Advertisement

Current perspectives on the impact of clinical disease and biochemical control on comorbidities and quality of life in acromegaly

  • Federico GattoEmail author
  • Claudia Campana
  • Francesco Cocchiara
  • Giuliana Corica
  • Manuela Albertelli
  • Mara Boschetti
  • Gianluigi Zona
  • Diego Criminelli
  • Massimo Giusti
  • Diego FeroneEmail author
Article
  • 249 Downloads

Abstract

Acromegaly is a rare chronic, systemic disorder caused by excessive growth hormone (GH) secretion from a somatotroph pituitary adenoma. GH hypersecretion leads to overproduction of insulin-like growth factor-1 (IGF-1), which contributes to the somatic overgrowth, physical disfigurement, onset of multiple systemic comorbidities, reduced quality of life (QoL) and premature mortality of uncontrolled patients. Somatostatin receptor ligands, dopamine agonists and a GH receptor antagonist are currently available for medical therapy of acromegaly. The main aim of treatment is biochemical normalisation, defined as age-normalised serum IGF-1 values and random GH levels <1.0 μg/L. However, there is an increasing evidence suggesting that achieving biochemical control does not always decrease the burden of disease-related comorbidities and/or improve patients’ QoL. This lack of correlation between biochemical and clinical control can be due to both disease duration (late diagnosis) or to the peculiarity of a given comorbidity. Herein we conducted ad hoc literature searches in order to find the most recent and relevant reports on biochemical and clinical disease control during medical treatment of acromegaly. Particularly, we analyse and describe the relationship between biochemical, as well as clinical disease control in patients with acromegaly receiving medical therapy, with a focus on comorbidities and QoL. In conclusion, we found that current literature data seem to indicate that clinical disease control (besides biochemical control), encompassing clinical signs and symptoms, comorbidities and QoL, emerge as a primary focus of acromegaly patient management.

Keywords

Acromegaly Biochemical control Clinical control Comorbidities Medical therapy 

Notes

Acknowledgments

Financial support for medical editorial assistance was provided by Novartis Pharma AG. We thank Tracy Harrison and Georgii Filatov, Springer Healthcare Communications for the medical writing assistance.

Compliance with ethical standards

Conflicts of interest/financial disclosures

FG has been a speaker for Novartis and has participated on advisory boards of Novartis, AMCo Ltd. and IONIS Pharmaceuticals. DF has been a speaker for and participated on advisory boards and received research grants from Novartis and Ipsen. The other Authors have no conflicts of interest to declare.

References

  1. 1.
    Melmed S. Medical progress: acromegaly. N Engl J Med. 2006;355(24):2558–73.  https://doi.org/10.1056/NEJMra062453.CrossRefPubMedGoogle Scholar
  2. 2.
    Katznelson L, Laws ER Jr, Melmed S, Molitch ME, Murad MH, Utz A, et al. Acromegaly: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2014;99(11):3933–51.  https://doi.org/10.1210/jc.2014-2700.CrossRefPubMedGoogle Scholar
  3. 3.
    Colao A, Ferone D, Marzullo P, Lombardi G. Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr Rev. 2004;25(1):102–52.  https://doi.org/10.1210/er.2002-0022.CrossRefPubMedGoogle Scholar
  4. 4.
    Holdaway IM, Bolland MJ, Gamble GD. A meta-analysis of the effect of lowering serum levels of GH and IGF-I on mortality in acromegaly. Eur J Endocrinol. 2008;159(2):89–95.  https://doi.org/10.1530/EJE-08-0267.CrossRefPubMedGoogle Scholar
  5. 5.
    Casanueva FF, Barkan AL, Buchfelder M, Klibanski A, Laws ER, Loeffler JS, et al. Criteria for the definition of pituitary tumor centers of excellence (PTCOE): a pituitary society statement. Pituitary. 2017;20(5):489–98.  https://doi.org/10.1007/s11102-017-0838-2.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Abreu A, Tovar AP, Castellanos R, Valenzuela A, Giraldo CM, Pinedo AC, et al. Challenges in the diagnosis and management of acromegaly: a focus on comorbidities. Pituitary. 2016;19(4):448–57.  https://doi.org/10.1007/s11102-016-0725-2.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lotti F, Rochira V, Pivonello R, Santi D, Galdiero M, Maseroli E, et al. Erectile dysfunction is common among men with acromegaly and is associated with morbidities related to the disease. J Sex Med. 2015;12(5):1184–93.  https://doi.org/10.1111/jsm.12859.CrossRefPubMedGoogle Scholar
  8. 8.
    Giustina A, Chanson P, Kleinberg D, Bronstein MD, Clemmons DR, Klibanski A, et al. Expert consensus document: a consensus on the medical treatment of acromegaly. Nat Rev Endocrinol. 2014;10(4):243–8.  https://doi.org/10.1038/nrendo.2014.21.CrossRefPubMedGoogle Scholar
  9. 9.
    Melmed S, Bronstein MD, Chanson P, Klibanski A, Casanueva FF, Wass JAH, et al. A consensus statement on acromegaly therapeutic outcomes. Nat Rev Endocrinol. 2018;14(9):552–61.  https://doi.org/10.1038/s41574-018-0058-5.CrossRefPubMedGoogle Scholar
  10. 10.
    Pita-Gutierrez F, Pertega-Diaz S, Pita-Fernandez S, Pena L, Lugo G, Sangiao-Alvarellos S, et al. Place of preoperative treatment of acromegaly with somatostatin analog on surgical outcome: a systematic review and meta-analysis. PLoS One. 2013;8(4):e61523.  https://doi.org/10.1371/journal.pone.0061523.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bacigaluppi S, Gatto F, Anania P, Bragazzi NL, Rossi DC, Benvegnu G, et al. Impact of pre-treatment with somatostatin analogs on surgical management of acromegalic patients referred to a single center. Endocrine. 2016;51(3):524–33.  https://doi.org/10.1007/s12020-015-0619-5.CrossRefPubMedGoogle Scholar
  12. 12.
    McKeage K. Pasireotide in acromegaly: a review. Drugs. 2015;75(9):1039–48.  https://doi.org/10.1007/s40265-015-0413-y.CrossRefPubMedGoogle Scholar
  13. 13.
    Carmichael JD, Bonert VS, Nuno M, Ly D, Melmed S. Acromegaly clinical trial methodology impact on reported biochemical efficacy rates of somatostatin receptor ligand treatments: a meta-analysis. J Clin Endocrinol Metab. 2014;99(5):1825–33.  https://doi.org/10.1210/jc.2013-3757.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schilbach K, Strasburger CJ, Bidlingmaier M. Biochemical investigations in diagnosis and follow up of acromegaly. Pituitary. 2017;20(1):33–45.  https://doi.org/10.1007/s11102-017-0792-z.CrossRefPubMedGoogle Scholar
  15. 15.
    Alexopoulou O, Bex M, Abs R, T'Sjoen G, Velkeniers B, Maiter D. Divergence between growth hormone and insulin-like growth factor-i concentrations in the follow-up of acromegaly. J Clin Endocrinol Metab. 2008;93(4):1324–30.  https://doi.org/10.1210/jc.2007-2104.CrossRefPubMedGoogle Scholar
  16. 16.
    Schofl C, Franz H, Grussendorf M, Honegger J, Jaursch-Hancke C, Mayr B, et al. Long-term outcome in patients with acromegaly: analysis of 1344 patients from the German acromegaly register. Eur J Endocrinol. 2013;168(1):39–47.  https://doi.org/10.1530/EJE-12-0602.CrossRefPubMedGoogle Scholar
  17. 17.
    Machado EO, Taboada GF, Neto LV, van Haute FR, Correa LL, Balarini GA, et al. Prevalence of discordant GH and IGF-I levels in acromegalics at diagnosis, after surgical treatment and during treatment with octreotide LAR. Growth Hormon IGF Res. 2008;18(5):389–93.  https://doi.org/10.1016/j.ghir.2008.02.001.CrossRefGoogle Scholar
  18. 18.
    Carmichael JD, Bonert VS, Mirocha JM, Melmed S. The utility of oral glucose tolerance testing for diagnosis and assessment of treatment outcomes in 166 patients with acromegaly. J Clin Endocrinol Metab. 2009;94(2):523–7.  https://doi.org/10.1210/jc.2008-1371.CrossRefPubMedGoogle Scholar
  19. 19.
    Geraedts VJ, Andela CD, Stalla GK, Pereira AM, van Furth WR, Sievers C et al. Predictors of Quality of Life in Acromegaly: No Consensus on Biochemical Parameters. Front Endocrinol (Lausanne). 2017;8:40.  https://doi.org/10.3389/fendo.2017.00040.
  20. 20.
    Holdaway IM, Rajasoorya RC, Gamble GD. Factors influencing mortality in acromegaly. J Clin Endocrinol Metab. 2004;89(2):667–74.  https://doi.org/10.1210/jc.2003-031199.CrossRefPubMedGoogle Scholar
  21. 21.
    Maione L, Brue T, Beckers A, Delemer B, Petrossians P, Borson-Chazot F, et al. Changes in the management and comorbidities of acromegaly over three decades: the French acromegaly registry. Eur J Endocrinol. 2017;176(5):645–55.  https://doi.org/10.1530/EJE-16-1064.CrossRefPubMedGoogle Scholar
  22. 22.
    Giustina A, Arnaldi G, Bogazzi F, Cannavo S, Colao A, De Marinis L, et al. Pegvisomant in acromegaly: an update. J Endocrinol Investig. 2017;40(6):577–89.  https://doi.org/10.1007/s40618-017-0614-1.CrossRefGoogle Scholar
  23. 23.
    Pokrajac A, Wark G, Ellis AR, Wear J, Wieringa GE, Trainer PJ. Variation in GH and IGF-I assays limits the applicability of international consensus criteria to local practice. Clin Endocrinol. 2007;67(1):65–70.  https://doi.org/10.1111/j.1365-2265.2007.02836.x.CrossRefGoogle Scholar
  24. 24.
    Christiansen Arlien-Soborg M, Trolle C, Alvarson E, Baek A, Dal J. Otto Lunde Jorgensen J. biochemical assessment of disease control in acromegaly: reappraisal of the glucose suppression test in somatostatin analogue (SA) treated patients. Endocrine. 2017;56(3):589–94.  https://doi.org/10.1007/s12020-017-1258-9.CrossRefPubMedGoogle Scholar
  25. 25.
    Minuto F, Resmini E, Boschetti M, Arvigo M, Sormani MP, Giusti M, et al. Assessment of disease activity in acromegaly by means of a single blood sample: comparison of the 120th minute postglucose value with spontaneous GH secretion and with the IGF system. Clin Endocrinol. 2004;61(1):138–44.  https://doi.org/10.1111/j.1365-2265.2004.02064.x.CrossRefGoogle Scholar
  26. 26.
    Freda PU, Katznelson L, van der Lely AJ, Reyes CM, Zhao S, Rabinowitz D. Long-acting somatostatin analog therapy of acromegaly: a meta-analysis. J Clin Endocrinol Metab. 2005;90(8):4465–73.  https://doi.org/10.1210/jc.2005-0260.CrossRefPubMedGoogle Scholar
  27. 27.
    Colao A, Auriemma RS, Pivonello R, Kasuki L, Gadelha MR. Interpreting biochemical control response rates with first-generation somatostatin analogues in acromegaly. Pituitary. 2016;19(3):235–47.  https://doi.org/10.1007/s11102-015-0684-z.CrossRefPubMedGoogle Scholar
  28. 28.
    Puig DM. Treatment of acromegaly in the era of personalized and predictive medicine. Clin Endocrinol. 2015;83(1):3–14.  https://doi.org/10.1111/cen.12731.CrossRefGoogle Scholar
  29. 29.
    Colao A, Ferone D, Lastoria S, Marzullo P, Cerbone G, Di Sarno A, et al. Prediction of efficacy of octreotide therapy in patients with acromegaly. J Clin Endocrinol Metab. 1996;81(6):2356–62.  https://doi.org/10.1210/jcem.81.6.8964877.CrossRefPubMedGoogle Scholar
  30. 30.
    Lindsay JR, McConnell EM, Hunter SJ, McCance DR, Sheridan B, Atkinson AB. Poor responses to a test dose of subcutaneous octreotide predict the need for adjuvant therapy to achieve 'safe' growth hormone levels. Pituitary. 2004;7(3):139–44.  https://doi.org/10.1007/s11102-005-1756-2.CrossRefPubMedGoogle Scholar
  31. 31.
    de Herder WW, Taal HR, Uitterlinden P, Feelders RA, Janssen JA, van der Lely AJ. Limited predictive value of an acute test with subcutaneous octreotide for long-term IGF-I normalization with Sandostatin LAR in acromegaly. Eur J Endocrinol. 2005;153(1):67–71.  https://doi.org/10.1530/eje.1.01935.CrossRefPubMedGoogle Scholar
  32. 32.
    Biermasz NR, Pereira AM, Smit JW, Romijn JA, Roelfsema F. Intravenous octreotide test predicts the long term outcome of treatment with octreotide-long-acting repeatable in active acromegaly. Growth Hormon IGF Res. 2005;15(3):200–6.  https://doi.org/10.1016/j.ghir.2005.02.007.CrossRefGoogle Scholar
  33. 33.
    Karavitaki N, Botusan I, Radian S, Coculescu M, Turner HE, Wass JA. The value of an acute octreotide suppression test in predicting long-term responses to depot somatostatin analogues in patients with active acromegaly. Clin Endocrinol. 2005;62(3):282–8.  https://doi.org/10.1111/j.1365-2265.2004.02191.x.CrossRefGoogle Scholar
  34. 34.
    Halperin I, Nicolau J, Casamitjana R, Sesmilo G, Serra-Prat M, Palomera E, et al. A short acute octreotide test for response prediction of long-term treatment with somatostatin analogues in acromegalic patients. Horm Metab Res. 2008;40(6):422–6.  https://doi.org/10.1055/s-2008-1065339.CrossRefPubMedGoogle Scholar
  35. 35.
    Sandret L, Maison P, Chanson P. Place of cabergoline in acromegaly: a meta-analysis. J Clin Endocrinol Metab. 2011;96(5):1327–35.  https://doi.org/10.1210/jc.2010-2443.CrossRefPubMedGoogle Scholar
  36. 36.
    Abs R, Verhelst J, Maiter D, Van Acker K, Nobels F, Coolens JL, et al. Cabergoline in the treatment of acromegaly: a study in 64 patients. J Clin Endocrinol Metab. 1998;83(2):374–8.  https://doi.org/10.1210/jcem.83.2.4556.CrossRefPubMedGoogle Scholar
  37. 37.
    Trainer PJ, Drake WM, Katznelson L, Freda PU, Herman-Bonert V, van der Lely AJ, et al. Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant. N Engl J Med. 2000;342(16):1171–7.  https://doi.org/10.1056/NEJM200004203421604.CrossRefPubMedGoogle Scholar
  38. 38.
    van der Lely AJ, Hutson RK, Trainer PJ, Besser GM, Barkan AL, Katznelson L, et al. Long-term treatment of acromegaly with pegvisomant, a growth hormone receptor antagonist. Lancet. 2001;358(9295):1754–9.CrossRefPubMedGoogle Scholar
  39. 39.
    Colao A, Bronstein MD, Freda P, Gu F, Shen CC, Gadelha M, et al. Pasireotide versus octreotide in acromegaly: a head-to-head superiority study. J Clin Endocrinol Metab. 2014;99(3):791–9.  https://doi.org/10.1210/jc.2013-2480.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gadelha MR, Bronstein MD, Brue T, Coculescu M, Fleseriu M, Guitelman M, et al. Pasireotide versus continued treatment with octreotide or lanreotide in patients with inadequately controlled acromegaly (PAOLA): a randomised, phase 3 trial. Lancet Diabetes Endocrinol. 2014;2(11):875–84.  https://doi.org/10.1016/S2213-8587(14)70169-X.CrossRefPubMedGoogle Scholar
  41. 41.
    Lim DS, Fleseriu M. The role of combination medical therapy in the treatment of acromegaly. Pituitary. 2017;20(1):136–48.  https://doi.org/10.1007/s11102-016-0737-y.CrossRefPubMedGoogle Scholar
  42. 42.
    Christofides EA. Clinical importance of achieving biochemical control with medical therapy in adult patients with acromegaly. Patient Prefer Adherence. 2016;10:1217–25.  https://doi.org/10.2147/PPA.S102302.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tolis G, Angelopoulos NG, Katounda E, Rombopoulos G, Kaltzidou V, Kaltsas D, et al. Medical treatment of acromegaly: comorbidities and their reversibility by somatostatin analogs. Neuroendocrinology. 2006;83(3–4):249–57.  https://doi.org/10.1159/000095535.CrossRefPubMedGoogle Scholar
  44. 44.
    Gadelha MR, Kasuki L, Lim DST, Fleseriu M. Systemic complications of acromegaly and the impact of the current treatment landscape: an update. Endocr Rev. 2019;40(1):268–332.  https://doi.org/10.1210/er.2018-00115.CrossRefPubMedGoogle Scholar
  45. 45.
    Yedinak CG, Fleseriu M. Self-perception of cognitive function among patients with active acromegaly, controlled acromegaly, and non-functional pituitary adenoma: a pilot study. Endocrine. 2014;46(3):585–93.  https://doi.org/10.1007/s12020-013-0106-9.CrossRefPubMedGoogle Scholar
  46. 46.
    Yang LP, Keating GM. Octreotide long-acting release (LAR): a review of its use in the management of acromegaly. Drugs. 2010;70(13):1745–69.  https://doi.org/10.2165/11204510-000000000-00000.CrossRefPubMedGoogle Scholar
  47. 47.
    Burness CB, Dhillon S, Keam SJ. Lanreotide autogel((R)): a review of its use in the treatment of patients with acromegaly. Drugs. 2014;74(14):1673–91.  https://doi.org/10.1007/s40265-014-0283-8.CrossRefPubMedGoogle Scholar
  48. 48.
    Gadelha MR, Wildemberg LE, Bronstein MD, Gatto F, Ferone D. Somatostatin receptor ligands in the treatment of acromegaly. Pituitary. 2017;20(1):100–8.  https://doi.org/10.1007/s11102-017-0791-0.CrossRefPubMedGoogle Scholar
  49. 49.
    Tritos NA, Biller BM. Pegvisomant: a growth hormone receptor antagonist used in the treatment of acromegaly. Pituitary. 2017;20(1):129–35.  https://doi.org/10.1007/s11102-016-0753-y.CrossRefPubMedGoogle Scholar
  50. 50.
    Lesen E, Granfeldt D, Houchard A, Dinet J, Berthon A, Olsson DS, et al. Comorbidities, treatment patterns and cost-of-illness of acromegaly in Sweden: a register-linkage population-based study. Eur J Endocrinol. 2017;176(2):203–12.  https://doi.org/10.1530/EJE-16-0623.CrossRefPubMedGoogle Scholar
  51. 51.
    Petrossians P, Daly AF, Natchev E, Maione L, Blijdorp K, Sahnoun-Fathallah M, et al. Acromegaly at diagnosis in 3173 patients from the Liege acromegaly survey (LAS) database. Endocr Relat Cancer. 2017;24(10):505–18.  https://doi.org/10.1530/ERC-17-0253.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pivonello R, Auriemma RS, Grasso LF, Pivonello C, Simeoli C, Patalano R, et al. Complications of acromegaly: cardiovascular, respiratory and metabolic comorbidities. Pituitary. 2017;20(1):46–62.  https://doi.org/10.1007/s11102-017-0797-7.CrossRefPubMedGoogle Scholar
  53. 53.
    Sardella C, Cappellani D, Urbani C, Manetti L, Marconcini G, Tomisti L, et al. Disease activity and lifestyle influence comorbidities and cardiovascular events in patients with acromegaly. Eur J Endocrinol. 2016;175(5):443–53.  https://doi.org/10.1530/EJE-16-0562.CrossRefPubMedGoogle Scholar
  54. 54.
    Topaloglu O, Sayki Arslan M, Turak O, Ginis Z, Sahin M, Cebeci M, et al. Three noninvasive methods in the evaluation of subclinical cardiovascular disease in patients with acromegaly: epicardial fat thickness, aortic stiffness and serum cell adhesion molecules. Clin Endocrinol. 2014;80(5):726–34.  https://doi.org/10.1111/cen.12356.CrossRefGoogle Scholar
  55. 55.
    Colao A, Marzullo P, Ferone D, Spinelli L, Cuocolo A, Bonaduce D, et al. Cardiovascular effects of depot long-acting somatostatin analog Sandostatin LAR in acromegaly. J Clin Endocrinol Metab. 2000;85(9):3132–40.  https://doi.org/10.1210/jcem.85.9.6782.CrossRefPubMedGoogle Scholar
  56. 56.
    Lombardi G, Colao A, Marzullo P, Biondi B, Palmieri E, Fazio S, et al. Improvement of left ventricular hypertrophy and arrhythmias after lanreotide-induced GH and IGF-I decrease in acromegaly. A prospective multi-center study. J Endocrinol Investig. 2002;25(11):971–6.  https://doi.org/10.1007/BF03344070.CrossRefGoogle Scholar
  57. 57.
    Colao A, Marzullo P, Cuocolo A, Spinelli L, Pivonello R, Bonaduce D, et al. Reversal of acromegalic cardiomyopathy in young but not in middle-aged patients after 12 months of treatment with the depot long-acting somatostatin analogue octreotide. Clin Endocrinol. 2003;58(2):169–76.CrossRefGoogle Scholar
  58. 58.
    Maison P, Tropeano AI, Macquin-Mavier I, Giustina A, Chanson P. Impact of somatostatin analogs on the heart in acromegaly: a metaanalysis. J Clin Endocrinol Metab. 2007;92(5):1743–7.  https://doi.org/10.1210/jc.2006-2547.CrossRefPubMedGoogle Scholar
  59. 59.
    Pivonello R, Galderisi M, Auriemma RS, De Martino MC, Galdiero M, Ciccarelli A, et al. Treatment with growth hormone receptor antagonist in acromegaly: effect on cardiac structure and performance. J Clin Endocrinol Metab. 2007;92(2):476–82.  https://doi.org/10.1210/jc.2006-1587.CrossRefPubMedGoogle Scholar
  60. 60.
    Colao A, Pivonello R, Galderisi M, Cappabianca P, Auriemma RS, Galdiero M, et al. Impact of treating acromegaly first with surgery or somatostatin analogs on cardiomyopathy. J Clin Endocrinol Metab. 2008;93(7):2639–46.  https://doi.org/10.1210/jc.2008-0299.CrossRefPubMedGoogle Scholar
  61. 61.
    De Marinis L, Bianchi A, Mazziotti G, Mettimano M, Milardi D, Fusco A, et al. The long-term cardiovascular outcome of different GH-lowering treatments in acromegaly. Pituitary. 2008;11(1):13–20.  https://doi.org/10.1007/s11102-007-0062-6.CrossRefPubMedGoogle Scholar
  62. 62.
    Colao A, Auriemma RS, Galdiero M, Lombardi G, Pivonello R. Effects of initial therapy for five years with somatostatin analogs for acromegaly on growth hormone and insulin-like growth factor-I levels, tumor shrinkage, and cardiovascular disease: a prospective study. J Clin Endocrinol Metab. 2009;94(10):3746–56.  https://doi.org/10.1210/jc.2009-0941.CrossRefPubMedGoogle Scholar
  63. 63.
    Bogazzi F, Lombardi M, Strata E, Aquaro G, Lombardi M, Urbani C, et al. Effects of somatostatin analogues on acromegalic cardiomyopathy: results from a prospective study using cardiac magnetic resonance. J Endocrinol Investig. 2010;33(2):103–8.  https://doi.org/10.1007/BF03346562.CrossRefGoogle Scholar
  64. 64.
    Comunello A, Dassie F, Martini C, De Carlo E, Mioni R, Battocchio M, et al. Heart rate variability is reduced in acromegaly patients and improved by treatment with somatostatin analogues. Pituitary. 2015;18(4):525–34.  https://doi.org/10.1007/s11102-014-0605-6.CrossRefPubMedGoogle Scholar
  65. 65.
    Auriemma RS, Grasso LF, Galdiero M, Galderisi M, Pivonello C, Simeoli C, et al. Effects of long-term combined treatment with somatostatin analogues and pegvisomant on cardiac structure and performance in acromegaly. Endocrine. 2017;55(3):872–84.  https://doi.org/10.1007/s12020-016-0995-5.CrossRefPubMedGoogle Scholar
  66. 66.
    Jayasena CN, Comninos AN, Clarke H, Donaldson M, Meeran K, Dhillo WS. The effects of long-term growth hormone and insulin-like growth factor-1 exposure on the development of cardiovascular, cerebrovascular and metabolic co-morbidities in treated patients with acromegaly. Clin Endocrinol. 2011;75(2):220–5.  https://doi.org/10.1111/j.1365-2265.2011.04019.x.CrossRefGoogle Scholar
  67. 67.
    Akdeniz B, Gedik A, Turan O, Ozpelit E, Ikiz AO, Itil O, et al. Evaluation of left ventricular diastolic function according to new criteria and determinants in acromegaly. Int Heart J. 2012;53(5):299–305.CrossRefPubMedGoogle Scholar
  68. 68.
    Annamalai AK, Webb A, Kandasamy N, Elkhawad M, Moir S, Khan F, et al. A comprehensive study of clinical, biochemical, radiological, vascular, cardiac, and sleep parameters in an unselected cohort of patients with acromegaly undergoing presurgical somatostatin receptor ligand therapy. J Clin Endocrinol Metab. 2013;98(3):1040–50.  https://doi.org/10.1210/jc.2012-3072.CrossRefPubMedGoogle Scholar
  69. 69.
    Kuhn E, Maione L, Bouchachi A, Roziere M, Salenave S, Brailly-Tabard S, et al. Long-term effects of pegvisomant on comorbidities in patients with acromegaly: a retrospective single-center study. Eur J Endocrinol. 2015;173(5):693–702.  https://doi.org/10.1530/EJE-15-0500.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    dos Santos Silva CM, Gottlieb I, Volschan I, Kasuki L, Warszawski L, Balarini Lima GA, et al. Low frequency of cardiomyopathy using cardiac magnetic resonance imaging in an acromegaly contemporary cohort. J Clin Endocrinol Metab. 2015;100(12):4447–55.  https://doi.org/10.1210/jc.2015-2675.CrossRefPubMedGoogle Scholar
  71. 71.
    Carmichael JD, Broder MS, Cherepanov D, Chang E, Mamelak A, Said Q, et al. The association between biochemical control and cardiovascular risk factors in acromegaly. BMC Endocr Disord. 2017;17(1):15.  https://doi.org/10.1186/s12902-017-0166-6.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Pereira AM, van Thiel SW, Lindner JR, Roelfsema F, van der Wall EE, Morreau H, et al. Increased prevalence of regurgitant valvular heart disease in acromegaly. J Clin Endocrinol Metab. 2004;89(1):71–5.  https://doi.org/10.1210/jc.2003-030849.CrossRefPubMedGoogle Scholar
  73. 73.
    van der Klaauw AA, Bax JJ, Roelfsema F, Bleeker GB, Holman ER, Corssmit EP, et al. Uncontrolled acromegaly is associated with progressive mitral valvular regurgitation. Growth Hormon IGF Res. 2006;16(2):101–7.  https://doi.org/10.1016/j.ghir.2006.02.002.CrossRefGoogle Scholar
  74. 74.
    Colao A, Spinelli L, Marzullo P, Pivonello R, Petretta M, Di Somma C, et al. High prevalence of cardiac valve disease in acromegaly: an observational, analytical, case-control study. J Clin Endocrinol Metab. 2003;88(7):3196–201.  https://doi.org/10.1210/jc.2002-021099.CrossRefPubMedGoogle Scholar
  75. 75.
    Kahaly G, Olshausen KV, Mohr-Kahaly S, Erbel R, Boor S, Beyer J, et al. Arrhythmia profile in acromegaly. Eur Heart J. 1992;13(1):51–6.CrossRefPubMedGoogle Scholar
  76. 76.
    Maffei P, Martini C, Milanesi A, Corfini A, Mioni R, de Carlo E, et al. Late potentials and ventricular arrhythmias in acromegaly. Int J Cardiol. 2005;104(2):197–203.  https://doi.org/10.1016/j.ijcard.2004.12.010.CrossRefPubMedGoogle Scholar
  77. 77.
    Warszawski L, Kasuki L, Sa R, Dos Santos Silva CM, Volschan I, Gottlieb I, et al. Low frequency of cardniac arrhythmias and lack of structural heart disease in medically-naive acromegaly patients: a prospective study at baseline and after 1 year of somatostatin analogs treatment. Pituitary. 2016;19(6):582–9.  https://doi.org/10.1007/s11102-016-0749-7.CrossRefPubMedGoogle Scholar
  78. 78.
    Unubol M, Eryilmaz U, Guney E, Ture M, Akgullu C. QT dispersion in patients with acromegaly. Endocrine. 2013;43(2):419–23.  https://doi.org/10.1007/s12020-012-9828-3.CrossRefPubMedGoogle Scholar
  79. 79.
    Fatti LM, Scacchi M, Lavezzi E, Pecori Giraldi F, De Martin M, Toja P, et al. Effects of treatment with somatostatin analogues on QT interval duration in acromegalic patients. Clin Endocrinol. 2006;65(5):626–30.  https://doi.org/10.1111/j.1365-2265.2006.02639.x.CrossRefGoogle Scholar
  80. 80.
    Orosz A, Csajbok E, Czekus C, Gavaller H, Magony S, Valkusz Z, et al. Increased short-term beat-to-beat variability of QT interval in patients with acromegaly. PLoS One. 2015;10(4):e0125639.  https://doi.org/10.1371/journal.pone.0125639.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Ragonese M, Alibrandi A, Di Bella G, Salamone I, Puglisi S, Cotta OR, et al. Cardiovascular events in acromegaly: distinct role of Agatston and Framingham score in the 5-year prediction. Endocrine. 2014;47(1):206–12.  https://doi.org/10.1007/s12020-013-0115-8.CrossRefPubMedGoogle Scholar
  82. 82.
    Bogazzi F, Battolla L, Spinelli C, Rossi G, Gavioli S, Di Bello V, et al. Risk factors for development of coronary heart disease in patients with acromegaly: a five-year prospective study. J Clin Endocrinol Metab. 2007;92(11):4271–7.  https://doi.org/10.1210/jc.2007-1213.CrossRefPubMedGoogle Scholar
  83. 83.
    Portocarrero-Ortiz LA, Vergara-Lopez A, Vidrio-Velazquez M, Uribe-Diaz AM, Garcia-Dominguez A, Reza-Albarran AA, et al. The Mexican acromegaly registry: clinical and biochemical characteristics at diagnosis and therapeutic outcomes. J Clin Endocrinol Metab. 2016;101(11):3997–4004.  https://doi.org/10.1210/jc.2016-1937.CrossRefPubMedGoogle Scholar
  84. 84.
    Colao A, Pivonello R, Auriemma RS, De Martino MC, Bidlingmaier M, Briganti F, et al. Efficacy of 12-month treatment with the GH receptor antagonist pegvisomant in patients with acromegaly resistant to long-term, high-dose somatostatin analog treatment: effect on IGF-I levels, tumor mass, hypertension and glucose tolerance. Eur J Endocrinol. 2006;154(3):467–77.  https://doi.org/10.1530/eje.1.02112.CrossRefPubMedGoogle Scholar
  85. 85.
    Colao A, Terzolo M, Bondanelli M, Galderisi M, Vitale G, Reimondo G, et al. GH and IGF-I excess control contributes to blood pressure control: results of an observational, retrospective, multicentre study in 105 hypertensive acromegalic patients on hypertensive treatment. Clin Endocrinol. 2008;69(4):613–20.  https://doi.org/10.1111/j.1365-2265.2008.03258.x.CrossRefGoogle Scholar
  86. 86.
    Sardella C, Urbani C, Lombardi M, Nuzzo A, Manetti L, Lupi I, et al. The beneficial effect of acromegaly control on blood pressure values in normotensive patients. Clin Endocrinol. 2014;81(4):573–81.  https://doi.org/10.1111/cen.12455.CrossRefGoogle Scholar
  87. 87.
    Ho KY, Weissberger AJ. The antinatriuretic action of biosynthetic human growth hormone in man involves activation of the renin-angiotensin system. Metabolism. 1990;39(2):133–7.CrossRefPubMedGoogle Scholar
  88. 88.
    Muniyappa R, Walsh MF, Rangi JS, Zayas RM, Standley PR, Ram JL, et al. Insulin like growth factor 1 increases vascular smooth muscle nitric oxide production. Life Sci. 1997;61(9):925–31.CrossRefPubMedGoogle Scholar
  89. 89.
    Tsukahara H, Gordienko DV, Tonshoff B, Gelato MC, Goligorsky MS. Direct demonstration of insulin-like growth factor-I-induced nitric oxide production by endothelial cells. Kidney Int. 1994;45(2):598–604.CrossRefPubMedGoogle Scholar
  90. 90.
    Berg C, Petersenn S, Lahner H, Herrmann BL, Buchfelder M, Droste M, et al. Cardiovascular risk factors in patients with uncontrolled and long-term acromegaly: comparison with matched data from the general population and the effect of disease control. J Clin Endocrinol Metab. 2010;95(8):3648–56.  https://doi.org/10.1210/jc.2009-2570.CrossRefPubMedGoogle Scholar
  91. 91.
    Puder JJ, Nilavar S, Post KD, Freda PU. Relationship between disease-related morbidity and biochemical markers of activity in patients with acromegaly. J Clin Endocrinol Metab. 2005;90(4):1972–8.  https://doi.org/10.1210/jc.2004-2009.CrossRefPubMedGoogle Scholar
  92. 92.
    Colao A. Improvement of cardiac parameters in patients with acromegaly treated with medical therapies. Pituitary. 2012;15(1):50–8.  https://doi.org/10.1007/s11102-011-0318-z.CrossRefPubMedGoogle Scholar
  93. 93.
    Singh V, Brendel MD, Zacharias S, Mergler S, Jahr H, Wiedenmann B, et al. Characterization of somatostatin receptor subtype-specific regulation of insulin and glucagon secretion: an in vitro study on isolated human pancreatic islets. J Clin Endocrinol Metab. 2007;92(2):673–80.  https://doi.org/10.1210/jc.2006-1578.CrossRefPubMedGoogle Scholar
  94. 94.
    Giustina A, Ambrosio MR, Beck Peccoz P, Bogazzi F, Cannavo S, De Marinis L, et al. Use of Pegvisomant in acromegaly. An Italian Society of Endocrinology guideline. J Endocrinol Investig. 2014;37(10):1017–30.  https://doi.org/10.1007/s40618-014-0146-x.CrossRefGoogle Scholar
  95. 95.
    Samson SL. Management of Hyperglycemia in patients with acromegaly treated with Pasireotide LAR. Drugs. 2016;76(13):1235–43.  https://doi.org/10.1007/s40265-016-0615-y.CrossRefPubMedGoogle Scholar
  96. 96.
    Mazziotti G, Floriani I, Bonadonna S, Torri V, Chanson P, Giustina A. Effects of somatostatin analogs on glucose homeostasis: a metaanalysis of acromegaly studies. J Clin Endocrinol Metab. 2009;94(5):1500–8.  https://doi.org/10.1210/jc.2008-2332.CrossRefPubMedGoogle Scholar
  97. 97.
    Cozzolino A, Feola T, Simonelli I, Puliani G, Pozza C, Giannetta E, et al. Somatostatin analogs and glucose metabolism in acromegaly: a meta-analysis of prospective interventional studies. J Clin Endocrinol Metab. 2018;103:2089–99.  https://doi.org/10.1210/jc.2017-02566.CrossRefGoogle Scholar
  98. 98.
    Barkan AL, Burman P, Clemmons DR, Drake WM, Gagel RF, Harris PE, et al. Glucose homeostasis and safety in patients with acromegaly converted from long-acting octreotide to pegvisomant. J Clin Endocrinol Metab. 2005;90(10):5684–91.  https://doi.org/10.1210/jc.2005-0331.CrossRefPubMedGoogle Scholar
  99. 99.
    Jonas C, Maiter D, Alexopoulou O. Evolution of glucose tolerance after treatment of acromegaly: a study in 57 patients. Horm Metab Res. 2016;48(5):299–305.  https://doi.org/10.1055/s-0035-1569277.CrossRefPubMedGoogle Scholar
  100. 100.
    Ben-Shlomo A, Sheppard MC, Stephens JM, Pulgar S, Melmed S. Clinical, quality of life, and economic value of acromegaly disease control. Pituitary. 2011;14(3):284–94.  https://doi.org/10.1007/s11102-011-0310-7.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Colao A, Marzullo P, Vallone G, Marino V, Annecchino M, Ferone D, et al. Reversibility of joint thickening in acromegalic patients: an ultrasonography study. J Clin Endocrinol Metab. 1998;83(6):2121–5.  https://doi.org/10.1210/jcem.83.6.4865.CrossRefPubMedGoogle Scholar
  102. 102.
    Colao A, Marzullo P, Vallone G, Giaccio A, Ferone D, Rossi E, et al. Ultrasonographic evidence of joint thickening reversibility in acromegalic patients treated with lanreotide for 12 months. Clin Endocrinol. 1999;51(5):611–8.CrossRefGoogle Scholar
  103. 103.
    Colao A, Cannavo S, Marzullo P, Pivonello R, Squadrito S, Vallone G, et al. Twelve months of treatment with octreotide-LAR reduces joint thickness in acromegaly. Eur J Endocrinol. 2003;148(1):31–8.CrossRefPubMedGoogle Scholar
  104. 104.
    Claessen KM, Ramautar SR, Pereira AM, Romijn JA, Kroon HM, Kloppenburg M, et al. Increased clinical symptoms of acromegalic arthropathy in patients with long-term disease control: a prospective follow-up study. Pituitary. 2014;17(1):44–52.  https://doi.org/10.1007/s11102-013-0464-6.CrossRefPubMedGoogle Scholar
  105. 105.
    Claessen KM, Ramautar SR, Pereira AM, Smit JW, Roelfsema F, Romijn JA, et al. Progression of acromegalic arthropathy despite long-term biochemical control: a prospective, radiological study. Eur J Endocrinol. 2012;167(2):235–44.  https://doi.org/10.1530/EJE-12-0147.CrossRefPubMedGoogle Scholar
  106. 106.
    Claessen KM, Mazziotti G, Biermasz NR, Giustina A. Bone and joint disorders in acromegaly. Neuroendocrinology. 2016;103(1):86–95.  https://doi.org/10.1159/000375450.CrossRefPubMedGoogle Scholar
  107. 107.
    Mazziotti G, Biagioli E, Maffezzoni F, Spinello M, Serra V, Maroldi R, et al. Bone turnover, bone mineral density, and fracture risk in acromegaly: a meta-analysis. J Clin Endocrinol Metab. 2015;100(2):384–94.  https://doi.org/10.1210/jc.2014-2937.CrossRefPubMedGoogle Scholar
  108. 108.
    Mazziotti G, Frara S, Giustina A. Pituitary diseases and bone. Endocr Rev. 2018;39(4):440–88.  https://doi.org/10.1210/er.2018-00005.CrossRefPubMedGoogle Scholar
  109. 109.
    Bonadonna S, Mazziotti G, Nuzzo M, Bianchi A, Fusco A, De Marinis L, et al. Increased prevalence of radiological spinal deformities in active acromegaly: a cross-sectional study in postmenopausal women. J Bone Miner Res. 2005;20(10):1837–44.  https://doi.org/10.1359/JBMR.050603.CrossRefPubMedGoogle Scholar
  110. 110.
    Giustina A, Mazziotti G, Canalis E. Growth hormone, insulin-like growth factors, and the skeleton. Endocr Rev. 2008;29(5):535–59.  https://doi.org/10.1210/er.2007-0036.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Godang K, Olarescu NC, Bollerslev J, Heck A. Treatment of acromegaly increases BMD but reduces trabecular bone score: a longitudinal study. Eur J Endocrinol. 2016;175(2):155–64.  https://doi.org/10.1530/EJE-16-0340.CrossRefPubMedGoogle Scholar
  112. 112.
    Tagliafico A, Resmini E, Nizzo R, Bianchi F, Minuto F, Ferone D, et al. Ultrasound measurement of median and ulnar nerve cross-sectional area in acromegaly. J Clin Endocrinol Metab. 2008;93(3):905–9.  https://doi.org/10.1210/jc.2007-1719.CrossRefPubMedGoogle Scholar
  113. 113.
    Resmini E, Tagliafico A, Nizzo R, Bianchi F, Minuto F, Derchi L, et al. Ultrasound of peripheral nerves in acromegaly: changes at 1-year follow-up. Clin Endocrinol. 2009;71(2):220–5.  https://doi.org/10.1111/j.1365-2265.2008.03468.x.CrossRefGoogle Scholar
  114. 114.
    Weiss V, Sonka K, Pretl M, Dostalova S, Klozar J, Rambousek P, et al. Prevalence of the sleep apnea syndrome in acromegaly population. J Endocrinol Investig. 2000;23(8):515–9.  https://doi.org/10.1007/BF03343767.CrossRefGoogle Scholar
  115. 115.
    Garcia-Rio F, Pino JM, Diez JJ, Ruiz A, Villasante C, Villamor J. Reduction of lung distensibility in acromegaly after suppression of growth hormone hypersecretion. Am J Respir Crit Care Med. 2001;164(5):852–7.  https://doi.org/10.1164/ajrccm.164.5.2005059.CrossRefPubMedGoogle Scholar
  116. 116.
    Davi MV, Dalle Carbonare L, Giustina A, Ferrari M, Frigo A, Lo Cascio V, et al. Sleep apnoea syndrome is highly prevalent in acromegaly and only partially reversible after biochemical control of the disease. Eur J Endocrinol. 2008;159(5):533–40.  https://doi.org/10.1530/EJE-08-0442.CrossRefPubMedGoogle Scholar
  117. 117.
    Akkoyunlu ME, Ilhan MM, Bayram M, Tasan E, Yakar F, Ozcelik HK, et al. Does hormonal control obviate positive airway pressure therapy in acromegaly with sleep-disordered breathing? Respir Med. 2013;107(11):1803–9.  https://doi.org/10.1016/j.rmed.2013.08.043.CrossRefPubMedGoogle Scholar
  118. 118.
    Hua SC, Yan YH, Chang TC. Associations of remission status and lanreotide treatment with quality of life in patients with treated acromegaly. Eur J Endocrinol. 2006;155(6):831–7.  https://doi.org/10.1530/eje.1.02292.CrossRefPubMedGoogle Scholar
  119. 119.
    Matta MP, Couture E, Cazals L, Vezzosi D, Bennet A, Caron P. Impaired quality of life of patients with acromegaly: control of GH/IGF-I excess improves psychological subscale appearance. Eur J Endocrinol. 2008;158(3):305–10.  https://doi.org/10.1530/EJE-07-0697.CrossRefPubMedGoogle Scholar
  120. 120.
    T'Sjoen G, Bex M, Maiter D, Velkeniers B, Abs R. Health-related quality of life in acromegalic subjects: data from AcroBel, the Belgian registry on acromegaly. Eur J Endocrinol. 2007;157(4):411–7.  https://doi.org/10.1530/EJE-07-0356.CrossRefPubMedGoogle Scholar
  121. 121.
    Kyriakakis N, Lynch J, Gilbey SG, Webb SM, Murray RD. Impaired quality of life in patients with treated acromegaly despite long-term biochemically stable disease: results from a 5-years prospective study. Clin Endocrinol. 2017;86(6):806–15.  https://doi.org/10.1111/cen.13331.CrossRefGoogle Scholar
  122. 122.
    Neggers SJ, van Aken MO, de Herder WW, Feelders RA, Janssen JA, Badia X, et al. Quality of life in acromegalic patients during long-term somatostatin analog treatment with and without pegvisomant. J Clin Endocrinol Metab. 2008;93(10):3853–9.  https://doi.org/10.1210/jc.2008-0669.CrossRefPubMedGoogle Scholar
  123. 123.
    Paisley AN, Rowles SV, Roberts ME, Webb SM, Badia X, Prieto L, et al. Treatment of acromegaly improves quality of life, measured by AcroQol. Clin Endocrinol. 2007;67(3):358–62.  https://doi.org/10.1111/j.1365-2265.2007.02891.x.CrossRefGoogle Scholar
  124. 124.
    Trepp R, Everts R, Stettler C, Fischli S, Allemann S, Webb SM, et al. Assessment of quality of life in patients with uncontrolled vs. controlled acromegaly using the Acromegaly Quality of Life Questionnaire (AcroQoL). Clin Endocrinol (Oxf). 2005;63(1):103–10.  https://doi.org/10.1111/j.1365-2265.2005.02307.x.CrossRefGoogle Scholar
  125. 125.
    Vandeva S, Yaneva M, Natchev E, Elenkova A, Kalinov K, Zacharieva S. Disease control and treatment modalities have impact on quality of life in acromegaly evaluated by acromegaly quality of life (AcroQoL) questionnaire. Endocrine. 2015;49(3):774–82.  https://doi.org/10.1007/s12020-014-0521-6.CrossRefPubMedGoogle Scholar
  126. 126.
    Webb SM, Crespo I, Santos A, Resmini E, Aulinas A, Valassi E. MANAGEMENT OF ENDOCRINE DISEASE: quality of life tools for the management of pituitary disease. Eur J Endocrinol. 2017;177(1):R13–26.  https://doi.org/10.1530/EJE-17-0041.CrossRefPubMedGoogle Scholar
  127. 127.
    Imran SA, Tiemensma J, Kaiser SM, Vallis M, Doucette S, Abidi E, et al. Morphometric changes correlate with poor psychological outcomes in patients with acromegaly. Eur J Endocrinol. 2016;174(1):41–50.  https://doi.org/10.1530/EJE-15-0888.CrossRefPubMedGoogle Scholar
  128. 128.
    Biermasz NR, Pereira AM, Smit JW, Romijn JA, Roelfsema F. Morbidity after long-term remission for acromegaly: persisting joint-related complaints cause reduced quality of life. J Clin Endocrinol Metab. 2005;90(5):2731–9.  https://doi.org/10.1210/jc.2004-2297.CrossRefPubMedGoogle Scholar
  129. 129.
    Geraedts VJ, Dimopoulou C, Auer M, Schopohl J, Stalla GK, Sievers C. Health Outcomes in Acromegaly: Depression and Anxiety are Promising Targets for Improving Reduced Quality of Life. Front Endocrinol (Lausanne). 2014;5:229.  https://doi.org/10.3389/fendo.2014.00229.
  130. 130.
    Tiemensma J, Pereira AM, Romijn JA, Broadbent E, Biermasz NR, Kaptein AA. Persistent negative illness perceptions despite long-term biochemical control of acromegaly: novel application of the drawing test. Eur J Endocrinol. 2015;172(5):583–93.  https://doi.org/10.1530/EJE-14-0996.CrossRefPubMedGoogle Scholar
  131. 131.
    Tiemensma J, Kaptein AA, Pereira AM, Smit JW, Romijn JA, Biermasz NR. Affected illness perceptions and the association with impaired quality of life in patients with long-term remission of acromegaly. J Clin Endocrinol Metab. 2011;96(11):3550–8.  https://doi.org/10.1210/jc.2011-1645.CrossRefPubMedGoogle Scholar
  132. 132.
    Murray RD, Kim K, Ren SG, Chelly M, Umehara Y, Melmed S. Central and peripheral actions of somatostatin on the growth hormone-IGF-I axis. J Clin Invest. 2004;114(3):349–56.  https://doi.org/10.1172/JCI19933.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Pokrajac A, Frystyk J, Flyvbjerg A, Trainer PJ. Pituitary-independent effect of octreotide on IGF1 generation. Eur J Endocrinol. 2009;160(4):543–8.  https://doi.org/10.1530/EJE-08-0822.CrossRefPubMedGoogle Scholar
  134. 134.
    Neggers SJ, Kopchick JJ, Jorgensen JO, van der Lely AJ. Hypothesis: extra-hepatic acromegaly: a new paradigm? Eur J Endocrinol. 2011;164(1):11–6.  https://doi.org/10.1530/EJE-10-0969.CrossRefPubMedGoogle Scholar
  135. 135.
    Ghigo E, Biller BM, Colao A, Kourides IA, Rajicic N, Hutson RK et al. Comparison of pegvisomant and long-acting octreotide in patients with acromegaly naive to radiation and medical therapy. J Endocrinol Invest. 2009;32(11):924–933.  https://doi.org/10.3275/6723 10.1007/BF03345774.
  136. 136.
    Kepicoglu H, Hatipoglu E, Bulut I, Darici E, Hizli N, Kadioglu P. Impact of treatment satisfaction on quality of life of patients with acromegaly. Pituitary. 2014;17(6):557–63.  https://doi.org/10.1007/s11102-013-0544-7.CrossRefPubMedGoogle Scholar
  137. 137.
    van der Lely AJ, Bernabeu I, Cap J, Caron P, Colao A, Marek J, et al. Coadministration of lanreotide autogel and pegvisomant normalizes IGF1 levels and is well tolerated in patients with acromegaly partially controlled by somatostatin analogs alone. Eur J Endocrinol. 2011;164(3):325–33.  https://doi.org/10.1530/EJE-10-0867.CrossRefPubMedGoogle Scholar
  138. 138.
    Madsen M, Poulsen PL, Orskov H, Moller N, Jorgensen JO. Cotreatment with pegvisomant and a somatostatin analog (SA) in SA-responsive acromegalic patients. J Clin Endocrinol Metab. 2011;96(8):2405–13.  https://doi.org/10.1210/jc.2011-0654.CrossRefPubMedGoogle Scholar
  139. 139.
    Jorgensen JO, Feldt-Rasmussen U, Frystyk J, Chen JW, Kristensen LO, Hagen C, et al. Cotreatment of acromegaly with a somatostatin analog and a growth hormone receptor antagonist. J Clin Endocrinol Metab. 2005;90(10):5627–31.  https://doi.org/10.1210/jc.2005-0531.CrossRefPubMedGoogle Scholar
  140. 140.
    De Marinis L, Bianchi A, Fusco A, Cimino V, Mormando M, Tilaro L, et al. Long-term effects of the combination of pegvisomant with somatostatin analogs (SSA) on glucose homeostasis in non-diabetic patients with active acromegaly partially resistant to SSA. Pituitary. 2007;10(3):227–32.  https://doi.org/10.1007/s11102-007-0037-7.CrossRefPubMedGoogle Scholar
  141. 141.
    Urbani C, Sardella C, Calevro A, Rossi G, Scattina I, Lombardi M, et al. Effects of medical therapies for acromegaly on glucose metabolism. Eur J Endocrinol. 2013;169(1):99–108.  https://doi.org/10.1530/EJE-13-0032.CrossRefPubMedGoogle Scholar
  142. 142.
    Brue T, Castinetti F. The risks of overlooking the diagnosis of secreting pituitary adenomas. Orphanet J Rare Dis. 2016;11(1):135.  https://doi.org/10.1186/s13023-016-0516-x.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Mercado M, Gonzalez B, Vargas G, Ramirez C. de los Monteros AL, Sosa E et al. successful mortality reduction and control of comorbidities in patients with acromegaly followed at a highly specialized multidisciplinary clinic. J Clin Endocrinol Metab. 2014;99(12):4438–46.  https://doi.org/10.1210/jc.2014-2670.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Endocrinology UnitIRCCS Ospedale Policlinico San MartinoGenoaItaly
  2. 2.Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI) and Centre of Excellence for Biomedical Research (CEBR)University of GenoaGenoaItaly
  3. 3.Neurosurgery Unit, Department of Neurosciences (DINOGMI), IRCCS Ospedale Policlinico San MartinoUniversity of GenoaGenoaItaly

Personalised recommendations