Skip to main content

Advertisement

Log in

Diabetes complications and extracellular vesicle therapy

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Diabetes is a chronic disorder characterized by dysregulated glycemic conditions. Diabetic complications include microvascular and macrovascular abnormalities and account for high morbidity and mortality rates in patients. Current clinical approaches for diabetic complications are limited to symptomatic treatments and tight control of blood sugar levels. Extracellular vesicles (EVs) released by somatic and stem cells have recently emerged as a new class of potent cell-free therapeutic delivery packets with a great potential to treat diabetic complications. EVs contain a mixture of bioactive molecules and can affect underlying pathological processes in favor of tissue healing. In addition, EVs have low immunogenicity and high storage capacity while maintaining nearly the same regenerative and immunomodulatory effects compared to current cell-based therapies. Therefore, EVs have received increasing attention for diabetes-related complications in recent years. In this review, we provide an outlook on diabetic complications and summarizes new knowledge and advances in EV applications. Moreover, we highlight recommendations for future EV-related research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, et al. Global and regional diabetes prevalence estimates for and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract. 2019. https://doi.org/10.1016/j.diabres.2019.107843.

    Article  PubMed  Google Scholar 

  2. DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015. https://doi.org/10.1038/nrdp.2015.19.

    Article  PubMed  Google Scholar 

  3. Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010. https://doi.org/10.1038/nature08933.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Krentz AJ, Clough G, Byrne CD. Interactions between microvascular and macrovascular disease in diabetes: pathophysiology and therapeutic implications. Diab Obesity Metabol. 2007; https://doi.org/10.1111/j.1463-1326.2007.00670.x.

  5. Tuttolomondo A, Maida C, Pinto A. Diabetic foot syndrome as a possible cardiovascular marker in diabetic patients. J Diabetes Res. 2015. https://doi.org/10.1155/2015/268390.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hu W, Song X, Yu H, Sun J, Zhao Y. Therapeutic potentials of extracellular vesicles for the treatment of diabetes and diabetic complications. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21145163.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liew A, O’Brien T. The potential of cell-based therapy for diabetes and diabetes-related vascular complications. Curr DiabRep. 2014. https://doi.org/10.1007/s11892-013-0469-6.

    Article  Google Scholar 

  8. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006. https://doi.org/10.1002/jcb.20886.

    Article  PubMed  Google Scholar 

  9. Ranganath SH, Levy O, Inamdar MS, Karp JM. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell. 2012. https://doi.org/10.1016/j.stem.2012.02.005.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017. https://doi.org/10.3390/ijms18091852.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shi Y, Hu G, Su J, Li W, Chen Q, Shou P, et al. Mesenchymal stem cells: a new strategy for immunosuppression and tissue repair. Cell Res. 2010. https://doi.org/10.1038/cr.2010.44.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lou G, Chen Z, Zheng M, Liu Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med. 2017. https://doi.org/10.1038/emm.2017.63.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem cell Res. 2010. https://doi.org/10.1016/j.scr.2009.12.003.

    Article  PubMed  Google Scholar 

  14. Phan J, Kumar P, Hao D, Gao K, Farmer D, Wang A. Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy. J Extracell Vesicles. 2018. https://doi.org/10.1080/20013078.2018.1522236.

    Article  PubMed  PubMed Central  Google Scholar 

  15. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018. https://doi.org/10.1038/nrm.2017.125.

    Article  PubMed  Google Scholar 

  16. Bjørge IM, Kim SY, Mano JF, Kalionis B, Chrzanowski W. Extracellular vesicles, exosomes and shedding vesicles in regenerative medicine - a new paradigm for tissue repair. Biomater Sci. 2017. https://doi.org/10.1039/c7bm00479f.

    Article  PubMed  Google Scholar 

  17. Yang Y, Hong Y, Cho E, Kim GB, Kim IS. Extracellular vesicles as a platform for membrane-associated therapeutic protein delivery. J Extracell Ves. 2018. https://doi.org/10.1080/20013078.2018.1440131.

    Article  Google Scholar 

  18. Sódar BW, Kittel Á, Pálóczi K, Vukman KV, Osteikoetxea X, Szabó-Taylor K, et al. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep. 2016. https://doi.org/10.1038/srep24316.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 2013. https://doi.org/10.1007/s11060-013-1084-8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jiang L, Paone S, Caruso S, Atkin-Smith GK, Phan TK, Hulett MD, et al. Determining the contents and cell origins of apoptotic bodies by flow cytometry. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-14305-z.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xiao Y, Zheng L, Zou X, Wang J, Zhong J, Zhong T. Extracellular vesicles in type 2 diabetes mellitus: key roles in pathogenesis, complications, and therapy. J Extracellul Vesicl. 2019. https://doi.org/10.1080/20013078.2019.1625677.

    Article  Google Scholar 

  22. Sedgwick AE, D’Souza-Schorey C. The biology of extracellular microvesicles. Traffic (Copenhagen, Denmark). 2018; https://doi.org/10.1111/tra.12558.

  23. Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci USA. 2016. https://doi.org/10.1073/pnas.1521230113.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mulcahy LA, Pink RC, Carter DR. Routes and mechanisms of extracellular vesicle uptake. J Extracellul Vesicl. 2014. https://doi.org/10.3402/jev.v3.24641.

    Article  Google Scholar 

  25. Yáñez-Mó M, Siljander PR, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracellul Vesicl. 2015. https://doi.org/10.3402/jev.v4.27066.

    Article  Google Scholar 

  26. Truman-Rosentsvit M, Berenbaum D, Spektor L, Cohen LA, Belizowsky-Moshe S, Lifshitz L, et al. Ferritin is secreted via 2 distinct nonclassical vesicular pathways. Blood. 2018. https://doi.org/10.1182/blood-2017-02-768580.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lindenbergh MFS, Stoorvogel W. Antigen Presentation by Extracellular Vesicles from Professional Antigen-Presenting Cells. Annu Rev Immunol. 2018. https://doi.org/10.1146/annurev-immunol-041015-055700.

    Article  PubMed  Google Scholar 

  28. Nocera AL, Mueller SK, Stephan JR, Hing L, Seifert P, Han X, et al. Exosome swarms eliminate airway pathogens and provide passive epithelial immunoprotection through nitric oxide. J Allergy Clin Immunol. 2019. https://doi.org/10.1016/j.jaci.2018.08.046.

    Article  PubMed  Google Scholar 

  29. Morad G, Moses MA. Brainwashed by extracellular vesicles: the role of extracellular vesicles in primary and metastatic brain tumour microenvironment. J Extracellul Vesicl. 2019. https://doi.org/10.1080/20013078.2019.1627164.

    Article  Google Scholar 

  30. Ouyang B, Xie Y, Zhang C, Deng C, Lv L, Yao J, et al. Extracellular vesicles from human urine-derived stem cells ameliorate erectile dysfunction in a diabetic rat model by delivering proangiogenic microRNA. Sexual Med. 2019. https://doi.org/10.1016/j.esxm.2019.02.001.

    Article  Google Scholar 

  31. Li X, Chen C, Wei L, Li Q, Niu X, Xu Y, et al. Exosomes derived from endothelial progenitor cells attenuate vascular repair and accelerate reendothelialization by enhancing endothelial function. Cytotherapy. 2016. https://doi.org/10.1016/j.jcyt.2015.11.009.

    Article  PubMed  Google Scholar 

  32. Venkat P, Cui C, Chopp M, Zacharek A, Wang F, Landschoot-Ward J, et al. MiR-126 mediates brain endothelial cell exosome treatment-induced neurorestorative effects after stroke in type 2 diabetes mellitus mice. Stroke. 2019. https://doi.org/10.1161/strokeaha.119.025371.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fan B, Li C, Szalad A, Wang L, Pan W, Zhang R, et al. Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes. Diabetologia. 2020. https://doi.org/10.1007/s00125-019-05043-0.

    Article  PubMed  Google Scholar 

  34. Wang X, Gu H, Huang W, Peng J, Li Y, Yang L, et al. Hsp20-Mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice. Diabetes. 2016. https://doi.org/10.2337/db15-1563.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li M, Wang T, Tian H, Wei G, Zhao L, Shi Y. Macrophage-derived exosomes accelerate wound healing through their anti-inflammation effects in a diabetic rat model. Artif Cells, Nanomed Biotechnol. 2019; https://doi.org/10.1080/21691401.2019.1669617.

  36. Dalirfardouei R, Jamialahmadi K, Jafarian AH, Mahdipour E. Promising effects of exosomes isolated from menstrual blood-derived mesenchymal stem cell on wound-healing process in diabetic mouse model. J Tissue Eng Regen Med. 2019. https://doi.org/10.1002/term.2799.

    Article  PubMed  Google Scholar 

  37. Safwat A, Sabry D, Ragiae A, Amer E, Mahmoud RH, Shamardan RM. Adipose mesenchymal stem cells-derived exosomes attenuate retina degeneration of streptozotocin-induced diabetes in rabbits. J Circulat Biomark. 2018. https://doi.org/10.1177/1849454418807827.

    Article  Google Scholar 

  38. Wang M, Wang C, Chen M, Xi Y, Cheng W, Mao C, et al. Efficient Angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release. ACS Nano. 2019. https://doi.org/10.1021/acsnano.9b03656.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhao T, Sun F, Liu J, Ding T, She J, Mao F, et al. Emerging role of mesenchymal stem cell-derived exosomes in regenerative medicine. Curr Stem Cell Res Ther. 2019. https://doi.org/10.2174/1574888x14666190228103230.

    Article  PubMed  Google Scholar 

  40. Wang C, Wang M, Xu T, Zhang X, Lin C, Gao W, et al. Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics. 2019. https://doi.org/10.7150/thno.29766.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ramasubramanian L, Kumar P, Wang A. Engineering extracellular vesicles as nanotherapeutics for regenerative medicine. Biomolecules. 2019. https://doi.org/10.3390/biom10010048.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pickering RJ, Rosado CJ, Sharma A, Buksh S, Tate M, de Haan JB. Recent novel approaches to limit oxidative stress and inflammation in diabetic complications. Clin Transl Immunol. 2018. https://doi.org/10.1002/cti2.1016.

    Article  Google Scholar 

  43. Fadini GP, Spinetti G, Santopaolo M, Madeddu P. Impaired regeneration contributes to poor outcomes in diabetic peripheral artery disease. Arteriosclerosis Thrombosis Vasc Biol. 2020; https://doi.org/10.1161/atvbaha.119.312863.

  44. Kennedy JM, Zochodne DW. Impaired peripheral nerve regeneration in diabetes mellitus. J Peripher Nerv Syst JPNS. 2005. https://doi.org/10.1111/j.1085-9489.2005.0010205.x.

    Article  PubMed  Google Scholar 

  45. Tkach M, Théry C. Communication by extracellular vesicles: where we are and where we need to go. Cell. 2016. https://doi.org/10.1016/j.cell.2016.01.043.

    Article  PubMed  Google Scholar 

  46. Jiang Z, Liu G, Li J. Recent progress on the isolation and detection methods of exosomes. Chem Asian J. 2020; https://doi.org/10.1002/asia.202000873.

  47. Trachanas K, Sideris S, Aggeli C, Poulidakis E, Gatzoulis K, Tousoulis D, et al. Diabetic cardiomyopathy: from pathophysiology to treatment. Hellenic journal of cardiology : HJC = Hellenike kardiologike epitheorese. 2014; 55(5):411–21. PubMed PMID: 25243440. Epub 2014/09/23. eng.

  48. Tao L, Shi J, Yang X, Yang L, Hua F. The exosome: a new player in diabetic cardiomyopathy. J Cardiovasc Transl Res. 2019. https://doi.org/10.1007/s12265-018-9825-x.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lin Y, Zhang F, Lian XF, Peng WQ, Yin CY. Mesenchymal stem cell-derived exosomes improve diabetes mellitus-induced myocardial injury and fibrosis via inhibition of TGF-β1/Smad2 signaling pathway. Cellular and molecular biology (Noisy-le-Grand, France). 2019; Sep 30;65(7):123–6. PubMed PMID: 31880529. Epub 2019/12/28. eng.

  50. Athithan L, Gulsin GS, McCann GP, Levelt E. Diabetic cardiomyopathy: pathophysiology, theories and evidence to date. World J Diabetes. 2019. https://doi.org/10.4239/wjd.v10.i10.490.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev. 2013. https://doi.org/10.1007/s10741-012-9313-3.

    Article  PubMed  Google Scholar 

  52. Beibei L, Juanjuan W, Lianbo S, Yu Z, Jin Z, Qingyou M, et al. Mesenchymal stem cell-derived exosome inhibits high glucose-induced fibroblasts transdifferentiation Via TGF-β1/Smad2/3 signaling pathway. Chinese J Cell Biol. 2017;39(7):916–25.

    Google Scholar 

  53. Yoshida K, Murata M, Yamaguchi T, Matsuzaki K. TGF-β/Smad signaling during hepatic fibro-carcinogenesis (review). Int J Oncol. 2014. https://doi.org/10.3892/ijo.2014.2552.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Liu JC, Zhou L, Wang F, Cheng ZQ, Rong C. Osthole decreases collagen I/III contents and their ratio in TGF-β1-overexpressed mouse cardiac fibroblasts through regulating the TGF-β/Smad signaling pathway. Chin J Nat Med. 2018. https://doi.org/10.1016/s1875-5364(18)30063-3.

    Article  PubMed  Google Scholar 

  55. Liao Y, Chen K, Dong X, Li W, Li G, Huang G, et al. Berberine inhibits cardiac remodeling of heart failure after myocardial infarction by reducing myocardial cell apoptosis in rats. Exp Ther Med. 2018. https://doi.org/10.3892/etm.2018.6438.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Singla R, Garner KH, Samsam M, Cheng Z, Singla DK. Exosomes derived from cardiac parasympathetic ganglionic neurons inhibit apoptosis in hyperglycemic cardiomyoblasts. Mol Cell Biochem. 2019. https://doi.org/10.1007/s11010-019-03604-w.

    Article  PubMed  Google Scholar 

  57. Ay H, Koroshetz WJ, Benner T, Vangel MG, Melinosky C, Arsava EM, et al. Neuroanatomic correlates of stroke-related myocardial injury. Neurology. 2006. https://doi.org/10.1212/01.wnl.0000206077.13705.6d.

    Article  PubMed  Google Scholar 

  58. Chen J, Cui C, Yang X, Xu J, Venkat P, Zacharek A, et al. MiR-126 Affects brain-heart interaction after cerebral ischemic stroke. Transl Stroke Res. 2017. https://doi.org/10.1007/s12975-017-0520-z.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Venkat P, Cui C, Chen Z, Chopp M, Zacharek A, Landschoot-Ward J, et al. CD133+Exosome treatment improves cardiac function after stroke in Type 2 diabetic mice. Transl Stroke Res. 2021. https://doi.org/10.1007/s12975-020-00807-y.

    Article  PubMed  Google Scholar 

  60. Potus F, Ruffenach G, Dahou A, Thebault C, Breuils-Bonnet S, Tremblay È, et al. Downregulation of MicroRNA-126 contributes to the failing right ventricle in pulmonary arterial hypertension. Circulation. 2015. https://doi.org/10.1161/circulationaha.115.016382.

    Article  PubMed  Google Scholar 

  61. Milazzo V, Cosentino N, Genovese S, Campodonico J, Mazza M, De Metrio M, et al. Diabetes mellitus and acute myocardial infarction: impact on short and long-term mortality. Adv Exp Med Biol. 2021. https://doi.org/10.1007/5584_2020_481.

    Article  PubMed  Google Scholar 

  62. Turer AT, Hill JA. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol. 2010. https://doi.org/10.1016/j.amjcard.2010.03.032.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yellon DM, Davidson SM. Exosomes: nanoparticles involved in cardioprotection? Circ Res. 2014. https://doi.org/10.1161/circresaha.113.300636.

    Article  PubMed  Google Scholar 

  64. Davidson SM, Riquelme JA, Takov K, Vicencio JM, Boi-Doku C, Khoo V, et al. Cardioprotection mediated by exosomes is impaired in the setting of type II diabetes but can be rescued by the use of non-diabetic exosomes in vitro. J Cell Mol Med. 2018. https://doi.org/10.1111/jcmm.13302.

    Article  PubMed  Google Scholar 

  65. Nakano M, Nagaishi K, Konari N, Saito Y, Chikenji T, Mizue Y, et al. Bone marrow-derived mesenchymal stem cells improve diabetes-induced cognitive impairment by exosome transfer into damaged neurons and astrocytes. Sci Rep. 2016. https://doi.org/10.1038/srep24805.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zilliox LA, Chadrasekaran K, Kwan JY, Russell JW. Diabetes and cognitive impairment. Curr DiabRep. 2016. https://doi.org/10.1007/s11892-016-0775-x.

    Article  Google Scholar 

  67. Scheff SW, Price DA, Schmitt FA, Mufson EJ. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging. 2006. https://doi.org/10.1016/j.neurobiolaging.2005.09.012.

    Article  PubMed  Google Scholar 

  68. Zhao W, Zhang H, Yan J, Ma X. An experimental study on the treatment of diabetes-induced cognitive disorder mice model with exosomes deriving from mesenchymal stem cells (MSCs). Pakistan journal of pharmaceutical sciences. 2019; 32(5):1965–70. PubMed PMID: 31813859. Epub 2019/12/10. eng.

  69. Kubota K, Nakano M, Kobayashi E, Mizue Y, Chikenji T, Otani M, et al. An enriched environment prevents diabetes-induced cognitive impairment in rats by enhancing exosomal miR-146a secretion from endogenous bone marrow-derived mesenchymal stem cells. PLoS ONE. 2018. https://doi.org/10.1371/journal.pone.0204252.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gimbel DA, Nygaard HB, Coffey EE, Gunther EC, Laurén J, Gimbel ZA, et al. Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J Neurosci Offic J Soc Neurosci. 2010. https://doi.org/10.1523/jneurosci.0395-10.2010.

    Article  Google Scholar 

  71. Kalani A, Chaturvedi P, Maldonado C, Bauer P, Joshua IG, Tyagi SC, et al. Dementia-like pathology in type-2 diabetes: A novel microRNA mechanism. Mol Cell Neurosci. 2017. https://doi.org/10.1016/j.mcn.2017.02.005.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Castela Â, Costa C. Molecular mechanisms associated with diabetic endothelial-erectile dysfunction. Nat Rev Urol. 2016. https://doi.org/10.1038/nrurol.2016.23.

    Article  PubMed  Google Scholar 

  73. Angulo J, González-Corrochano R, Cuevas P, Fernández A, La Fuente JM, Rolo F, et al. Diabetes exacerbates the functional deficiency of NO/cGMP pathway associated with erectile dysfunction in human corpus cavernosum and penile arteries. J Sex Med. 2010. https://doi.org/10.1111/j.1743-6109.2009.01587.x.

    Article  PubMed  Google Scholar 

  74. Song J, Sun T, Tang Z, Ruan Y, Liu K, Rao K, et al. Exosomes derived from smooth muscle cells ameliorate diabetes-induced erectile dysfunction by inhibiting fibrosis and modulating the NO/cGMP pathway. J Cell Mol Med. 2020. https://doi.org/10.1111/jcmm.15946.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang J, Mi Y, Wu S, You X, Huang Y, Zhu J, et al. Exosomes from adipose-derived stem cells protect against high glucose-induced erectile dysfunction by delivery of corin in a streptozotocin-induced diabetic rat model. Regenerative therapy. 2020. https://doi.org/10.1016/j.reth.2020.03.002.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Wu Q, Xu-Cai YO, Chen S, Wang W. Corin: new insights into the natriuretic peptide system. Kidney Int. 2009. https://doi.org/10.1038/ki.2008.418.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Wang J, Mi Y, Yuan F, Wu S, You X, Dai F, et al. The involvement of corin in the progression of diabetic erectile dysfunction in a rat model by down-regulating ANP /NO/cGMP signal pathway. J Cell Biochem. 2017. https://doi.org/10.1002/jcb.25889.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Ryu JK, Kim DJ, Lee T, Kang YS, Yoon SM, Suh JK. The role of free radical in the pathogenesis of impotence in streptozotocin-induced diabetic rats. Yonsei Med J. 2003. https://doi.org/10.3349/ymj.2003.44.2.236.

    Article  PubMed  Google Scholar 

  79. Chen F, Zhang H, Wang Z, Ding W, Zeng Q, Liu W, et al. Adipose-derived stem cell-derived exosomes ameliorate erectile dysfunction in a rat model of type 2 diabetes. J Sex Med. 2017. https://doi.org/10.1016/j.jsxm.2017.07.005.

    Article  PubMed  Google Scholar 

  80. Huo W, Li Y, Zhang Y, Li H. Mesenchymal stem cells-derived exosomal microRNA-21-5p downregulates PDCD4 and ameliorates erectile dysfunction in a rat model of diabetes mellitus. FASEB J Offic Publ Feder Am Soc Exp Biol. 2020. https://doi.org/10.1096/fj.202000102RR.

    Article  Google Scholar 

  81. Liu X, Cheng Y, Yang J, Krall TJ, Huo Y, Zhang C. An essential role of PDCD4 in vascular smooth muscle cell apoptosis and proliferation: implications for vascular disease. Am J Physiol Cell Physiol. 2010. https://doi.org/10.1152/ajpcell.00413.2009.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhu LL, Huang X, Yu W, Chen H, Chen Y, Dai YT. Transplantation of adipose tissue-derived stem cell-derived exosomes ameliorates erectile function in diabetic rats. Andrologia. 2018. https://doi.org/10.1111/and.12871.

    Article  PubMed  Google Scholar 

  83. Jang SC, Kim OY, Yoon CM, Choi DS, Roh TY, Park J, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013. https://doi.org/10.1021/nn402232g.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kwon MH, Song KM, Limanjaya A, Choi MJ, Ghatak K, Nguyen NM, et al. Embryonic stem cell-derived extracellular vesicle-mimetic nanovesicles rescue erectile function by enhancing penile neurovascular regeneration in the streptozotocin-induced diabetic mouse. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-54431-4.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Augustin HG, Koh GY, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol. 2009. https://doi.org/10.1038/nrm2639.

    Article  PubMed  Google Scholar 

  86. Das ND, Yin GN, Choi MJ, Song KM, Park JM, Limanjaya A, et al. Effectiveness of Intracavernous Delivery of Recombinant Human Hepatocyte Growth Factor on Erectile Function in the Streptozotocin-Induced Diabetic Mouse. J Sex Med. 2016. https://doi.org/10.1016/j.jsxm.2016.09.017.

    Article  PubMed  Google Scholar 

  87. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes. 2008. https://doi.org/10.2337/db08-0057.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Jiang ZZ, Liu YM, Niu X, Yin JY, Hu B, Guo SC, et al. Exosomes secreted by human urine-derived stem cells could prevent kidney complications from type I diabetes in rats. Stem Cell Res Ther. 2016. https://doi.org/10.1186/s13287-016-0287-2.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Vinod PB. Pathophysiology of diabetic nephropathy. Clin Quer Nephrol. 2012; https://doi.org/10.1016/S2211-9477(12)70005-5.

  90. Duan YR, Chen BP, Chen F, Yang SX, Zhu CY, Ma YL, et al. Exosomal microRNA-16-5p from human urine-derived stem cells ameliorates diabetic nephropathy through protection of podocyte. J Cell Mol Med. 2019. https://doi.org/10.1111/jcmm.14558.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Duan Y, Luo Q, Wang Y, Ma Y, Chen F, Zhu X, et al. Adipose mesenchymal stem cell-derived extracellular vesicles containing microRNA-26a-5p target TLR4 and protect against diabetic nephropathy. J Biol Chem. 2020. https://doi.org/10.1074/jbc.RA120.012522.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gholaminejad A, Abdul Tehrani H, Gholami FM. Identification of candidate microRNA biomarkers in diabetic nephropathy: a meta-analysis of profiling studies. J Nephrol. 2018. https://doi.org/10.1007/s40620-018-0511-5.

    Article  PubMed  Google Scholar 

  93. Essawy M, Soylemezoglu O, Muchaneta-Kubara EC, Shortland J, Brown CB, el Nahas AM. Myofibroblasts and the progression of diabetic nephropathy. Nephrol Dial Transpl Offic Publ Eur Dial Transp Assoc Eur Renal Assoc. 1997; https://doi.org/10.1093/ndt/12.1.43.

  94. Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M, Kalluri R. Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol. 2008. https://doi.org/10.1681/asn.2008050513.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hills CE, Squires PE. The role of TGF-β and epithelial-to mesenchymal transition in diabetic nephropathy. Cytokine Growth Factor Rev. 2011. https://doi.org/10.1016/j.cytogfr.2011.06.002.

    Article  PubMed  Google Scholar 

  96. Simonson MS. Phenotypic transitions and fibrosis in diabetic nephropathy. Kidney Int. 2007. https://doi.org/10.1038/sj.ki.5002180.

    Article  PubMed  Google Scholar 

  97. Nagaishi K, Mizue Y, Chikenji T, Otani M, Nakano M, Konari N, et al. Mesenchymal stem cell therapy ameliorates diabetic nephropathy via the paracrine effect of renal trophic factors including exosomes. Sci Rep. 2016. https://doi.org/10.1038/srep34842.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Grange C, Tritta S, Tapparo M, Cedrino M, Tetta C, Camussi G, et al. Stem cell-derived extracellular vesicles inhibit and revert fibrosis progression in a mouse model of diabetic nephropathy. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-41100-9.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Jin J, Wang Y, Zhao L, Zou W, Tan M, He Q. Exosomal miRNA-215-5p Derived from Adipose-Derived Stem Cells Attenuates Epithelial-Mesenchymal Transition of Podocytes by Inhibiting ZEB2. Biomed Res Int. 2020. https://doi.org/10.1155/2020/2685305.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Fardi M, Alivand M, Baradaran B, Farshdousti Hagh M, Solali S. The crucial role of ZEB2: From development to epithelial-to-mesenchymal transition and cancer complexity. J Cell Physiol. 2019. https://doi.org/10.1002/jcp.28277.

    Article  PubMed  Google Scholar 

  101. Ebrahim N, Ahmed IA, Hussien NI, Dessouky AA, Farid AS, Elshazly AM, et al. Mesenchymal stem cell-derived exosomes ameliorated diabetic nephropathy by autophagy induction through the mTOR signaling pathway. Cells. 2018. https://doi.org/10.3390/cells7120226.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Balakumar P, Arora MK, Reddy J, Anand-Srivastava MB. Pathophysiology of diabetic nephropathy: involvement of multifaceted signalling mechanism. J Cardiovasc Pharmacol. 2009. https://doi.org/10.1097/FJC.0b013e3181ad2190.

    Article  PubMed  Google Scholar 

  103. Garibotto G, Carta A, Picciotto D, Viazzi F, Verzola D. Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy. J Nephrol. 2017. https://doi.org/10.1007/s40620-017-0432-8.

    Article  PubMed  Google Scholar 

  104. Fang L, Zhou Y, Cao H, Wen P, Jiang L, He W, et al. Autophagy attenuates diabetic glomerular damage through protection of hyperglycemia-induced podocyte injury. PLoS ONE. 2013. https://doi.org/10.1371/journal.pone.0060546.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature. 2008. https://doi.org/10.1038/nature06639.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gödel M, Hartleben B, Herbach N, Liu S, Zschiedrich S, Lu S, et al. Role of mTOR in podocyte function and diabetic nephropathy in humans and mice. J Clin Investig. 2011. https://doi.org/10.1172/jci44774.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ding Y, Choi ME. Autophagy in diabetic nephropathy. J Endocrinol. 2015. https://doi.org/10.1530/joe-14-0437.

    Article  PubMed  Google Scholar 

  108. Jin J, Shi Y, Gong J, Zhao L, Li Y, He Q, et al. Exosome secreted from adipose-derived stem cells attenuates diabetic nephropathy by promoting autophagy flux and inhibiting apoptosis in podocyte. Stem Cell Res Ther. 2019. https://doi.org/10.1186/s13287-019-1177-1.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ergul A, Hafez S, Fouda A, Fagan SC. Impact of comorbidities on acute injury and recovery in preclinical stroke research: focus on hypertension and diabetes. Transl Stroke Res. 2016. https://doi.org/10.1007/s12975-016-0464-8.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Nayak AR, Badar SR, Lande N, Kawle AP, Kabra DP, Chandak NH, et al. Prediction of Outcome in Diabetic Acute Ischemic Stroke Patients: A Hospital-Based Pilot Study Report. Ann Neurosci. 2016. https://doi.org/10.1159/000449480.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Chen J, Cui X, Zacharek A, Cui Y, Roberts C, Chopp M. White matter damage and the effect of matrix metalloproteinases in type 2 diabetic mice after stroke. Stroke. 2011. https://doi.org/10.1161/strokeaha.110.596486.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Venkat P, Zacharek A, Landschoot-Ward J, Wang F, Culmone L, Chen Z, et al. Exosomes derived from bone marrow mesenchymal stem cells harvested from type two diabetes rats promotes neurorestorative effects after stroke in type two diabetes rats. Exp Neurol. 2020. https://doi.org/10.1016/j.expneurol.2020.113456.

    Article  PubMed  Google Scholar 

  113. Ma S, Wang J, Wang Y, Dai X, Xu F, Gao X, et al. Diabetes mellitus impairs white matter repair and long-term functional deficits after cerebral ischemia. Stroke. 2018. https://doi.org/10.1161/strokeaha.118.021452.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ribot J, Caliaperoumal G, Paquet J, Boisson-Vidal C, Petite H, Anagnostou F. Type 2 diabetes alters mesenchymal stem cell secretome composition and angiogenic properties. J Cell Mol Med. 2017. https://doi.org/10.1111/jcmm.12969.

    Article  PubMed  Google Scholar 

  115. Karasinska JM, Rinninger F, Lütjohann D, Ruddle P, Franciosi S, Kruit JK, et al. Specific loss of brain ABCA1 increases brain cholesterol uptake and influences neuronal structure and function. J Neurosci Offic J Soc Neurosci. 2009. https://doi.org/10.1523/jneurosci.4741-08.2009.

    Article  Google Scholar 

  116. Cui X, Chopp M, Zacharek A, Karasinska JM, Cui Y, Ning R, et al. Deficiency of brain ATP-binding cassette transporter A-1 exacerbates blood-brain barrier and white matter damage after stroke. Stroke. 2015. https://doi.org/10.1161/strokeaha.114.007145.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Cui X, Chopp M, Zhang Z, Li R, Zacharek A, Landschoot-Ward J, et al. ABCA1/ApoE/HDL pathway mediates GW3965-induced neurorestoration after stroke. Stroke. 2017. https://doi.org/10.1161/strokeaha.116.015592.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Jiang X, Andjelkovic AV, Zhu L, Yang T, Bennett MVL, Chen J, et al. Blood-brain barrier dysfunction and recovery after ischemic stroke. Prog Neurobiol. 2018. https://doi.org/10.1016/j.pneurobio.2017.10.001.

    Article  PubMed  Google Scholar 

  119. Clark AW, Krekoski CA, Bou SS, Chapman KR, Edwards DR. Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci Lett. 1997. https://doi.org/10.1016/s0304-3940(97)00859-8.

    Article  PubMed  Google Scholar 

  120. Ergul A, Alhusban A, Fagan SC. Angiogenesis: a harmonized target for recovery after stroke. Stroke. 2012. https://doi.org/10.1161/strokeaha.111.642710.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wang L, Chopp M, Szalad A, Lu X, Zhang Y, Wang X, et al. Exosomes derived from schwann cells ameliorate peripheral neuropathy in type 2 diabetic mice. Diabetes. 2020. https://doi.org/10.2337/db19-0432.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Charnogursky G, Lee H, Lopez N. Diabetic neuropathy. Handb Clin Neurol. 2014. https://doi.org/10.1016/b978-0-7020-4087-0.00051-6.

    Article  PubMed  Google Scholar 

  123. Feldman EL, Nave KA, Jensen TS, Bennett DLH. New Horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron. 2017. https://doi.org/10.1016/j.neuron.2017.02.005.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Liu XS, Fan B, Szalad A, Jia L, Wang L, Wang X, et al. MicroRNA-146a mimics reduce the peripheral neuropathy in type 2 diabetic mice. Diabetes. 2017. https://doi.org/10.2337/db16-1182.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Madhyastha R, Madhyastha H, Nakajima Y, Omura S, Maruyama M. MicroRNA signature in diabetic wound healing: promotive role of miR-21 in fibroblast migration. Int Wound J. 2012. https://doi.org/10.1111/j.1742-481X.2011.00890.x.

    Article  PubMed  Google Scholar 

  126. Cheng C, Kobayashi M, Martinez JA, Ng H, Moser JJ, Wang X, et al. Evidence for epigenetic regulation of gene expression and function in chronic experimental diabetic neuropathy. J Neuropathol Exp Neurol. 2015. https://doi.org/10.1097/nen.0000000000000219.

    Article  PubMed  Google Scholar 

  127. Xu XM, Fisher DA, Zhou L, White FA, Ng S, Snider WD, et al. The transmembrane protein semaphorin 6A repels embryonic sympathetic axons. J Neurosci Offic J Soc Neurosci. 2000. https://doi.org/10.1523/jneurosci.20-07-02638.2000.

    Article  Google Scholar 

  128. Mattson MP, Camandola S. NF-kappaB in neuronal plasticity and neurodegenerative disorders. J Clin Investig. 2001. https://doi.org/10.1172/jci11916.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hiraga A, Kuwabara S, Doya H, Kanai K, Fujitani M, Taniguchi J, et al. Rho-kinase inhibition enhances axonal regeneration after peripheral nerve injury. J Periph Nerv Syst JPNS. 2006. https://doi.org/10.1111/j.1529-8027.2006.00091.x.

    Article  Google Scholar 

  130. Christie KJ, Webber CA, Martinez JA, Singh B, Zochodne DW. PTEN inhibition to facilitate intrinsic regenerative outgrowth of adult peripheral axons. J Neurosci Offic J Soc Neurosci. 2010. https://doi.org/10.1523/jneurosci.6271-09.2010.

    Article  Google Scholar 

  131. Lawrence T, Fong C. The resolution of inflammation: anti-inflammatory roles for NF-kappaB. Int J Biochem Cell Biol. 2010. https://doi.org/10.1016/j.biocel.2009.12.016.

    Article  PubMed  Google Scholar 

  132. Toth C, Martinez J, Zochodne DW. RAGE, diabetes, and the nervous system. Curr Mol Med. 2007. https://doi.org/10.2174/156652407783220705.

    Article  PubMed  Google Scholar 

  133. Baltzis D, Eleftheriadou I, Veves A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights. Adv Ther. 2014. https://doi.org/10.1007/s12325-014-0140-x.

    Article  PubMed  Google Scholar 

  134. Long M, Rojo de la Vega M, Wen Q, Bharara M, Jiang T, Zhang R, et al. An Essential Role of NRF2 in Diabetic Wound Healing. Diabetes. 2016; https://doi.org/10.2337/db15-0564.

  135. Li X, Xie X, Lian W, Shi R, Han S, Zhang H, et al. Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp Mol Med. 2018. https://doi.org/10.1038/s12276-018-0058-5.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Nguyen TT, Ding D, Wolter WR, Champion MM, Hesek D, Lee M, et al. Expression of active matrix metalloproteinase-9 as a likely contributor to the clinical failure of aclerastide in treatment of diabetic foot ulcers. Eur J Pharmacol. 2018. https://doi.org/10.1016/j.ejphar.2018.07.014.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Dinh T, Tecilazich F, Kafanas A, Doupis J, Gnardellis C, Leal E, et al. Mechanisms involved in the development and healing of diabetic foot ulceration. Diabetes. 2012. https://doi.org/10.2337/db12-0227.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Kim KA, Shin YJ, Kim JH, Lee H, Noh SY, Jang SH, et al. Dysfunction of endothelial progenitor cells under diabetic conditions and its underlying mechanisms. Arch Pharmacal Res. 2012. https://doi.org/10.1007/s12272-012-0203-y.

    Article  Google Scholar 

  139. Desta T, Li J, Chino T, Graves DT. Altered fibroblast proliferation and apoptosis in diabetic gingival wounds. J Dent Res. 2010. https://doi.org/10.1177/0022034510362960.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Usui ML, Mansbridge JN, Carter WG, Fujita M, Olerud JE. Keratinocyte migration, proliferation, and differentiation in chronic ulcers from patients with diabetes and normal wounds. J Histochem Cytochem Offic J Histochem Soc. 2008. https://doi.org/10.1369/jhc.2008.951194.

    Article  Google Scholar 

  141. Ochoa O, Torres FM, Shireman PK. Chemokines and diabetic wound healing. Vascular. 2007. https://doi.org/10.2310/6670.2007.00056.

    Article  PubMed  Google Scholar 

  142. Li X, Jiang C, Zhao J. Human endothelial progenitor cells-derived exosomes accelerate cutaneous wound healing in diabetic rats by promoting endothelial function. J Diab Compl. 2016. https://doi.org/10.1016/j.jdiacomp.2016.05.009.

    Article  Google Scholar 

  143. Yamagishi S. Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Exp Gerontol. 2011. https://doi.org/10.1016/j.exger.2010.11.007.

    Article  PubMed  Google Scholar 

  144. Xu J, Bai S, Cao Y, Liu L, Fang Y, Du J, et al. miRNA-221–3p in Endothelial progenitor cell-derived exosomes accelerates skin wound healing in diabetic mice. Diab Metabol Syndrome Obesity Targets Therapy. 2020; https://doi.org/10.2147/dmso.s243549.

  145. Goodwin AJ, Guo C, Cook JA, Wolf B, Halushka PV, Fan H. Plasma levels of microRNA are altered with the development of shock in human sepsis: an observational study. Critical care (London, England). 2015; https://doi.org/10.1186/s13054-015-1162-8.

  146. Liu LZ, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y, et al. MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1α expression. PLoS ONE. 2011. https://doi.org/10.1371/journal.pone.0019139.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Zhang J, Chen C, Hu B, Niu X, Liu X, Zhang G, et al. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through Erk1/2 signaling. Int J Biol Sci. 2016. https://doi.org/10.7150/ijbs.15514.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Chen CY, Rao SS, Ren L, Hu XK, Tan YJ, Hu Y, et al. Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis. Theranostics. 2018. https://doi.org/10.7150/thno.22958.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Aarabi S, Bhatt KA, Shi Y, Paterno J, Chang EI, Loh SA, et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J Offic Publ Feder Am Soc Exp Biol. 2007. https://doi.org/10.1096/fj.07-8218com.

    Article  Google Scholar 

  150. Larson BJ, Longaker MT, Lorenz HP. Scarless fetal wound healing: a basic science review. Plast Reconstr Surg. 2010. https://doi.org/10.1097/PRS.0b013e3181eae781.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Han Y, Ren J, Bai Y, Pei X, Han Y. Corrigendum to “Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R” [Int. J. Biochem. Cell Biol. 109 April (2019) 59-68]. Int J Biochem Cell Biol. 2020; https://doi.org/10.1016/j.biocel.2020.105805

  152. Hou Z, Nie C, Si Z, Ma Y. Deferoxamine enhances neovascularization and accelerates wound healing in diabetic rats via the accumulation of hypoxia-inducible factor-1α. Diabetes Res Clin Pract. 2013. https://doi.org/10.1016/j.diabres.2013.04.012.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Najafi R, Sharifi AM. Deferoxamine preconditioning potentiates mesenchymal stem cell homing in vitro and in streptozotocin-diabetic rats. Expert Opin Biol Ther. 2013. https://doi.org/10.1517/14712598.2013.782390.

    Article  PubMed  Google Scholar 

  154. Ding J, Wang X, Chen B, Zhang J, Xu J. Exosomes derived from human bone marrow mesenchymal stem cells stimulated by deferoxamine accelerate cutaneous wound healing by promoting angiogenesis. Biomed Res Int. 2019. https://doi.org/10.1155/2019/9742765.

    Article  PubMed  PubMed Central  Google Scholar 

  155. He M, Guo X, Li T, Jiang X, Chen Y, Yuan Y, et al. Comparison of allogeneic platelet-rich plasma with autologous platelet-rich plasma for the treatment of diabetic lower extremity ulcers. Cell Transplant. 2020. https://doi.org/10.1177/0963689720931428.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Guo SC, Tao SC, Yin WJ, Qi X, Yuan T, Zhang CQ. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model. Theranostics. 2017. https://doi.org/10.7150/thno.16803.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Geiger A, Walker A, Nissen E. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice. Biochem Biophys Res Commun. 2015. https://doi.org/10.1016/j.bbrc.2015.09.166.

    Article  PubMed  Google Scholar 

  158. Li W, Sahu D, Tsen F. Secreted heat shock protein-90 (Hsp90) in wound healing and cancer. Biochem Biophys Acta. 2012. https://doi.org/10.1016/j.bbamcr.2011.09.009.

    Article  PubMed  Google Scholar 

  159. Dai T, Tanaka M, Huang YY, Hamblin MR. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti Infect Ther. 2011. https://doi.org/10.1586/eri.11.59.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Tao SC, Guo SC, Li M, Ke QF, Guo YP, Zhang CQ. Chitosan wound dressings incorporating exosomes derived from MicroRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model. Stem Cells Transl Med. 2017. https://doi.org/10.5966/sctm.2016-0275.

    Article  PubMed  Google Scholar 

  161. Cao WJ, Rosenblat JD, Roth NC, Kuliszewski MA, Matkar PN, Rudenko D, et al. Therapeutic angiogenesis by ultrasound-mediated microRNA-126–3p Delivery. Arteriosclerosis Thrombosis Vascul Biol. 2015; https://doi.org/10.1161/atvbaha.115.306506.

  162. Shi Q, Qian Z, Liu D, Sun J, Wang X, Liu H, et al. GMSC-Derived Exosomes combined with a Chitosan/Silk hydrogel sponge accelerates wound healing in a diabetic rat skin defect model. Front Physiol. 2017. https://doi.org/10.3389/fphys.2017.00904.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Yang J, Chen Z, Pan D, Li H, Shen J. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration. Int J Nanomed. 2020. https://doi.org/10.2147/ijn.s249129.

    Article  Google Scholar 

  164. Lichtman MK, Otero-Vinas M, Falanga V. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 2016; https://doi.org/10.1111/wrr.12398.

  165. Pastar I, Stojadinovic O, Krzyzanowska A, Barrientos S, Stuelten C, Zimmerman K, et al. Attenuation of the transforming growth factor beta-signaling pathway in chronic venous ulcers. Molecular medicine (Cambridge, Mass). 2010; https://doi.org/10.2119/molmed.2009.00149.

  166. Zhang Y, Zhang P, Gao X, Chang L, Chen Z, Mei X. Preparation of exosomes encapsulated nanohydrogel for accelerating wound healing of diabetic rats by promoting angiogenesis. Mater Sci Eng C, Mater Biol Appl. 2021; https://doi.org/10.1016/j.msec.2020.111671.

  167. Vader P, Mol EA, Pasterkamp G, Schiffelers RM. Extracellular vesicles for drug delivery. Adv Drug Deliv Rev. 2016. https://doi.org/10.1016/j.addr.2016.02.006.

    Article  PubMed  Google Scholar 

  168. Tao SC, Rui BY, Wang QY, Zhou D, Zhang Y, Guo SC. Extracellular vesicle-mimetic nanovesicles transport LncRNA-H19 as competing endogenous RNA for the treatment of diabetic wounds. Drug Deliv. 2018. https://doi.org/10.1080/10717544.2018.1425774.

    Article  PubMed  PubMed Central  Google Scholar 

  169. Stitt AW, Curtis TM, Chen M, Medina RJ, McKay GJ, Jenkins A, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016. https://doi.org/10.1016/j.preteyeres.2015.08.001.

    Article  PubMed  Google Scholar 

  170. Reiter CE, Gardner TW. Functions of insulin and insulin receptor signaling in retina: possible implications for diabetic retinopathy. Prog Retin Eye Res. 2003. https://doi.org/10.1016/s1350-9462(03)00035-1.

    Article  PubMed  Google Scholar 

  171. Dentelli P, Rosso A, Orso F, Olgasi C, Taverna D, Brizzi MF. microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arteriosclerosis Thrombosis Vascul Biol. 2010; https://doi.org/10.1161/atvbaha.110.206201.

  172. Navea Aguilera C, Guijarro de Armas MG, Monereo Megías S, Merino Viveros M, Torán Ranero C. The relationship between xerostomia and diabetes mellitus: a little known complication. Endocrinologia y nutricion : organo de la Sociedad Espanola de Endocrinologia y Nutricion. 2015; https://doi.org/10.1016/j.endonu.2014.09.004.

  173. AbuBakr N, Haggag T, Sabry D, Salem ZA. Functional and histological evaluation of bone marrow stem cell-derived exosomes therapy on the submandibular salivary gland of diabetic Albino rats through TGFβ/ Smad3 signaling pathway. Heliyon. 2020. https://doi.org/10.1016/j.heliyon.2020.e03789.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Woods LT, Camden JM, El-Sayed FG, Khalafalla MG, Petris MJ, Erb L, et al. Increased expression of TGF-β signaling components in a mouse model of fibrosis induced by submandibular gland duct ligation. PLoS ONE. 2015. https://doi.org/10.1371/journal.pone.0123641.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Zhu Y, Zhang C. Prevalence of gestational diabetes and risk of progression to Type 2 diabetes: a global perspective. Curr DiabRep. 2016. https://doi.org/10.1007/s11892-015-0699-x.

    Article  Google Scholar 

  176. Johns EC, Denison FC, Norman JE, Reynolds RM. Gestational Diabetes Mellitus: Mechanisms, Treatment, and Complications. Trends Endocrinol Metab. 2018. https://doi.org/10.1016/j.tem.2018.09.004.

    Article  PubMed  Google Scholar 

  177. György B, Hung ME, Breakefield XO, Leonard JN. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol. 2015. https://doi.org/10.1146/annurev-pharmtox-010814-124630.

    Article  PubMed  Google Scholar 

  178. Panagopoulou MS, Wark AW, Birch DJS, Gregory CD. Phenotypic analysis of extracellular vesicles: a review on the applications of fluorescence. J Extracellul Vesicl. 2020. https://doi.org/10.1080/20013078.2019.1710020.

    Article  Google Scholar 

  179. Constantinescu P, Wang B, Kovacevic K, Jalilian I, Bosman GJ, Wiley JS, et al. P2X7 receptor activation induces cell death and microparticle release in murine erythroleukemia cells. Biochem Biophys Acta. 2010. https://doi.org/10.1016/j.bbamem.2010.06.002.

    Article  PubMed  Google Scholar 

  180. Aharon A, Tamari T, Brenner B. Monocyte-derived microparticles and exosomes induce procoagulant and apoptotic effects on endothelial cells. Thromb Haemost. 2008. https://doi.org/10.1160/th07-11-0691.

    Article  PubMed  Google Scholar 

  181. Kim M, Yun HW, Park DY, Choi BH, Min BH. Three-dimensional spheroid culture increases exosome secretion from mesenchymal stem cells. Tissue Eng Regener Med. 2018. https://doi.org/10.1007/s13770-018-0139-5.

    Article  Google Scholar 

  182. Park DJ, Yun WS, Kim WC, Park JE, Lee SH, Ha S, et al. Improvement of stem cell-derived exosome release efficiency by surface-modified nanoparticles. J Nanobiotechnol. 2020. https://doi.org/10.1186/s12951-020-00739-7.

    Article  Google Scholar 

  183. Coumans FAW, Brisson AR, Buzas EI, Dignat-George F, Drees EEE, El-Andaloussi S, et al. Methodological Guidelines to Study Extracellular Vesicles. Circ Res. 2017. https://doi.org/10.1161/circresaha.117.309417.

    Article  PubMed  Google Scholar 

  184. Bister N, Pistono C, Huremagic B, Jolkkonen J, Giugno R, Malm T. Hypoxia and extracellular vesicles: A review on methods, vesicular cargo and functions. J Extracellul Vesicl. 2020. https://doi.org/10.1002/jev2.12002.

    Article  Google Scholar 

  185. Kavanagh DP, Robinson J, Kalia N. Mesenchymal stem cell priming: fine-tuning adhesion and function. Stem cell Rev Rep. 2014. https://doi.org/10.1007/s12015-014-9510-7.

    Article  PubMed  Google Scholar 

  186. Fromer MW, Chang S, Hagaman ALR, Koko KR, Nolan RS, Zhang P, et al. The endothelial cell secretome as a novel treatment to prime adipose-derived stem cells for improved wound healing in diabetes. J Vasc Surg. 2018. https://doi.org/10.1016/j.jvs.2017.05.094.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Daniel Dan Liu for critical reading and English editing of the manuscript.

Funding

The Lundbeck foundation, grant R303-2018–3148 supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Yarani.

Ethics declarations

Conflict of interest

The authors have nothing to disclose.

Ethics approval

This review was in accordance with the principles of the Declaration of Helsinki.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, S., Mansouri, K., Parvaneh, S. et al. Diabetes complications and extracellular vesicle therapy. Rev Endocr Metab Disord 23, 357–385 (2022). https://doi.org/10.1007/s11154-021-09680-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-021-09680-y

Keywords

Navigation