Skip to main content
Log in

Serotonin pathway in carcinoid syndrome: Clinical, diagnostic, prognostic and therapeutic implications

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Carcinoid syndrome represents the most common functional syndrome that affects patients with neuroendocrine neoplasms. Its clinical presentation is really heterogeneous, ranging from mild and often misdiagnosed symptoms to severe manifestations, that significantly worsen the patient’s quality of life, such as difficult-to-control diarrhoea and fibrotic complications. Serotonin pathway alteration plays a central role in the pathophysiology of carcinoid syndrome, accounting for most clinical manifestations and providing diagnostic tools. Serotonin pathway is complex, resulting in production of biologically active molecules such as serotonin and melatonin, as well as of different intermediate molecules and final metabolites. These activities require site- and tissue-specific catalytic enzymes. Variable expression and activities of these enzymes result in different clinical pictures, according to primary site of origin of the tumour. At the same time, the biochemical diagnosis of carcinoid syndrome could be difficult even in case of typical symptoms. Therefore, the accuracy of the diagnostic methods of assessment should be improved, also attenuating the impact of confounding factors and maybe considering new serotonin precursors or metabolites as diagnostic markers. Finally, the prognostic role of serotonin markers has been only evaluated for its metabolite 5-hydroxyindole acetic acid but, due to heterogeneous and biased study designs, no definitive conclusions have been achieved. The most recent progress is represented by the new therapeutic agent telotristat, an inhibitor of the enzyme tryptophan hydroxylase, which blocks the conversion of tryptophan in 5-hydroxy-tryptophan. The present review investigates the clinical significance of serotonin pathway in carcinoid syndrome, considering its role in the pathogenesis, diagnosis, prognosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

5-HIA:

5-Hydroxyindole Acetaldehyde

5-HIAA:

5-Hydroxyindole Acetic Acid

5-HTP:

5-Hydroxytryptophan

GTOL:

5-Hydroxytryptophol Glucuronide

5-HTOL:

5-Hydroxytryptophol

ADH:

Alcohol Dehydrogenase

ALR:

Aldehyde Reductase

AADC:

Aromatic Acid Decarboxylase

CHD:

Carcinoid Heart Disease

CaS:

Carcinoid Syndrome

CNS:

Central Nervous System

EC :

Enterochromaffin Cell

HPLC :

High-Performance Liquid Chromatography

HIOMT :

Hydroxyindole O-Methyltransferase

TRP :

L-Tryptophan

TPH :

L-Tryptophan-5-Hydroxilase

LC :

Liquid Chromatography

MS :

Mass Spectrometry

MEL:

Melatonin

MAO :

Monoamine Oxidase

NAS :

N-Acetyl-Serotonin

NEN:

Neuroendocrine Neoplasm

SERT :

Serotonin Transporter

5-HT :

Serotonin, 5-Hydroxytryptamine

SNAT :

Serotonin-N-Acetyltransferase

TE:

Telotristat etiprate

UGT:

UDP-Glucuronosyltransferase

U-5-HIAA:

Urinary 5-Hydroxyindole Acetic Acid

VMATs:

Vesicular Monoamine Transporters

References

  1. Thorson A, Biorck G, Bjorkman G, Waldenstrom J. Malignant carcinoid of the small intestine with metastases to the liver, valvular disease of the right side of the heart (pulmonary stenosis and tricuspid regurgitation without septal defects), peripheral vasomotor symptoms, bronchoconstriction, and an unusual type of cyanosis; a clinical and pathologic syndrome. Am Heart J. 1954;47(5):795–817.

    Article  CAS  Google Scholar 

  2. Kronenberg HWR. Williams textbook of endocrinology, vol. IXI. 11th ed; 2008.

    Google Scholar 

  3. Levine RJ, Elsas LJ, Duvall CP, Rice JS. Malignant carcinoid tumors with and without Flushing. JAMA. 1963;186:905–7.

    CAS  PubMed  Google Scholar 

  4. Feldman JM. Carcinoid tumors and syndrome. Semin Oncol. 1987;14(3):237–46.

    CAS  PubMed  Google Scholar 

  5. Beri N, Farid A, Galkin M, Lewis W, Amsterdam E. Diagnostic Dilemma: Carcinoid Syndrome. Am J Med. 2018;131(10):e405–e7. https://doi.org/10.1016/j.amjmed.2018.05.026.

    Article  PubMed  Google Scholar 

  6. Halperin DM, Shen C, Dasari A, Xu Y, Chu Y, Zhou S, et al. Frequency of carcinoid syndrome at neuroendocrine tumour diagnosis: a population-based study. Lancet Oncol. 2017;18(4):525–34. https://doi.org/10.1016/S1470-2045(17)30110-9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pandit S, Bhusal K. Carcinoid syndrome. Treasure Island: StatPearls; 2019.

    Google Scholar 

  8. Ito T, Igarashi H, Jensen RT. Pancreatic neuroendocrine tumors: clinical features, diagnosis and medical treatment: advances. Best Pract Res Clin Gastroenterol. 2012;26(6):737–53. https://doi.org/10.1016/j.bpg.2012.12.003.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Modlin IM, Kidd M, Latich I, Zikusoka MN, Shapiro MD. Current status of gastrointestinal carcinoids. Gastroenterology. 2005;128(6):1717–51.

    Article  Google Scholar 

  10. Walther DJ, Bader M. A unique central tryptophan hydroxylase isoform. Biochem Pharmacol. 2003;66(9):1673–80.

    Article  CAS  Google Scholar 

  11. Walther DJ, Peter JU, Bashammakh S, Hortnagl H, Voits M, Fink H, et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science. 2003;299(5603):76. https://doi.org/10.1126/science.1078197.

    Article  CAS  PubMed  Google Scholar 

  12. Lesurtel M, Soll C, Graf R, Clavien PA. Role of serotonin in the hepato-gastroIntestinal tract: an old molecule for new perspectives. Cell Mol Life Sci. 2008;65(6):940–52. https://doi.org/10.1007/s00018-007-7377-3.

    Article  CAS  PubMed  Google Scholar 

  13. Suominen T, Uutela P, Ketola RA, Bergquist J, Hillered L, Finel M, et al. Determination of serotonin and dopamine metabolites in human brain microdialysis and cerebrospinal fluid samples by UPLC-MS/MS: discovery of intact Glucuronide and sulfate conjugates. PLoS One. 2013;8(6):e68007. https://doi.org/10.1371/journal.pone.0068007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kvols LK. Metastatic carcinoid tumors and the malignant carcinoid syndrome. Ann N Y Acad Sci. 1994;733:464–70.

    Article  CAS  Google Scholar 

  15. Bender DA. Biochemistry of tryptophan in health and disease. Mol Asp Med. 1983;6(2):101–97.

    Article  CAS  Google Scholar 

  16. Feldman JM. Serotonin metabolism in patients with carcinoid tumors: incidence of 5-hydroxytryptophan-secreting tumors. Gastroenterology. 1978;75(6):1109–14.

    Article  CAS  Google Scholar 

  17. Kang H, O'Connell JB, Leonardi MJ, Maggard MA, McGory ML, Ko CY. Rare tumors of the colon and rectum: a national review. Int J Color Dis. 2007;22(2):183–9. https://doi.org/10.1007/s00384-006-0145-2.

    Article  Google Scholar 

  18. Cunningham JL, Janson ET, Agarwal S, Grimelius L, Stridsberg M. Tachykinins in endocrine tumors and the carcinoid syndrome. Eur J Endocrinol. 2008;159(3):275–82. https://doi.org/10.1530/EJE-08-0196.

    Article  CAS  PubMed  Google Scholar 

  19. Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, et al. One hundred years after "carcinoid": epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063–72. https://doi.org/10.1200/JCO.2007.15.4377.

    Article  PubMed  Google Scholar 

  20. Sherman SK, Maxwell JE, O'Dorisio MS, O'Dorisio TM, Howe JR. Pancreastatin predicts survival in neuroendocrine tumors. Ann Surg Oncol. 2014;21(9):2971–80. https://doi.org/10.1245/s10434-014-3728-0.

    Article  PubMed  PubMed Central  Google Scholar 

  21. von der Ohe MR, Camilleri M, Kvols LK, Thomforde GM. Motor dysfunction of the small bowel and colon in patients with the carcinoid syndrome and diarrhea. N Engl J Med. 1993;329(15):1073–8. https://doi.org/10.1056/NEJM199310073291503.

    Article  PubMed  Google Scholar 

  22. Boutzios G, Kaltsas G. Clinical syndromes related to gastrointestinal neuroendocrine neoplasms. Front Horm Res. 2015;44:40–57. https://doi.org/10.1159/000382053.

    Article  PubMed  Google Scholar 

  23. Oberg K, Theodorsson-Norheim E, Norheim I. Motilin in plasma and tumor tissues from patients with the carcinoid syndrome. Possible involvement in the increased frequency of bowel movements. Scand J Gastroenterol. 1987;22(9):1041–8.

    Article  CAS  Google Scholar 

  24. Hannah-Shmouni F, Stratakis CA, Koch CA. Flushing in (neuro)endocrinology. Rev Endocr Metab Disord. 2016;17(3):373–80. https://doi.org/10.1007/s11154-016-9394-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Connolly HM, Pellikka PA. Carcinoid heart disease. Curr Cardiol Rep. 2006;8(2):96–101.

    Article  Google Scholar 

  26. Modlin IM, Shapiro MD, Kidd M. Carcinoid tumors and fibrosis: an association with no explanation. Am J Gastroenterol. 2004;99(12):2466–78. https://doi.org/10.1111/j.1572-0241.2004.40507.x.

    Article  PubMed  Google Scholar 

  27. Oberg K, Casanovas O, Castano JP, Chung D, Delle Fave G, Denefle P, et al. Molecular pathogenesis of neuroendocrine tumors: implications for current and future therapeutic approaches. Clin Cancer Res. 2013;19(11):2842–9. https://doi.org/10.1158/1078-0432.CCR-12-3458.

    Article  CAS  PubMed  Google Scholar 

  28. Ito T, Lee L, Jensen RT. Carcinoid-syndrome: recent advances, current status and controversies. Curr Opin Endocrinol Diabetes Obes. 2018;25(1):22–35. https://doi.org/10.1097/MED.0000000000000376.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Aluri V, Dillon JS. Biochemical testing in neuroendocrine tumors. Endocrinol Metab Clin N Am. 2017;46(3):669–77. https://doi.org/10.1016/j.ecl.2017.04.004.

    Article  Google Scholar 

  30. Meijer WG, Kema IP, Volmer M, Willemse PH, de Vries EG. Discriminating capacity of indole markers in the diagnosis of carcinoid tumors. Clin Chem. 2000;46(10):1588–96.

    Article  CAS  Google Scholar 

  31. Kema IP, Meijer WG, Meiborg G, Ooms B, Willemse PH, de Vries EG. Profiling of tryptophan-related plasma indoles in patients with carcinoid tumors by automated, on-line, solid-phase extraction and HPLC with fluorescence detection. Clin Chem. 2001;47(10):1811–20.

    Article  CAS  Google Scholar 

  32. Oberg K, Modlin IM, De Herder W, Pavel M, Klimstra D, Frilling A, et al. Consensus on biomarkers for neuroendocrine tumour disease. Lancet Oncol. 2015;16(9):e435–e46. https://doi.org/10.1016/S1470-2045(15)00186-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Oberg K, Couvelard A, Delle Fave G, Gross D, Grossman A, Jensen RT, et al. ENETS consensus guidelines for standard of Care in Neuroendocrine Tumours: biochemical markers. Neuroendocrinology. 2017;105(3):201–11. https://doi.org/10.1159/000472254.

    Article  CAS  PubMed  Google Scholar 

  34. Kuo TR, Chen JS, Chiu YC, Tsai CY, Hu CC, Chen CC. Quantitative analysis of multiple urinary biomarkers of carcinoid tumors through gold-nanoparticle-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chim Acta. 2011;699(1):81–6. https://doi.org/10.1016/j.aca.2011.05.012.

    Article  CAS  PubMed  Google Scholar 

  35. Tellez MR, Mamikunian G, O'Dorisio TM, Vinik AI, Woltering EA. A single fasting plasma 5-HIAA value correlates with 24-hour urinary 5-HIAA values and other biomarkers in midgut neuroendocrine tumors (NETs). Pancreas. 2013;42(3):405–10. https://doi.org/10.1097/MPA.0b013e318271c0d5.

    Article  CAS  PubMed  Google Scholar 

  36. Adaway JE, Dobson R, Walsh J, Cuthbertson DJ, Monaghan PJ, Trainer PJ, et al. Serum and plasma 5-hydroxyindoleacetic acid as an alternative to 24-h urine 5-hydroxyindoleacetic acid measurement. Ann Clin Biochem. 2016;53(Pt 5):554–60. https://doi.org/10.1177/0004563215613109.

    Article  CAS  PubMed  Google Scholar 

  37. O'Toole D, Grossman A, Gross D, Delle Fave G, Barkmanova J, O'Connor J, et al. ENETS consensus guidelines for the standards of Care in Neuroendocrine Tumors: biochemical markers. Neuroendocrinology. 2009;90(2):194–202. https://doi.org/10.1159/000225948.

    Article  CAS  PubMed  Google Scholar 

  38. Rubin de Celis Ferrari AC, Glasberg J, Riechelmann RP. Carcinoid syndrome: update on the pathophysiology and treatment. Clinics (Sao Paulo). 2018;73(suppl 1):e490s. https://doi.org/10.6061/clinics/2018/e490s.

    Article  Google Scholar 

  39. Corcuff JB, Chardon L, El Hajji RI, Brossaud J. Urinary sampling for 5HIAA and metanephrines determination: revisiting the recommendations. Endocr Connect. 2017;6(6):R87–98. https://doi.org/10.1530/EC-17-0071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gallo M, Muscogiuri G, Pizza G, Ruggeri RM, Barrea L, Faggiano A, et al. The management of neuroendocrine tumours: a nutritional viewpoint. Crit Rev Food Sci Nutr. 2019;59(7):1046–57. https://doi.org/10.1080/10408398.2017.1390729.

    Article  PubMed  Google Scholar 

  41. Swami T, Weber HC. Updates on the biology of serotonin and tryptophan hydroxylase. Curr Opin Endocrinol Diabetes Obes. 2018;25(1):12–21. https://doi.org/10.1097/MED.0000000000000383.

    Article  CAS  PubMed  Google Scholar 

  42. Kanakis G, Kaltsas G. Biochemical markers for gastroenteropancreatic neuroendocrine tumours (GEP-NETs). Best Pract Res Clin Gastroenterol. 2012;26(6):791–802. https://doi.org/10.1016/j.bpg.2012.12.006.

    Article  CAS  PubMed  Google Scholar 

  43. Kyriacou A, Stepien KM, Issa B. Urinary steroid metabolites in a case of florid Ectopic Cushing's syndrome and clinical correlations. Hormones (Athens). 2016;15(4):540–7. https://doi.org/10.14310/horm.2002.1695.

    Article  Google Scholar 

  44. Gill GV, Yong A, Power E, Ramage J. Carcinoid-associated ectopic ACTH syndrome with variable response to octreotide. Postgrad Med J. 1999;75(880):98–100. https://doi.org/10.1136/pgmj.75.880.98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Isidori AM, Venneri MA, Graziadio C, Simeoli C, Fiore D, Hasenmajer V, et al. Effect of once-daily, modified-release hydrocortisone versus standard glucocorticoid therapy on metabolism and innate immunity in patients with adrenal insufficiency (DREAM): a single-blind, randomised controlled trial. Lancet Diabetes Endocrinol. 2018;6(3):173–85. https://doi.org/10.1016/S2213-8587(17)30398-4.

    Article  CAS  PubMed  Google Scholar 

  46. Pozza C, Graziadio C, Giannetta E, Lenzi A, Isidori AM. Management strategies for aggressive Cushing's syndrome: from macroadenomas to Ectopics. J Oncol. 2012;2012:685213. https://doi.org/10.1155/2012/685213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kema IP, de Vries EG, Slooff MJ, Biesma B, Muskiet FA. Serotonin, catecholamines, histamine, and their metabolites in urine, platelets, and tumor tissue of patients with carcinoid tumors. Clin Chem. 1994;40(1):86–95.

    Article  CAS  Google Scholar 

  48. Psychogios N, Hau DD, Peng J, Guo AC, Mandal R, Bouatra S, et al. The human serum metabolome. PLoS One. 2011;6(2):e16957. https://doi.org/10.1371/journal.pone.0016957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, et al. The human urine metabolome. PLoS One. 2013;8(9):e73076. https://doi.org/10.1371/journal.pone.0073076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gijsman HJ, van Gerven JM, de Kam ML, Schoemaker RC, Pieters MS, Weemaes M, et al. Placebo-controlled comparison of three dose-regimens of 5-hydroxytryptophan challenge test in healthy volunteers. J Clin Psychopharmacol. 2002;22(2):183–9.

    Article  CAS  Google Scholar 

  51. Guo K, Li L. Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome. Anal Chem. 2009;81(10):3919–32. https://doi.org/10.1021/ac900166a.

    Article  CAS  PubMed  Google Scholar 

  52. Trabado S, Al-Salameh A, Croixmarie V, Masson P, Corruble E, Feve B, et al. The human plasma-metabolome: reference values in 800 French healthy volunteers; impact of cholesterol, gender and age. PLoS One. 2017;12(3):e0173615. https://doi.org/10.1371/journal.pone.0173615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Alfredsson G, Wiesel FA. Monoamine metabolites and amino acids in serum from schizophrenic patients before and during sulpiride treatment. Psychopharmacology. 1989;99(3):322–7.

    Article  CAS  Google Scholar 

  54. Yao JK, Dougherty GG Jr, Reddy RD, Keshavan MS, Montrose DM, Matson WR, et al. Altered interactions of tryptophan metabolites in first-episode neuroleptic-naive patients with schizophrenia. Mol Psychiatry. 2010;15(9):938–53. https://doi.org/10.1038/mp.2009.33.

    Article  CAS  PubMed  Google Scholar 

  55. Lentner C. Geigy Scientific Tables. 8th Rev ed. Switzerland c; 1981–1992. p. 165–77.

  56. Beck O, Borg S, Jonsson G, Lundman A, Valverius P. Measurement of 5-hydroxytryptophol and 5-hydroxyindoleacetic acid in human and rat brain and plasma. J Neural Transm. 1984;59(1):57–67.

    Article  CAS  Google Scholar 

  57. Fuertig R, Ceci A, Camus SM, Bezard E, Luippold AH, Hengerer B. LC-MS/MS-based quantification of kynurenine metabolites, tryptophan, monoamines and neopterin in plasma, cerebrospinal fluid and brain. Bioanalysis. 2016;8(18):1903–17. https://doi.org/10.4155/bio-2016-0111.

    Article  CAS  PubMed  Google Scholar 

  58. Sakaguchi Y, Ikenaga J, Yoshida H, Hayama T, Itoyama M, Todoroki K, et al. Selective and sensitive liquid chromatographic determination method of 5-hydroxyindoles with fluorous and fluorogenic derivatization. J Pharm Biomed Anal. 2015;114:348–54. https://doi.org/10.1016/j.jpba.2015.06.003.

    Article  CAS  PubMed  Google Scholar 

  59. Boulet L, Faure P, Flore P, Monteremal J, Ducros V. Simultaneous determination of tryptophan and 8 metabolites in human plasma by liquid chromatography/tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1054:36–43. https://doi.org/10.1016/j.jchromb.2017.04.010.

    Article  CAS  Google Scholar 

  60. Tekes K. HPLC determination of serotonin and its metabolites from human platelet-rich plasma; shift to 5-hydroxytryptophol formation following alcohol consumption. J Chromatogr Sci. 2008;46(2):169–73. https://doi.org/10.1093/chromsci/46.2.169.

    Article  CAS  PubMed  Google Scholar 

  61. Miller AG, Brown H, Degg T, Allen K, Keevil BG. Measurement of plasma 5-hydroxyindole acetic acid by liquid chromatography tandem mass spectrometry--comparison with HPLC methodology. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878(7–8):695–9. https://doi.org/10.1016/j.jchromb.2010.01.010.

    Article  CAS  Google Scholar 

  62. Stephanson N, Helander A, Beck O. Alcohol biomarker analysis: simultaneous determination of 5-hydroxytryptophol glucuronide and 5-hydroxyindoleacetic acid by direct injection of urine using ultra-performance liquid chromatography-tandem mass spectrometry. J Mass Spectrom. 2007;42(7):940–9. https://doi.org/10.1002/jms.1231.

    Article  CAS  PubMed  Google Scholar 

  63. Carter MD, Calcutt MW, Malow BA, Rose KL, Hachey DL. Quantitation of melatonin and n-acetylserotonin in human plasma by nanoflow LC-MS/MS and electrospray LC-MS/MS. J Mass Spectrom. 2012;47(3):277–85. https://doi.org/10.1002/jms.2051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wolrab D, Fruhauf P, Gerner C. Quantification of the neurotransmitters melatonin and N-acetyl-serotonin in human serum by supercritical fluid chromatography coupled with tandem mass spectrometry. Anal Chim Acta. 2016;937:168–74. https://doi.org/10.1016/j.aca.2016.08.012.

    Article  CAS  PubMed  Google Scholar 

  65. Yang S, Zheng X, Xu Y, Zhou X. Rapid determination of serum melatonin by ESI-MS-MS with direct sample injection. J Pharm Biomed Anal. 2002;30(3):781–90.

    Article  CAS  Google Scholar 

  66. Borucki K, Schreiner R, Dierkes J, Jachau K, Krause D, Westphal S, et al. Detection of recent ethanol intake with new markers: comparison of fatty acid ethyl esters in serum and of ethyl glucuronide and the ratio of 5-hydroxytryptophol to 5-hydroxyindole acetic acid in urine. Alcohol Clin Exp Res. 2005;29(5):781–7.

    Article  CAS  Google Scholar 

  67. Stephanson N, Dahl H, Helander A, Beck O. Determination of urinary 5-hydroxytryptophol glucuronide by liquid chromatography-mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2005;816(1–2):107–12. https://doi.org/10.1016/j.jchromb.2004.11.026.

    Article  CAS  Google Scholar 

  68. Wiseman JM, Puolitaival SM, Takats Z, Cooks RG, Caprioli RM. Mass spectrometric profiling of intact biological tissue by using desorption electrospray ionization. Angew Chem Int Ed Eng. 2005;44(43):7094–7. https://doi.org/10.1002/anie.200502362.

    Article  CAS  Google Scholar 

  69. Gerbig S, Golf O, Balog J, Denes J, Baranyai Z, Zarand A, et al. Analysis of colorectal adenocarcinoma tissue by desorption electrospray ionization mass spectrometric imaging. Anal Bioanal Chem. 2012;403(8):2315–25. https://doi.org/10.1007/s00216-012-5841-x.

    Article  CAS  PubMed  Google Scholar 

  70. Phelps DL, Balog J, Gildea LF, Bodai Z, Savage A, El-Bahrawy MA, et al. The surgical intelligent knife distinguishes normal, borderline and malignant gynaecological tissues using rapid evaporative ionisation mass spectrometry (REIMS). Br J Cancer. 2018;118(10):1349–58. https://doi.org/10.1038/s41416-018-0048-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Davis Z, Moertel CG, McIlrath DC. The malignant carcinoid syndrome. Surg Gynecol Obstet. 1973;137(4):637–44.

    CAS  PubMed  Google Scholar 

  72. Agranovich AL, Anderson GH, Manji M, Acker BD, Macdonald WC, Threlfall WJ. Carcinoid tumour of the gastrointestinal tract: prognostic factors and disease outcome. J Surg Oncol. 1991;47(1):45–52.

    Article  CAS  Google Scholar 

  73. Wangberg B, Westberg G, Tylen U, Tisell L, Jansson S, Nilsson O, et al. Survival of patients with disseminated midgut carcinoid tumors after aggressive tumor reduction. World J Surg. 1996;20(7):892–9 discussion 9.

    Article  CAS  Google Scholar 

  74. Onaitis MW, Kirshbom PM, Hayward TZ, Quayle FJ, Feldman JM, Seigler HF, et al. Gastrointestinal carcinoids: characterization by site of origin and hormone production. Ann Surg. 2000;232(4):549–56.

    Article  CAS  Google Scholar 

  75. Hellman P, Lundstrom T, Ohrvall U, Eriksson B, Skogseid B, Oberg K, et al. Effect of surgery on the outcome of midgut carcinoid disease with lymph node and liver metastases. World J Surg. 2002;26(8):991–7. https://doi.org/10.1007/s00268-002-6630-z.

    Article  PubMed  Google Scholar 

  76. van der Horst-Schrivers AN, Post WJ, Kema IP, Links TP, Willemse PH, Wymenga AN, et al. Persistent low urinary excretion of 5-HIAA is a marker for favourable survival during follow-up in patients with disseminated midgut carcinoid tumours. Eur J Cancer. 2007;43(18):2651–7. https://doi.org/10.1016/j.ejca.2007.07.025.

    Article  CAS  PubMed  Google Scholar 

  77. Formica V, Wotherspoon A, Cunningham D, Norman AR, Sirohi B, Oates J, et al. The prognostic role of WHO classification, urinary 5-hydroxyindoleacetic acid and liver function tests in metastatic neuroendocrine carcinomas of the gastroenteropancreatic tract. Br J Cancer. 2007;96(8):1178–82. https://doi.org/10.1038/sj.bjc.6603699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Janson ET, Holmberg L, Stridsberg M, Eriksson B, Theodorsson E, Wilander E, et al. Carcinoid tumors: analysis of prognostic factors and survival in 301 patients from a referral center. Ann Oncol. 1997;8(7):685–90.

    Article  CAS  Google Scholar 

  79. Turner GB, Johnston BT, McCance DR, McGinty A, Watson RG, Patterson CC, et al. Circulating markers of prognosis and response to treatment in patients with midgut carcinoid tumours. Gut. 2006;55(11):1586–91. https://doi.org/10.1136/gut.2006.092320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bergestuen DS, Aabakken L, Holm K, Vatn M, Thiis-Evensen E. Small intestinal neuroendocrine tumors: prognostic factors and survival. Scand J Gastroenterol. 2009;44(9):1084–91. https://doi.org/10.1080/00365520903082432.

    Article  PubMed  Google Scholar 

  81. Zandee WT, Kamp K, van Adrichem RC, Feelders RA, de Herder WW. Limited value for urinary 5-HIAA excretion as prognostic marker in gastrointestinal neuroendocrine tumours. Eur J Endocrinol. 2016;175(5):361–6. https://doi.org/10.1530/EJE-16-0392.

    Article  CAS  PubMed  Google Scholar 

  82. Zandee WT, van Adrichem RC, Kamp K, Feelders RA, van Velthuysen MF, de Herder WW. Incidence and prognostic value of serotonin secretion in pancreatic neuroendocrine tumours. Clin Endocrinol. 2017;87(2):165–70. https://doi.org/10.1111/cen.13364.

    Article  CAS  Google Scholar 

  83. Ghia JE, Li N, Wang H, Collins M, Deng Y, El-Sharkawy RT, et al. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology. 2009;137(5):1649–60. https://doi.org/10.1053/j.gastro.2009.08.041.

    Article  CAS  PubMed  Google Scholar 

  84. Manocha M, Khan WI. Serotonin and GI disorders: an update on clinical and experimental studies. Clin Transl Gastroenterol. 2012;3:e13. https://doi.org/10.1038/ctg.2012.8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Margolis KG, Stevanovic K, Li Z, Yang QM, Oravecz T, Zambrowicz B, et al. Pharmacological reduction of mucosal but not neuronal serotonin opposes inflammation in mouse intestine. Gut. 2014;63(6):928–37. https://doi.org/10.1136/gutjnl-2013-304901.

    Article  CAS  PubMed  Google Scholar 

  86. Kim JJ, Wang H, Terc JD, Zambrowicz B, Yang QM, Khan WI. Blocking peripheral serotonin synthesis by telotristat etiprate (LX1032/LX1606) reduces severity of both chemical- and infection-induced intestinal inflammation. Am J Physiol Gastrointest Liver Physiol. 2015;309(6):G455–65. https://doi.org/10.1152/ajpgi.00299.2014.

    Article  CAS  PubMed  Google Scholar 

  87. Kulke MH, O'Dorisio T, Phan A, Bergsland E, Law L, Banks P, et al. Telotristat etiprate, a novel serotonin synthesis inhibitor, in patients with carcinoid syndrome and diarrhea not adequately controlled by octreotide. Endocr Relat Cancer. 2014;21(5):705–14. https://doi.org/10.1530/ERC-14-0173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pavel M, Horsch D, Caplin M, Ramage J, Seufferlein T, Valle J, et al. Telotristat etiprate for carcinoid syndrome: a single-arm, multicenter trial. J Clin Endocrinol Metab. 2015;100(4):1511–9. https://doi.org/10.1210/jc.2014-2247.

    Article  CAS  PubMed  Google Scholar 

  89. Kulke MH, Horsch D, Caplin M, Anthony L, Bergsland E, Oberg K, et al. 37LBA Telotristat etiprate is effective in treating patients with carcinoid syndrome that is inadequately controlled by somatostatin analog therapy (the phase 3 TELESTAR clinical trial). 2015.

  90. Pavel M, Gross DJ, Benavent M, Perros P, Srirajaskanthan R, Warner RRP, et al. Telotristat ethyl in carcinoid syndrome: safety and efficacy in the TELECAST phase 3 trial. Endocr Relat Cancer. 2018;25(3):309–22. https://doi.org/10.1530/ERC-17-0455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review is part of the ‘Neuroendocrine Tumours Innovation Knowledge and Education’ project led by Prof. Annamaria Colao and Prof. Antongiulio Faggiano, which aims at increasing the knowledge on neuroendocrine tumours. We would like to acknowledge all the Collaborators of this project: Manuela Albertelli, Barbara Altieri, Elena Ambrosetti, Antonio Bianchi, Lena Bottiglieri, Severo Campione, Silvia Carra, Federica De Cicco, Carla Di Dato, Sergio Di Molfetta, Antonella Di Sarno, Giuseppe Fanciulli, Diego Ferone, Francesco Ferraù, Marco Gallo, Elisa Giannetta, Federica Grillo, Elia Guadagno, Valentina Guarnotta, Andrea Isidori, Pasqualino Malandrino, Chiara Martini, Erika Messina, Roberta Modica, Giovanna Muscogiuri, Genoveffa Pizza, Paola Razzore, Laura Rizza, Manila Rubino, Concetta Sciammarella, Giovanni Vitale, Maria Chiara Zatelli.

Authorship

All authors made substantial contributions to the conception of the article, literature search and data analysis. The manuscript was drafted by Giuseppe Fanciulli and Rosaria M. Ruggeri and all authors commented on previous versions of the manuscript. Antongiulio Faggiano, Andrea Isidori and Annamaria Colao critically revised the work for important intellectual content. All authors read and approved the final manuscript.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Antongiulio Faggiano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanciulli, G., Ruggeri, R.M., Grossrubatscher, E. et al. Serotonin pathway in carcinoid syndrome: Clinical, diagnostic, prognostic and therapeutic implications. Rev Endocr Metab Disord 21, 599–612 (2020). https://doi.org/10.1007/s11154-020-09547-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-020-09547-8

Keywords

Navigation