522

  173. Young KD, Siegle GJ, Zotev V, Phillips R, Misaki M, Yuan H, et al. Randomized Clinical Trial of Real-Time fMRI Amygdala Neurofeedback for Major Depressive Disorder: Effects on Symptoms and Autobiographical Memory Recall. Am J Psychiatry. 2017. https://doi.org/10.1176/appi.ajp.2017.16060637.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Imperatori C, Valenti EM, Della Marca G, Amoroso N, Massullo C, Carbone GA, et al. Coping food craving with neurofeedback. Evaluation of the usefulness of alpha/theta training in a non-clinical sample. Int J Psychophysiol. 2017. https://doi.org/10.1016/j.ijpsycho.2016.11.010

  175. Leong SL, Vanneste S, Lim J, Smith M, Manning P, De Ridder D. A randomised, double-blind, placebo-controlled parallel trial of closed-loop infraslow brain training in food addiction. Sci Rep. 2018. https://doi.org/10.1038/s41598-018-30181-7.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Frank S, Lee S, Preissl H, Schultes B, Birbaumer N, Veit R. The obese brain athlete: self-regulation of the anterior insula in adiposity. Luque RM, editor. PLoS One. 2012. https://doi.org/10.1371/journal.pone.0042570

  177. Kohl SH, Veit R, Spetter MS, Günther A, Rina A, Lührs M, et al. Real-time fMRI neurofeedback training to improve eating behavior by self-regulation of the dorsolateral prefrontal cortex: A randomized controlled trial in overweight and obese subjects. Neuroimage. 2019. https://doi.org/10.1016/j.neuroimage.2019.02.033.

    Article  PubMed  Google Scholar 

  178. Schmidt J, Martin A. Neurofeedback Reduces Overeating Episodes in Female Restrained Eaters: A Randomized Controlled Pilot-Study. Appl Psychophysiol Biofeedback. 2015. https://doi.org/10.1007/s10484-015-9297-6.

    Article  PubMed  Google Scholar 

  179. Schmidt J, Martin A. Neurofeedback Against Binge Eating: A Randomized Controlled Trial in a Female Subclinical Threshold Sample. Eur Eat Disord Rev. 2016. https://doi.org/10.1002/erv.2453.

    Article  PubMed  Google Scholar 

  180. Lackner N, Unterrainer H-F, Skliris D, Shaheen S, Dunitz-Scheer M, Wood G, et al. EEG neurofeedback effects in the treatment of adolescent anorexia nervosa. Eat Disord. 2016. https://doi.org/10.1080/10640266.2016.1160705.

    Article  PubMed  Google Scholar 

  181. Barreiros AR, Almeida I, Baía BC, Castelo-Branco M. Amygdala Modulation During Emotion Regulation Training With fMRI-Based Neurofeedback. Front Hum Neurosci. 2019. https://doi.org/10.3389/fnhum.2019.00089.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Braden A, Musher-Eizenman D, Watford T, Emley E. Eating when depressed, anxious, bored, or happy: Are emotional eating types associated with unique psychological and physical health correlates? Appetite. 2018. https://doi.org/10.1016/j.appet.2018.02.022.

    Article  PubMed  Google Scholar 

  183. Schmidt J, Martin A. The Influence of Physiological and Psychological Learning Mechanisms in Neurofeedback vs. Mental Imagery Against Binge Eating. Appl Psychophysiol Biofeedback. 2020. https://doi.org/10.1007/s10484-020-09486-9

  184. Imperatori C, Mancini M, Della Marca G, Valenti EM, Farina B. Feedback-Based Treatments for Eating Disorders and Related Symptoms: A Systematic Review of the Literature. Nutrients. 2018. https://doi.org/10.3390/nu10111806.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Ihssen N, Sokunbi MO, Lawrence AD, Lawrence NS, Linden DEJ. Neurofeedback of visual food cue reactivity: a potential avenue to alter incentive sensitization and craving. Brain Imaging Behav. 2017. https://doi.org/10.1007/s11682-016-9558-x.

    Article  PubMed  Google Scholar 

  186. Spetter MS, Malekshahi R, Birbaumer N, Lührs M, van der Veer AH, Scheffler K, et al. Volitional regulation of brain responses to food stimuli in overweight and obese subjects: A real-time fMRI feedback study. Appetite. 2017. https://doi.org/10.1016/j.appet.2017.01.032.

    Article  PubMed  Google Scholar 

  187. Donofry SD, Stillman CM, Erickson KI. A review of the relationship between eating behavior, obesity and functional brain network organization. Soc Cogn Affect Neurosci. 2020. https://doi.org/10.1093/scan/nsz085.

    Article  PubMed  Google Scholar 

Download references

Funding

The present research was funded by the University of Rennes 1, Fondation de l’Avenir, the Benjamin Delessert Institute, and INRAE. A. Godet received a PhD grant from the University of Rennes 1. Univ Rennes

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Val-Laillet.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godet, A., Fortier, A., Bannier, E. et al. Interactions between emotions and eating behaviors: Main issues, neuroimaging contributions, and innovative preventive or corrective strategies. Rev Endocr Metab Disord 23, 807–831 (2022). https://doi.org/10.1007/s11154-021-09700-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-021-09700-x

Keywords

Navigation