Skip to main content

Advertisement

Log in

The gut microbiome and heart failure: A better gut for a better heart

Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Despite the development of new drugs and therapeutic strategies, mortality and morbidity related to heart failure (HF) remains high. It is also the leading cause of global mortality. Several concepts have been proposed to explore the underlying pathogenesis of HF, but there is still a strong need for more specific and complementary therapeutic options. In recent years, accumulating evidence has demonstrated that changes in the composition of gut microbiota, referred to as dysbiosis, might play a pivotal role in the development of several diseases, including HF. HF-associated decreased cardiac output, resulting in bowell wall oedema and intestine ischaemia, can alter gut structure, peamibility and function. These changes would favour bacterial translocation, exacerbating HF pathogenesis at least partly through activation of systemic inflammation. Although our knowledge of the precise molecular mechanisms by which gut dysbiosis influance HF is still limited, a growing body of evidence has recently demonstrated the impact of a series of gut microbiome-derived metabolites, such as trimetylamine N-oxide, short-chain fatty acids or secondary bile acids, which have been shown to play critical roles in cardiac health and disease. This review will summarize the role of gut microbiota and its metabolites in the pathogenesis of HF. Current and future preventive and therapeutic strategies to prevent HF by an adequate modulation of the microbiome and its derived metabolites are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2016;388(10053):1459–544.

    Article  Google Scholar 

  2. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. American College of Cardiology Foundation/American Heart Association task force on practice guidelines. ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2013;128(16):e240–327.

    PubMed  Google Scholar 

  3. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, et al. American Heart Association statistics committee and stroke statistics subcommittee. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6–e245.

    PubMed  Google Scholar 

  4. Hooper LV, Gordon JI. Commensal host-bacterial relationships in the gut. Science. 2001;292(5519):1115–8.

    Article  CAS  PubMed  Google Scholar 

  5. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol. 2013;13(11):790–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Levy M, Kolodziejczyk AA, Thaiss CA, Elinav E. Dysbiosis and the immune system. Nat Rev Immunol. 2017;17(4):219–32.

    Article  CAS  PubMed  Google Scholar 

  8. Nagatomo Y, Tang WH. Intersections between microbiome and heart failure: revisiting the gut hypothesis. J Card Fail. 2015;21(12):973–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120(7):1183–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol. 2019;16(3):137–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sandek A, Bauditz J, Swidsinski A, Buhner S, Weber-Eibel J, et al. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007;50(16):1561–9.

    Article  CAS  PubMed  Google Scholar 

  12. Sandek A, Swidsinski A, Schroedl W, Watson A, Valentova M, et al. Intestinal blood flow in patients with chronic heart failure: a link with bacterial growth, gastrointestinal symptoms, and cachexia. J Am Coll Cardiol. 2014;64(11):1092–102.

    Article  PubMed  Google Scholar 

  13. Pasini E, Aquilani R, Testa C, Baiardi P, Angioletti S, et al. Pathogenic gut Flora in patients with chronic heart failure. JACC Heart Fail. 2016;4(3):220–7.

    Article  PubMed  Google Scholar 

  14. Luedde M, Winkler T, Heinsen FA, Rühlemann MC, Spehlmann ME, et al. Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail. 2017;4(3):282–90.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jenq RR, Taur Y, Devlin SM, Ponce DM, Goldberg JD, et al. Intestinal Blautia is associated with reduced death from graft-versus-host disease. Biol Blood Marrow Transplant. 2015;21(8):1373–83.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Miquel S, Martín R, Rossi O, Bermúdez-Humarán LG, Chatel JM, et al. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol. 2013;16(3):255–61.

    Article  CAS  PubMed  Google Scholar 

  17. Richard ML, Sokol H. The gut mycobiota: insights into analysis, environmental interactions and role in gastrointestinal diseases. Nat Rev Gastroenterol Hepatol. 2019;16(6):331–45.

    PubMed  Google Scholar 

  18. Cui X, Ye L, Li J, Jin L, Wang W, et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep. 2018;8(1):635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Kamo T, Akazawa H, Suda W, Saga-Kamo A, Shimizu Y, et al. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One. 2017;12(3):e0174099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Kummen M, Mayerhofer CCK, Vestad B, Broch K, Awoyemi A, et al. Gut microbiota signature in heart failure defined from profiling of 2 independent cohorts. J Am Coll Cardiol. 2018;71(10):1184–6.

    Article  PubMed  Google Scholar 

  21. Pullen AB, Jadapalli JK, Rhourri-Frih B, Halade GV. Re-evaluating the causes and consequences of non-resolving inflammation in chronic cardiovascular disease. Heart Fail Rev. 2019; In press.

  22. Sarhene M, Wang Y, Wei J, Huang Y, Li M, et al. Biomarkers in heart failure: the past, current and future. Heart Fail Rev. 2019; In press.

  23. Mann DL, McMurray JJ, Packer M, Swedberg K, Borer JS, et al. Targeted anticytokine therapy in patients with chronic heart failure: results of the randomized Etanercept worldwide evaluation (RENEWAL). Circulation. 2004;109(13):1594–602.

    Article  CAS  PubMed  Google Scholar 

  24. Sandek A, Anker SD, von Haehling S. The gut and intestinal bacteria in chronic heart failure. Curr Drug Metab. 2009;10(1):22–8.

    Article  CAS  PubMed  Google Scholar 

  25. Krack A, Richartz BM, Gastmann A, Greim K, Lotze U, et al. Studies on intragastric PCO2 at rest and during exercise as a marker of intestinal perfusion in patients with chronic heart failure. Eur J Heart Fail. 2004;6(4):403–7.

    Article  PubMed  Google Scholar 

  26. Arutyunov GP, Kostyukevich OI, Serov RA, Rylova NV, Bylova NA. Collagen accumulation and dysfunctional mucosal barrier of the small intestine in patients with chronic heart failure. Int J Cardiol. 2008;125(2):240–5.

    Article  PubMed  Google Scholar 

  27. Amar J, Lange C, Payros G, Garret C, Chabo C, et al. Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: the D.E.S.I.R. study. PLoS One. 2013;8(1):e54461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dinakaran V, Rathinavel A, Pushpanathan M, Sivakumar R, Gunasekaran P, et al. Elevated levels of circulating DNA in cardiovascular disease patients: metagenomic profiling of microbiome in the circulation. PLoS One. 2014;9(8):e105221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Niebauer J, Volk HD, Kemp M, Dominguez M, Schumann RR, et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet. 1999;353(9167):1838–42.

    Article  CAS  PubMed  Google Scholar 

  30. Peschel T, Schönauer M, Thiele H, Anker SD, Schuler G, et al. Invasive assessment of bacterial endotoxin and inflammatory cytokines in patients with acute heart failure. Eur J Heart Fail. 2003;5(5):609–14.

    Article  CAS  PubMed  Google Scholar 

  31. Sandek A, Bjarnason I, Volk HD, Crane R, Meddings JB, et al. Studies on bacterial endotoxin and intestinal absorption function in patients with chronic heart failure. Int J Cardiol. 2012;157(1):80–5.

    Article  PubMed  Google Scholar 

  32. Conraads VM, Bosmans JM, Schuerwegh AJ, Goovaerts I, De Clerck LS. At al. Intracellular monocyte cytokine production and CD 14 expression are up-regulated in severe vs mild chronic heart failure. J Heart Lung Transplant. 2005;24(7):854–9.

    Article  PubMed  Google Scholar 

  33. Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11(5):255–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu L, Feng Z. The role of toll-like receptor signaling in the progression of heart failure. Mediat Inflamm. 2018;2018:9874109.

    Google Scholar 

  35. Hietbrink F, Besselink MG, Renooij W, de Smet MB, Draisma A, et al. Systemic inflammation increases intestinal permeability during experimental human endotoxemia. Shock. 2009;32(4):374–8.

    Article  CAS  PubMed  Google Scholar 

  36. Tang WH, Wang Z, Fan Y, Levison B, Hazen JE, et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol. 2014;64(18):1908–14.

    Article  CAS  PubMed  Google Scholar 

  37. Tang WH, Wang Z, Shrestha K, Borowski AG, Wu Y, et al. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail. 2015;21(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  38. Albert CL, Tang WHW. Metabolic biomarkers in heart failure. Heart Fail Clin. 2018;14(1):109–18.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hayashi T, Yamashita T, Watanabe H, Kami K, Yoshida N, et al. Gut microbiome and plasma microbiome-related metabolites in patients with decompensated and compensated heart failure. Circ J. 2018;83(1):182–92.

    Article  PubMed  Google Scholar 

  40. Suzuki T, Yazaki Y, Voors AA, Jones DJL, Chan DCS, et al. Association with outcomes and response to treatment of trimethylamine N-oxide in heart failure (from BIOSTAT-CHF). Eur J Heart Fail. 2018; In press.

  41. Kanitsoraphan C, Rattanawong P, Charoensri S, Senthong V. Trimethylamine N-oxide and risk of cardiovascular disease and mortality. Curr Nutr Rep. 2018;7(4):207–13.

    Article  CAS  PubMed  Google Scholar 

  42. Organ CL, Otsuka H, Bhushan S, Wang Z, Bradley J, et al. Choline diet and its gut microbe-derived metabolite, trimethylamine N-oxide, exacerbate pressure overload-induced heart failure. Circ Heart Fail. 2016;9(1):e002314.

    Article  CAS  PubMed  Google Scholar 

  43. Li Z, Wu Z, Yan J, Liu H, Liu Q, et al. Gut microbe-derived metabolite trimethylamine N-oxide induces cardiac hypertrophy and fibrosis. Lab Investig. 2019;99(3):346–57.

    Article  CAS  PubMed  Google Scholar 

  44. Li X, Sun Y, Zhang X, Wang J. Reductions in gut microbiota-derived metabolite trimethylamine N-oxide in the circulation may ameliorate myocardial infarction-induced heart failure in rats, possibly by inhibiting interleukin-8 secretion. Mol Med Rep. 2019; In press.

  45. Blacher E, Levy M, Tatirovsky E, Elinav E. Microbiome-modulated metabolites at the Interface of host immunity. J Immunol. 2017;198(2):572–80.

    Article  CAS  PubMed  Google Scholar 

  46. Levy M, Blacher E, Elinav E. Microbiome, metabolites and host immunity. Curr Opin Microbiol. 2017;35:8–15.

    Article  CAS  PubMed  Google Scholar 

  47. Tang WHW, Bäckhed F, Landmesser U, Hazen SL. Intestinal microbiota in cardiovascular health and disease: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(16):2089–105.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Battson ML, Lee DM, Weir TL, Gentile CL. The gut microbiota as a novel regulator of cardiovascular function and disease. J Nutr Biochem. 2018;56:1–15.

    Article  CAS  PubMed  Google Scholar 

  49. Wang Z, Zhao Y. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell. 2018;9(5):416–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Marques FZ, Nelson E, Chu PY, Horlock D. Fiedler et al. high-Fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;135(10):964–77.

    Article  CAS  PubMed  Google Scholar 

  51. Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B. Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev. 2009;89(1):147–91.

    Article  CAS  PubMed  Google Scholar 

  52. Wahlström A, Sayin SI, Marschall HU, Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24(1):41–50.

    Article  PubMed  CAS  Google Scholar 

  53. Hanafi NI, Mohamed AS, Sheikh Abdul Kadir SH, Othman MHD. Overview of bile acids signaling and perspective on the signal of Ursodeoxycholic acid, the most hydrophilic bile acid, in the heart. Biomolecules. 2018;8(4):e159.

    Article  PubMed Central  CAS  Google Scholar 

  54. Khurana S, Raufman JP, Pallone TL. Bile acids regulate cardiovascular function. Clin Transl Sci. 2011;4(3):210–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vasavan T, Ferraro E, Ibrahim E, Dixon P, Gorelik J, et al. Heart and bile acids - clinical consequences of altered bile acid metabolism. Biochim Biophys Acta Mol basis Dis. 2018;1864(4 Pt B):1345–55.

    Article  CAS  PubMed  Google Scholar 

  56. Mayerhofer CCK, Ueland T, Broch K, Vincent RP, Cross GF, et al. Increased secondary/primary bile acid ratio in chronic heart failure. J Card Fail. 2017;23(9):666–71.

    Article  CAS  PubMed  Google Scholar 

  57. Gao J, Liu X, Wang B, Xu H, Xia Q, et al. Farnesoid X receptor deletion improves cardiac function, structure and remodeling following myocardial infarction in mice. Mol Med Rep. 2017;16(1):673–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Eblimit Z, Thevananther S, Karpen SJ, Taegtmeyer H, Moore DD, et al. TGR5 activation induces cytoprotective changes in the heart and improves myocardial adaptability to physiologic, inotropic, and pressure-induced stress in mice. Cardiovasc Ther. 2018;36(5):e12462.

    Article  PubMed  CAS  Google Scholar 

  59. Battson ML, Lee DM, Jarrell DK, Hou S, Ecton KE, et al. Suppression of gut dysbiosis reverses Western diet-induced vascular dysfunction. Am J Physiol Endocrinol Metab. 2018;314(5):E468–77.

    Article  CAS  PubMed  Google Scholar 

  60. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Koeth RA, Lam-Galvez BR, Kirsop J, Wang Z, Levison BS, et al. L-carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J Clin Invest. 2019;129(1):373–87.

    Article  PubMed  Google Scholar 

  62. Lang JM, Pan C, Cantor RM, Tang WHW, Garcia-Garcia JC, Kurtz I, Hazen SL, Bergeron N, Krauss RM, Lusis AJ. Impact of individual traits, saturated fat, and protein source on the gut microbiome. MBio. 2018;9(6):e01604–18.

  63. Lopez-Garcia E, Rodriguez-Artalejo F, Li TY, Fung TT, Li S, et al. The Mediterranean-style dietary pattern and mortality among men and women with cardiovascular disease. Am J Clin Nutr. 2014;99(1):172–80.

    Article  CAS  PubMed  Google Scholar 

  64. Bjarnason-Wehrens B, Nebel R, Jensen K, Hackbusch M, Grilli M, et al. German Society of Cardiovascular Prevention and Rehabilitation (DGPR). Exercise-based cardiac rehabilitation in patients with reduced left ventricular ejection fraction: the cardiac rehabilitation outcome study in heart failure (CROS-HF): a systematic review and meta-analysis. Eur J Prev Cardiol. 2019. https://doi.org/10.1177/2047487319854140.

  65. Mailing LJ, Allen JM, Buford TW, Fields CJ, Woods JA. Exercise and the gut microbiome: a review of the evidence, potential mechanisms, and implications for human health. Exerc Sport Sci Rev. 2019;47(2):75–85.

    Article  PubMed  Google Scholar 

  66. Lambert JE, Myslicki JP, Bomhof MR, Belke DD, Shearer J, et al. Exercise training modifies gut microbiota in normal and diabetic mice. Appl Physiol Nutr Metab. 2015;40(7):749–52.

    Article  PubMed  Google Scholar 

  67. Zhao X, Zhang Z, Hu B, Huang W, Yuan C, Zou L. Response of gut microbiota to metabolite changes induced by endurance exercise. Front Microbiol. 2018;9:765.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lam V, Su J, Koprowski S, Hsu A, Tweddell JS, et al. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J. 2012;26(4):1727–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Conraads VM, Jorens PG, De Clerck LS, Van Saene HK, et al. Selective intestinal decontamination in advanced chronic heart failure: a pilot trial. Eur J Heart Fail. 2004;6(4):483–91.

    Article  CAS  PubMed  Google Scholar 

  70. Cheng YJ, Nie XY, Chen XM, Lin XX, Tang K, et al. The role of macrolide antibiotics in increasing cardiovascular risk. J Am Coll Cardiol. 2015;66(20):2173–84.

    Article  CAS  PubMed  Google Scholar 

  71. Gorelik E, Masarwa R, Perlman A, Rotshild V, Muszkat M, et al. Systemic review, meta-analysis, and network meta-analysis of the cardiovascular safety of macrolides. Antimicrob Agents Chemother. 2018;62(6):e00438–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ettinger G, MacDonald K, Reid G, Burton JP. The influence of the human microbiome and probiotics on cardiovascular health. Gut Microbes. 2014;5(6):719–28.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gan XT, Ettinger G, Huang CX, Burton JP, Haist JV, et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail. 2014;7:491–9.

    Article  PubMed  Google Scholar 

  74. Costanza AC, Moscavitch SD, Faria Neto HC, Mesquita ET. Probiotic therapy with Saccharomyces boulardii for heart failure patients: a randomized, double-blind, placebo-controlled pilot trial. Int J Cardiol. 2015;179:348–50.

    Article  PubMed  Google Scholar 

  75. Mayerhofer CCK, Awoyemi AO, Moscavitch SD, Lappegård KT, Hov JR, et al. Design of the GutHeart-targeting gut microbiota to treat heart failure-trial: a phase II, randomized clinical trial. ESC Heart Fail. 2018;5(5):977–84.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cammarota G, Ianiro G, Gasbarrini A. Fecal microbiota transplantation for the treatment of Clostridium difficile infection: a systematic review. J Clin Gastroenterol. 2014;48(8):693–702.

    Article  PubMed  Google Scholar 

  77. Suez J, Zmora N, Zilberman-Schapira G, Mor U, Dori-Bachash M, et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell. 2018;174(6):1406–1423.e16.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by INSERM. Rémy Burcelin has received grants from Fondation de France (grant number 201300038591).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Heymes.

Ethics declarations

Conflict of interest

M. Branchereau declares that he has no conflict of interest. R. Burcelin declares that he has no conflict of interest. C. Heymes declares that he has no conflict of interest.

Human or animals participants

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Branchereau, M., Burcelin, R. & Heymes, C. The gut microbiome and heart failure: A better gut for a better heart. Rev Endocr Metab Disord 20, 407–414 (2019). https://doi.org/10.1007/s11154-019-09519-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-019-09519-7

Keywords

Navigation