Skip to main content

Advertisement

Log in

Hypothalamus-pituitary-adrenal Axis in Glucolipid metabolic disorders

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

With the change of life style, glucolipid metabolic disorders (GLMD) has become one of the major chronic disorders causing public health and clinical problems worldwide. Previous studies on GLMD pay more attention to peripheral tissues. In fact, the central nervous system (CNS) plays an important role in controlling the overall metabolic balance. With the development of technology and the in-depth understanding of the CNS, the relationship between neuro-endocrine-immunoregulatory (NEI) network and metabolism had been gradually illustrated. As the hub of NEI network, hypothalamus-pituitary-adrenal (HPA) axis is important for maintaining the balance of internal environment in the body. The relationship between HPA axis and GLMD needs to be further studied. This review focuses on the role of HPA axis in GLMD and reviews the research progress on drugs for GLMD, with the hope to provide the direction for exploring new drugs to treat GLMD by taking the HPA axis as the target and improve the level of prevention and control of GLMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ye DW, Rong XL, Xu AM, Jiao G. Liver-adipose tissue crosstalk: a key player in the pathogenesis of glucolipid metabolic disease. Chinese Journal of Integrative Medicine. 2017;23:410–4.

    CAS  PubMed  Google Scholar 

  2. G. Jiao. Research Progress on prevention and treatment of glucolipid metabolic disease with integrated traditional Chinese and Western medicine, Chinese Journal of Integrative Medicine.

  3. Kagaku A, Qian Z, Masami N, et al. Association between mastication, the Hippocampus, and the HPA Axis: a comprehensive review. Int J Mol Sci. 2017;18:1687.

    Google Scholar 

  4. Luo QH, Chen SS, Deng J, et al. Endocannabinoid hydrolase and cannabinoid receptor 1 are involved in the regulation of hypothalamus-pituitary-adrenal axis in type 2 diabetes. Metab Brain Dis. 2018;33:1483–92.

    CAS  PubMed  Google Scholar 

  5. Chrousos GP. Stress and disorders of the stress system. Nat Rev Endocrinol. 2009;5:374–81.

    CAS  PubMed  Google Scholar 

  6. Aguilera G, Liu Y. The molecular physiology of CRH neurons. Front Neuroendocrinol. 2012;33:67–84.

    CAS  PubMed  Google Scholar 

  7. Gold PW, Chrousos GP. Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol Psychiatry. 2002;7:254–75.

    CAS  PubMed  Google Scholar 

  8. Oakley RH, Cidlowski JA. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disorders. J Allergy Clin Immunol. 2013;132:1033–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Finsterwald C, Alberini CM. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: from adaptive responses to psychopathologies. Neurobiology of Learning & Memory. 2014;112:17–29.

    CAS  Google Scholar 

  10. Shen YC, Roh HC, Kumari MJ, et al. Adipocyte glucocorticoid receptor is important in lipolysis and insulin resistance due to exogenous steroids, but not insulin resistance caused by high fat feeding.[J]. Mol Metab. 2017;6:1150–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Vispute SG, Bu PL, Le Y, et al. Activation of GR but not PXR by dexamethasone attenuated acetaminophen hepatotoxicities via Fgf21 induction.[J]. Toxicology. 2017;378:95–106.

    CAS  PubMed  Google Scholar 

  12. Etxabe J, Vazquez JA. Morbidity and mortality in Cushing's disorders: an epidemiological approach. Clin Endocrinol. 2010;40:479–84.

    Google Scholar 

  13. W.J. Young. Clinical practice, The incidentally discovered adrenal mass, New England Journal of Medicine,2007, 356: 601.

  14. Sapolsky RM. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. 2000;21:55–89.

    CAS  PubMed  Google Scholar 

  15. M.F. Dallman, S. Bhatnagar. Chronic Stress and Energy Balance: Role of the hypothalamic pituitary adrenal axis, 2011.

  16. Chrousos GP. The role of stress and the hypothalamic–pituitary–adrenal axis in the pathogenesis of the metabolic syndrome: neuro-endocrine and target tissue-related causes. International Journal of Obesity. 2000;24(Supplement 2):S50–5.

    CAS  PubMed  Google Scholar 

  17. Ivana MD. Hyperactivity of the hypothalamic-pituitary-adrenal axis in patients with type 2 diabetes and relations with insulin resistance and chronic complications. Wien Klin Wochenschr. 2012;124:403–11.

    Google Scholar 

  18. Beauquis J, Homo-Delarche FO, Giroix M-H, et al. Hippocampal neurovascular and hypothalamic–pituitary–adrenal axis alterations in spontaneously type 2 diabetic GK rats. Experimental Neurology. 2010;222:125–34.

    CAS  PubMed  Google Scholar 

  19. Tagawa N, Kubota S, Kato I, Kobayashi Y. Resveratrol inhibits 11β-hydroxysteroid dehydrogenase type 1 activity in rat adipose microsomes. J Endocrinol. 2013;218:311–20.

    CAS  PubMed  Google Scholar 

  20. Park SB, Jung WH, Kang NS, Park JS, Bae GH, Kim HY, et al. Anti-diabetic and anti-inflammatory effect of a novel selective 11β-HSD1 inhibitor in the diet-induced obese mice. Eur J Pharmacol. 2013;721:70–9.

    CAS  PubMed  Google Scholar 

  21. Ezhumalai M, Radhiga T, Pugalendi KV. Antihyperglycemic effect of carvacrol in combination with rosiglitazone in high-fat diet-induced type 2 diabetic C57BL/6J mice. Mol Cell Biochem. 2014;385:23–31.

    CAS  PubMed  Google Scholar 

  22. Nemanich ST, Rani S, Shoghi K. In vivo multi-tissue efficacy of peroxisome proliferator-activated receptor-γ therapy on glucose and fatty acid metabolism in obese type 2 diabetic rats. Obesity. 2013;21:2522–9.

    CAS  PubMed  Google Scholar 

  23. Masuzaki H, Paterson J, Shinyama H, et al. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;13:2166–70.

    Google Scholar 

  24. Mai K, Reinecke F, Andres J et al. Effects of hyperlipidaemia on glucocorticoid metabolism: results of a randomized controlled trial in healthy young women.[J]. Clin. Endocrinol. (Oxf), 2011, 74: 551–7.

  25. Xiong F, Zhang L. Role of the hypothalamic-pituitary-adrenal axis in developmental programming of health and disorders. Frontiers in neuroendocrinology. 2013;34:27–46.

    CAS  PubMed  Google Scholar 

  26. Morton NM, Holmes MC, Fievet C, et al. Improved lipid and lipoprotein profile, hepatic insulin sensitivity, and glucose tolerance in 11B-Hydroxysteroid dehydrogenase type 1 null mice. J Biol Chem. 2001;276:41293–300.

    CAS  PubMed  Google Scholar 

  27. Wang JZ, Cao HX, Chen JN, et al. PNPLA3 rs738409 underlies treatment response in nonalcoholic fatty liver disorders. World Journal of Clinical Cases. 2018;6:11–9.

    Google Scholar 

  28. Kershaw EE, Flier JS, et al. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;18:2548–56.

    Google Scholar 

  29. Angulo P. Nonalcoholic fatty liver disorders — NEJM. Ann Epidemiol. 2013;58:1435–7.

    Google Scholar 

  30. Medina J, Fernandez-Salazar LI, Garcia-Buey L, Moreno-Otero R. Approach to the pathogenesis and treatment of nonalcoholic Steatohepatitis. Diabetes Care. 2004;27:2057–66.

    PubMed  Google Scholar 

  31. A. Cordeiro Adryana, R. Costa Raquel, N. Andrade et al. Does adipose tissue inflammation drive the development of non-alcoholic fatty liver disorders in obesity?[J]. Clin Res Hepatol Gastroenterol, 2020.

  32. Targher G, Bertolini L, Zoppini G, Zenari L, Falezza G. Relationship of non-alcoholic hepatic steatosis to cortisol secretion in diet-controlled type 2 diabetic patients [J]. Diabet Med. 2005;22(9):1146–50.

    CAS  PubMed  Google Scholar 

  33. W.B. Wang, F. She, L.F. Xie. Evaluation of basal serum adrenocorticotropic hormone and cortisol levels and their relationship with nonalcoholic fatty liver disorders in male patients with idiopathic Hypogonadotropic Hypogonadism [J]. National Medical Journal of China, 2016, 129.

  34. Carril E, Valdecantos MP, Lanzón B, et al. Metabolic impact of partial hepatectomy in the non-alcoholic steatohepatitis animal model of methionine-choline deficient diet.[J]. J Pharm Biomed Anal. 2020;178:112958.

    CAS  PubMed  Google Scholar 

  35. Jung FU, Bae YJ, Kratzsch J, et al. Internalized weight bias and cortisol reactivity to social stress.[J]. Cogn Affect Behav Neurosci. 2020;20:49–58.

    CAS  PubMed  Google Scholar 

  36. Ito E, Shima R, Yoshioka T. A novel role of oxytocin: Oxytocin-induced well-being in humans.[J]. Biophys Physicobiol. 2019;16:132–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Glantschnig C, Mattijssen F, Vogl ES, et al. The glucocorticoid receptor in brown adipocytes is dispensable for control of energy homeostasis.[J]. EMBO Rep. 2019;20:e48552.

    CAS  PubMed  Google Scholar 

  38. R.A. Miranda, R. Torrezan, Júlio Cezar de Oliveira, et al. HPA-axis and vagus nervous function are involved in impaired insulin secretion of MSG-obese rats [J]. Journal of Endocrinology, 2016, 230(1): JOE-15-0467.

  39. Pasquali R, Vicennati V. The abdominal obesity phenotype and insulin resistance are associated with abnormalities of the hypothalamic-pituitary-adrenal Axis in humans. Hormone & Metabolic Research. 2000;32:521–5.

    CAS  Google Scholar 

  40. Hepsen S, Sencar E, Sakiz D, Akhanli P, Ucan B, Unsal I, et al. Serum cortisol level after low dose dexamethasone suppression test may be predictive for diabetes mellitus and hypertension presence in obese patients: a retrospective study.[J]. Diabetes Res Clin Pract. 2020;161:108081.

    CAS  PubMed  Google Scholar 

  41. Puustinen T, Tervonen Joona J, Avellan C, et al. Psychiatric disorders are a common prognostic marker for worse outcome in patients with idiopathic intracranial hypertension.[J]. Clin Neurol Neurosurg. 2019;186:105527.

    PubMed  Google Scholar 

  42. Elian AH, Maribel HR, Rubén RR, et al. Effect of Ocimum basilicum, Ocimum selloi, and Rosmarinic Acid on Cerebral Vascular Damage in a Chronic Hypertension Model.[J]. Biol. Pharm. Bull. 2019;42:201–11.

    Google Scholar 

  43. Vieira Jonas O, Duarte Josiane O, Willian C-F, et al. Influence of pre-existing hypertension on neuroendocrine and cardiovascular changes evoked by chronic stress in female rats.[J]. Psychoneuroendocrinology. 2018;97:111–9.

    CAS  PubMed  Google Scholar 

  44. Luo Y, Zhang DG, Chen YL, et al. Dexamethasone protects against arsanilic acid-induced rat vestibular dysfunction through the BDNF and JNK 1/2 signaling pathways.[J]. Mol Med Rep. 2019;19:1781–90.

    CAS  PubMed  Google Scholar 

  45. Niu N, Xu SW, Xu YN, et al. Targeting Mechanosensitive Transcription Factors in Atherosclerosis.[J]. Trends Pharmacol. Sci. 2019;40:253–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kaplan JR, Manuck SB. Status, stress, and atherosclerosis: the role of environment and individual behavior. Ann N Y Acad Sci. 2010;896:145–61.

    Google Scholar 

  47. Zieff G. Ancient roots - Modern applications: Mindfulness as a novel intervention for cardiovascular disorders.[J]. Med. Hypotheses. 2017;108:57–62.

    PubMed  Google Scholar 

  48. Salminen A, Kaarniranta K, Kauppinen A. Regulation of longevity by FGF21: interaction between energy metabolism and stress responses.[J]. Ageing Res. Rev. 2017;37:79–93.

    CAS  PubMed  Google Scholar 

  49. Chen JJ, Tao J, Zhang XL, et al. Inhibition of the ox-LDL-Induced Pyroptosis by FGF21 of Human Umbilical Vein Endothelial Cells Through the TET2-UQCRC1-ROS Pathway.[J]. DNA Cell Biol. 2020;10:1089.

    Google Scholar 

  50. Evans JF, Ragolia L. Systemic and local ACTH produced during inflammatory states promotes osteochondrogenic mesenchymal cell differentiation contributing to the pathologic progression of calcified atherosclerosis. Med Hypotheses. 2012;79:823–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Teich T, Dunford EC, Porras DP, et al. Glucocorticoid antagonism limits adiposity rebound and glucose intolerance in young male rats following the cessation of daily exercise and caloric restriction.[J]. Am. J. Physiol. Endocrinol. Metab. 2016;311:E56–68.

    PubMed  PubMed Central  Google Scholar 

  52. Priyadarshini E, Anuradha CV. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice.[J]. Can J Diabetes. 2017;41:41–51.

    PubMed  Google Scholar 

  53. Zhu KC, Zhang YM, Zhang J, et al. Acetylation of Hsp90 reverses dexamethasone-mediated inhibition of insulin secretion.[J]. Toxicol. Lett. 2020;320:19–27.

    CAS  PubMed  Google Scholar 

  54. Nagasawa K, Matsuura N, Takeshita Y, et al. Attenuation of cold stress-induced exacerbation of cardiac and adipose tissue pathology and metabolic disorders in a rat model of metabolic syndrome by the glucocorticoid receptor antagonist RU486.[J]. Nutr Diabetes. 2016;6:e207.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Thomas W, Noah T, Kym PR, et al. Liver-selective glucocorticoid antagonists: a novel treatment for type 2 diabetes.[J]. J. Med. Chem. 2004;47:4213–30.

    Google Scholar 

  56. Zinker B, Mika A, Nguyen P, Wilcox D, Öhman L, von Geldern TW, et al. Liver-selective glucocorticoid receptor antagonism decreases glucose production and increases glucose disposal, ameliorating insulin resistance.[J]. Metab Clin Exp. 2007;56:380–7.

    CAS  PubMed  Google Scholar 

  57. Tomlinson JW, Stewart PM. Modulation of glucocorticoid action and the treatment of type-2 diabetes.[J]. Best Pract. Res. Clin. Endocrinol. Metab. 2007;21:607–19.

    CAS  PubMed  Google Scholar 

  58. Pereira CD, Azevedo I, Monteiro R. 11β-Hydroxysteroid dehydrogenase type 1: relevance of its modulation in the pathophysiology of obesity, the metabolic syndrome and type 2 diabetes mellitus [J]. Diabetes Obes Metab. 2012;14:869–81.

    CAS  PubMed  Google Scholar 

  59. Kroon J, Koorneef LL, Jose K, et al. Selective Glucocorticoid Receptor Antagonist CORT125281 Activates Brown Adipose Tissue and Alters Lipid Distribution in Male Mice.[J]. Endocrinology. 2018;159:535–46.

    CAS  PubMed  Google Scholar 

  60. Nguyen ET, Berman S, Streicher J, et al. Effects of combined glucocorticoid/mineralocorticoid receptor modulation (CORT118335) on energy balance, adiposity, and lipid metabolism in male rats.[J]. Am. J. Physiol. Endocrinol. Metab. 2019;317:E337–49.

    CAS  PubMed  Google Scholar 

  61. Koorneef LL, José K, Kroon KJ, et al. Selective Glucocorticoid Receptor Modulation Prevents and Reverses Nonalcoholic Fatty Liver disorders in Male Mice.[J]. Endocrinology. 2018;159:3925–36.

    CAS  PubMed  Google Scholar 

  62. Stephens Jeffrey W, Brown Karen E, Thinzar M. Chronic kidney disease in type 2 diabetes: Implications for managing glycaemic control, cardiovascular and renal risk.[J]. Diabetes Obes Metab. 2020;22:32–45.

    PubMed  Google Scholar 

  63. Daisuke S, Eiichiro Y, Kenichi T. Mineralocorticoid Receptor Blockers: Novel Selective Nonsteroidal Mineralocorticoid Receptor Antagonists.[J]. Curr. Hypertens. Rep. 2020;22:21.

    Google Scholar 

  64. Satoshi M, Atsuhiro I. Management of primary aldosteronism and mineralocorticoid receptor-associated hypertension.[J]. Hypertens. Res. 2020;43:744–53.

    Google Scholar 

  65. Fuller Peter J, Yao Yi-Zhou, Yang Jun et al. Structural determinants of activation of the mineralocorticoid receptor: an evolutionary perspective.[J] .J Hum Hypertens, 2020.

  66. Wan Ningning, Rahman Asadur, Nishiyama Akira, Esaxerenone, a novel nonsteroidal mineralocorticoid receptor blocker (MRB) in hypertension and chronic kidney disease.[J] .J Hum Hypertens, 2020.

  67. Granberg Kenneth L, Zhong-Qing Y, Bo L, et al. Identification of Mineralocorticoid Receptor Modulators with Low Impact on Electrolyte Homeostasis but Maintained Organ Protection.[J]. J. Med. Chem. 2019;62:1385–406.

    CAS  PubMed  Google Scholar 

  68. George B, Fred YY, Bertram P. Mineralocorticoid Receptor Antagonists for Hypertension Management in Advanced Chronic Kidney Disease: BLOCK-CKD Trial.[J]. Hypertension. 2020;76:144–9.

    Google Scholar 

  69. Meyers MJ, Arhancet GB, Hockerman SL, Chen X, Long SA, Mahoney MW, et al. Discovery of (3S,3aR)-2-(3-chloro-4-cyanophenyl)-3-cyclopentyl-3,3a,4,5-tetrahydro-2H-benzo [g]indazole-7-carboxylic acid (PF-3882845), an orally efficacious mineralocorticoid receptor (MR) antagonist for hypertension and nephropathy.[J]. J Med Chem. 2010;53(16):5979–6002.

    CAS  PubMed  Google Scholar 

  70. Nariai T, Fujita K, Mori M, et al. SM-368229, a novel promising mineralocorticoid receptor antagonist, shows antihypertensive efficacy with minimal effect on serum potassium level in rats.[J]. Journal of Cardiovascular Pharmacology. 2012;59(5):458.

    CAS  PubMed  Google Scholar 

  71. Fagart J, Hillisch A, Huyet J, Bärfacker L, Fay M, Pleiss U, et al. A new mode of mineralocorticoid receptor antagonism by a potent and selective nonsteroidal molecule [J]. J Biol Chem. 2010;285(39):29932–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen ZF, Zhang L, Yi JY, et al. Promotion of adiponectin multimerization by emodin: a novel AMPK activator with PPARγ-agonist activity. J Cell Biochem. 2012;113:3547–58.

    CAS  PubMed  Google Scholar 

  73. Mahmoud MF, Hassan NA, Bassossy HM, et al. Quercetin protects against diabetes-induced exaggerated vasoconstriction in rats: effect on low grade inflammation [J]. PLoS One. 2013;8:63784.

    Google Scholar 

  74. Zhao HL, Sim JS, Shim SH, Ha YW, Kang SS, Kim YS. Antiobese and hypolipidemic effects of platycodin saponins in diet-induced obese rats: evidences for lipase inhibition and calorie intake restriction. Int J Obes. 2005;29:983–90.

    CAS  Google Scholar 

  75. Wu SY, Wang GF, Liu ZQ, et al. Effect of geniposide, a hypoglycemic glucoside, on hepatic regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin. Chinese Journal of Pharmacology. 2009;30:202–8.

    CAS  Google Scholar 

  76. Yoshinari O, Igarashi K. Anti-diabetic effect of trigonelline and nicotinic acid, on KK-A(y) mice. Curr Med Chem. 2010;17:2196–202.

    CAS  PubMed  Google Scholar 

  77. Accatino L, Pizarro M, Solis N, et al. Effects of diosgenin, a plant-derived steroid, on bile secretion and hepatocellular cholestasis induced by estrogens in the rat. Hepatology. 2010;28:129.

    Google Scholar 

  78. J.D. Lu, L.J. Fu, G.Z. Qin, et al. The regulatory effect of Xiaoyao San on glucocorticoid receptors under the condition of chronic stress, Cellular and molecular biology (Noisy-le-Grand, France), 2018, 64 : 103–109.

  79. P. Meng, H.Z. Huang, Q. Yang, et al. Kangai Jieyu fang, a Chinese herbal formulation, Ameliorates Cancer-Related Depression Concurrent with Breast Cancer in Mice via Promoting Hippocampal Synaptic Plasticity, Evidence-based complementary and alternative medicine : eCAM, 2018: 3967642.

  80. Pao LH, Lu SW, Sun GG, Chiou SH, Ma KH. Three Chinese herbal medicines promote neuroproliferation in vitro, and reverse the effects of chronic mild stress on behavior, the HPA axis, and proliferation of hippocampal precursor cell in vivo. J Ethnopharmacol. 2012;144:261–9.

    PubMed  Google Scholar 

  81. Lee WY, Jang SW, Lee JS, Kim YH, Kim HG, Han JM, et al. Uwhangchungsimwon, a traditional herbal medicine, protects brain against oxidative injury via modulation of hypothalamus–pituitary–adrenal (HPA) response in a chronic restraint mice model. J Ethnopharmacol. 2014;151:461–9.

    PubMed  Google Scholar 

  82. Wang S, Wang C, Yu Z, et al. Agarwood essential oil ameliorates restrain stress-induced anxiety and depression by inhibiting HPA Axis hyperactivity. Int J Mol Sci. 2018;19.

  83. Li HY, Zhao YH, Zeng MJ, Fang F, Li M, Qin TT, et al. Saikosaponin D relieves unpredictable chronic mild stress induced depressive-like behavior in rats: involvement of HPA axis and hippocampal neurogenesis. Psychopharmacology. 2017;234:3385–94.

    CAS  PubMed  Google Scholar 

  84. Esmaeili MH, Bahari B, Salari AA. ATP-sensitive potassium-channel inhibitor glibenclamide attenuates HPA axis hyperactivity, depression- and anxiety-related symptoms in a rat model of Alzheimer's disorders. Brain Res Bull. 2018;137:265–76.

    CAS  PubMed  Google Scholar 

  85. Xia X, Yang JH, Sheng YF, et al. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS One. 2011;6:16556.

    Google Scholar 

  86. Mi J, He WD, Lv JW, et al. Effect of berberine on the HPA-axis pathway and skeletal muscle GLUT4 in type 2 diabetes mellitus rats.[J]. Diabetes Metab Syndr Obes. 2019;(12):1717–25.

  87. Rami BK, Viviane S, Youakim S, et al. Mifepristone reduces hypothalamo-pituitary-adrenal axis activation and restores weight loss in rats subjected to dietary restriction and methylphenidate administration. Neurosci Res. 2018;135:46–53.

    Google Scholar 

  88. Zhou J, Wang D, Luo XH, Jia X, Li MX, Laudon M, et al. Melatonin receptor agonist Piromelatine ameliorates impaired glucose metabolism in chronically stressed rats fed a high-fat diet. J Pharmacol Exp Ther. 2018;364:55–69.

    CAS  PubMed  Google Scholar 

  89. Zhou J, Zhang J, Luo XH, Li MX, Yue Y, Laudon M, et al. Neu-P11, a novel MT1/MT2 agonist, reverses diabetes by suppressing the hypothalamic-pituitary-adrenal axis in rats. Eur J Pharmacol. 2017;812:225–33.

    CAS  PubMed  Google Scholar 

  90. Perry RJ, Wang YL, Cline GW, et al. Leptin Mediates a Glucose-Fatty Acid Cycle to Maintain Glucose Homeostasis in Starvation.[J]. Cell. 2018;172:234–248.e17.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Scarlett JM, Schwartz MW. Gut-brain mechanisms controlling glucose homeostasis.[J]. F1000 Prime Rep. 2015;7:12.

    Google Scholar 

Download references

Acknowledgments

This project was funded by the Major basic and applied basic research projects of Guangdong Province of China (2019B030302005), the National key R & D plan “Research on modernization of traditional Chinese medicine” (2018YFC1704200) and the Special Innovation Project of Guangdong University(2019KTSCX073).

Author information

Authors and Affiliations

Authors

Contributions

Yanduan Lin drafted the manuscript and prepared the figures. Ziwei Zhang and Siyu Wang provided suggestions. Jiao Guo and Jinyan Cai obtained the funding and reviewed the manuscript.

Corresponding authors

Correspondence to Jinyan Cai or Jiao Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Zhang, Z., Wang, S. et al. Hypothalamus-pituitary-adrenal Axis in Glucolipid metabolic disorders. Rev Endocr Metab Disord 21, 421–429 (2020). https://doi.org/10.1007/s11154-020-09586-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-020-09586-1

Keywords

Navigation