Skip to main content

Advertisement

Log in

Functions of stem cells of thyroid glands in health and disease

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Thyroid gland has been implicated in the regulation of many functions using endocrine, paracrine and autocrine signals. Functional thyroid follicular cells derived from stem cells attracted a great interest from researchers as a strategy for thyroid’s regenerative therapy. Thyroid has a very low rate of turnover; however, studies showed that the regenerative ability is enhanced following diseases or thyroidectomy, which promotes the role of stem cell. The objective of this review is to summarize the morphological characterization and the expression of stem cell genes/markers in the thyroid. Also, to highlight the mechanisms of tumor formation in thyroid via its stem cells. The most important thyroid stem cell’s markers are: stem cell antigen 1 (SCA-1), octamer-binding transcription 4 (OCT-4), p63, CD34+ CD45-, paired box gene 8 (PAX-8), thyroid transcription factor 1 (TTF-1), thyroid transcription factor 2 (TTF-2), hematopoietically expressed homeobox protein HHEX, the transcription factor GATA-4, hepatocyte nuclear factor 4-α (HNF-4-α) and homeobox transcription factor Nanog (hNanog). This review highlights the functional characterization describing the mechanisms of stem cell’s differentiation into functional thyroid follicle and proposing mechanisms involving in cancer formation through one of these cell types: fetal cell, thyroblasts, prothyrocytes, certain genetic mutation in the mature thyroid cells or presence of a special type of cells (cancer stem cell) which are responsible for different types of cancer formation. Understanding the mechanisms of thyroid’s stem cell in cancer formation and the expression of the biomarkers in normal and abnormal thyroid status are promising physiological tools in promoting thyroid regeneration and in provision management for thyroid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ozaki T, Matsubara T, Seo D, Okamoto M, Nagashima K, Sasaki Y, et al. Thyroid regeneration: characterization of clear cells after partial thyroidectomy. Endocrinology. 2012;153(5):2514–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sadler, T. W. and Langman, J. M. E. (2010) Langman's medical embryology. 11th ed., international ed. / T.W. Sadler ; original illustrations by Jill Leland ; computer illustrations by Susan L. Sadler-Redmond ; scanning electron micrographs by Kathy Tosney ; ultrasound images by Nancy Cheschier and Hytham Imseis. edn. Philadelphia: Wouters Kluwer/Lippincott Williams & Wilkins.

  3. Johansson E, Andersson L, Örnros J, Carlsson T, Ingeson-Carlsson C, Liang S, et al. Revising the embryonic origin of thyroid C cells in mice and humans. Development. 2015;142(20):3519–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nilsson M, Williams D. On the origin of cells and derivation of thyroid Cancer: C cell story revisited. Eur Thyroid J. 2016;5(2):79–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Salvatore D. Deiodinases and stem cells: an intimate relationship. J Endocrinol Investig. 2018;41(1):59–66.

    Article  CAS  Google Scholar 

  6. Khanlarkhani N, Baazm M, Mohammadzadeh F, Najafi A, Mehdinejadiani S, Sobhani A. Multipotent stem cell and reproduction. J Stem Cells. 2016;11(4):219–29.

    CAS  PubMed  Google Scholar 

  7. Thomas D, Friedman S, Lin RY. Thyroid stem cells: lessons from normal development and thyroid cancer. Endocr Relat Cancer. 2008;15(1):51–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dumont JE, Lamy F, Roger P, Maenhaut C. Physiological and pathological regulation of thyroid cell proliferation and differentiation by thyrotropin and other factors. Physiol Rev. 1992;72(3):667–97.

    Article  CAS  PubMed  Google Scholar 

  9. Johansen R, Gardner RE, Galante M, Marchi FF, Ledwich TW, SOLEY MH, et al. An experimental study of thyroid regeneration following subtotal thyroidectomy. Surg Gynecol Obstet. 1951;93(3):303–9.

    CAS  PubMed  Google Scholar 

  10. Hoshi N, Kusakabe T, Taylor BJ, Kimura S. Side population cells in the mouse thyroid exhibit stem/progenitor cell-like characteristics. Endocrinology. 2007;148(9):4251–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen CY, Kimura H, Landek-Salgado MA, Hagedorn J, Kimura M, Suzuki K, et al. Regenerative potentials of the murine thyroid in experimental autoimmune thyroiditis: role of CD24. Endocrinology. 2009;150(1):492–9.

    Article  CAS  PubMed  Google Scholar 

  12. Lehner B, Sandner B, Marschallinger J, Lehner C, Furtner T, Couillard-Despres S, et al. The dark side of BrdU in neural stem cell biology: detrimental effects on cell cycle, differentiation and survival. Cell Tissue Res. 2011;345(3):313–28.

    Article  CAS  PubMed  Google Scholar 

  13. Okamoto M, Hayase S, Miyakoshi M, Murata T, Kimura S. 'Stem cell antigen 1-positive mesenchymal cells are the origin of follicular cells during thyroid regeneration. PLoS One. 2013;8(11):e80801.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kimura S. Thyroid regeneration: how stem cells play a role? Front Endocrinol (Lausanne). 2014;5:55.

    Google Scholar 

  15. Reis-Filho JS, Preto A, Soares P, Ricardo S, Cameselle-Teijeiro J, Sobrinho-Simões M. p63 expression in solid cell nests of the thyroid: further evidence for a stem cell origin. Mod Pathol. 2003;16(1):43–8.

    Article  PubMed  Google Scholar 

  16. Thomas T, Nowka K, Lan L, Derwahl M. Expression of endoderm stem cell markers: evidence for the presence of adult stem cells in human thyroid glands. Thyroid. 2006;16(6):537–44.

    Article  CAS  PubMed  Google Scholar 

  17. Lan L, Cui D, Nowka K, Derwahl M. Stem cells derived from goiters in adults form spheres in response to intense growth stimulation and require thyrotropin for differentiation into thyrocytes. J Clin Endocrinol Metab. 2007;92(9):3681–8.

    Article  CAS  PubMed  Google Scholar 

  18. Fierabracci A, Puglisi MA, Giuliani L, Mattarocci S, Gallinella-Muzi M. Identification of an adult stem/progenitor cell-like population in the human thyroid. J Endocrinol. 2008;198(3):471–87.

    Article  CAS  PubMed  Google Scholar 

  19. Satterthwaite AB, Burn TC, Le Beau MM, Tenen DG. Structure of the gene encoding CD34, a human hematopoietic stem cell antigen. Genomics. 1992;12(4):788–94.

    Article  CAS  PubMed  Google Scholar 

  20. Korostylev A, Mahaddalkar PU, Keminer O, Hadian K, Schorpp K, Gribbon P, et al. A high-content small molecule screen identifies novel inducers of definitive endoderm. Mol Metab. 2017;6(7):640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lin RY, Kubo A, Keller GM, Davies TF. Committing embryonic stem cells to differentiate into thyrocyte-like cells in vitro. Endocrinology. 2003;144(6):2644–9.

    Article  CAS  PubMed  Google Scholar 

  22. Arufe MC, Lu M, Kubo A, Keller G, Davies TF, Lin RY. Directed differentiation of mouse embryonic stem cells into thyroid follicular cells. Endocrinology. 2006;147(6):3007–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Arufe MC, Lu M, Lin RY. Differentiation of murine embryonic stem cells to thyrocytes requires insulin and insulin-like growth factor-1. Biochem Biophys Res Commun. 2009;381(2):264–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma R, Latif R, Davies TF. Thyrotropin-independent induction of thyroid endoderm from embryonic stem cells by activin a. Endocrinology. 2009;150(4):1970–5.

    Article  CAS  PubMed  Google Scholar 

  25. Jiang N, Hu Y, Liu X, Wu Y, Zhang H, Chen G, et al. Differentiation of E14 mouse embryonic stem cells into thyrocytes in vitro. Thyroid. 2010;20(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  26. Ma R, Latif R, Davies TF. Thyroid follicle formation and thyroglobulin expression in multipotent endodermal stem cells. Thyroid. 2013;23(4):385–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arauchi A, Matsuura K, Shimizu T, Okano T. Functional thyroid follicular cells differentiation from human-induced pluripotent stem cells in suspension culture. Front Endocrinol (Lausanne). 2017;8:103.

    Article  Google Scholar 

  28. Antonica F, Kasprzyk DF, Opitz R, Iacovino M, Liao XH, Dumitrescu AM, et al. Generation of functional thyroid from embryonic stem cells. Nature. 2012;491(7422):66–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Davies TF, Latif R, Minsky NC, Ma R. Clinical review: the emerging cell biology of thyroid stem cells. J Clin Endocrinol Metab. 2011;96(9):2692–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Onyshchenko MI, Panyutin IG, Panyutin IV, Neumann RD. Stimulation of cultured h9 human embryonic stem cells with thyroid stimulating hormone does not lead to formation of thyroid-like cells. Stem Cells Int. 2012;2012:634914.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Hick AC, Delmarcelle AS, Bouquet M, Klotz S, Copetti T, Forez C, et al. Reciprocal epithelial:endothelial paracrine interactions during thyroid development govern follicular organization and C-cells differentiation. Dev Biol. 2013;381(1):227–40.

    Article  CAS  PubMed  Google Scholar 

  32. Murata T, Iwadate M, Takizawa Y, Miyakoshi M, Hayase S, Yang W, et al. An adult mouse thyroid side population cell line that exhibits enriched epithelial-mesenchymal transition. Thyroid. 2017;27(3):460–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hussain F, Iqbal S, Mehmood A, Bazarbashi S, ElHassan T, Chaudhri N. Incidence of thyroid cancer in the Kingdom of Saudi Arabia, 2000-2010. Hematol Oncol Stem Cell Ther. 2013;6(2):58–64.

    Article  PubMed  Google Scholar 

  34. Alghamdi IG, Hussain II, Alghamdi MS, Dohal AA, Almalki SS, El-Sheemy MA. The incidence rate of thyroid cancer among women in Saudi Arabia: an observational descriptive epidemiological analysis of data from Saudi Cancer registry 2001-2008. J Immigr Minor Health. 2015;17(3):638–43.

    Article  PubMed  Google Scholar 

  35. Zane M, Scavo E, Catalano V, Bonanno M, Todaro M, De Maria R, et al. Normal vs cancer thyroid stem cells: the road to transformation. Oncogene. 2016;35(7):805–15.

    Article  CAS  PubMed  Google Scholar 

  36. Gao YJ, Li B, Wu XY, Cui J, Han JK. Thyroid tumor-initiating cells: increasing evidence and opportunities for anticancer therapy (review). Oncol Rep. 2014;31(3):1035–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cicatiello AG, Ambrosio R, Dentice M. Thyroid hormone promotes differentiation of colon cancer stem cells. Mol Cell Endocrinol. 2017;459:84–9.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang P, Zuo H, Ozaki T, Nakagomi N, Kakudo K. Cancer stem cell hypothesis in thyroid cancer. Pathol Int. 2006;56(9):485–9.

    Article  CAS  PubMed  Google Scholar 

  39. Burstein DE, Nagi C, Wang BY, Unger P. 'Immunohistochemical detection of p53 homolog p63 in solid cell nests, papillary thyroid carcinoma, and hashimoto's thyroiditis: a stem cell hypothesis of papillary carcinoma oncogenesis. Hum Pathol. 2004;35(4):465–73.

    Article  CAS  PubMed  Google Scholar 

  40. Takano T, Amino N. Fetal cell carcinogenesis: a new hypothesis for better understanding of thyroid carcinoma. Thyroid. 2005;15(5):432–8.

    Article  PubMed  Google Scholar 

  41. Takano T. Fetal cell carcinogenesis of the thyroid: theory and practice. Semin Cancer Biol. 2007;17(3):233–40.

    Article  CAS  PubMed  Google Scholar 

  42. Lin RY. Thyroid cancer stem cells. Nat Rev Endocrinol. 2011;7(10):609–16.

    Article  CAS  PubMed  Google Scholar 

  43. Benedict M, Costa J. Metastatic papillary thyroid carcinoma with multifocal synchronous transformation to anaplastic thyroid carcinoma. Case Rep Pathol. 2016;2016:4863405.

    PubMed  PubMed Central  Google Scholar 

  44. Papp S, Asa SL. When thyroid carcinoma goes bad: a morphological and molecular analysis. Head Neck Pathol. 2015;9(1):16–23.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mitsutake N, Iwao A, Nagai K, Namba H, Ohtsuru A, Saenko V, et al. Characterization of side population in thyroid cancer cell lines: cancer stem-like cells are enriched partly but not exclusively. Endocrinology. 2007;148(4):1797–803.

    Article  CAS  PubMed  Google Scholar 

  46. Nagayama Y, Shimamura M, Mitsutake N. Cancer stem cells in the thyroid. Front Endocrinol (Lausanne). 2016;7:20.

    Article  Google Scholar 

  47. Mahkamova K, Latar N, Aspinall S, Meeson A. Hypoxia increases thyroid Cancer stem cell-enriched side population. World J Surg. 2018;42(2):350–7.

    Article  CAS  PubMed  Google Scholar 

  48. Yeung BH, Law AY, Wong CK. Evolution and roles of stanniocalcin. Mol Cell Endocrinol. 2012;349(2):272–80.

    Article  CAS  PubMed  Google Scholar 

  49. Lin S, Guo Q, Wen J, Li C, Lin J, Cui X, et al. Survival analyses correlate stanniocalcin 2 overexpression to poor prognosis of nasopharyngeal carcinomas. J Exp Clin Cancer Res. 2014;33:26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hayase S, Sasaki Y, Matsubara T, Seo D, Miyakoshi M, Murata T, et al. Expression of stanniocalcin 1 in thyroid side population cells and thyroid cancer cells. Thyroid. 2015;25(4):425–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Saito Y, Onishi N, Takami H, Seishima R, Inoue H, Hirata Y, et al. Development of a functional thyroid model based on an organoid culture system. Biochem Biophys Res Commun. 2018;497(2):783–9.

    Article  CAS  PubMed  Google Scholar 

  52. Van Vliet G. Development of the thyroid gland: lessons from congenitally hypothyroid mice and men. Clin Genet. 2003;63(6):445–55.

    Article  PubMed  Google Scholar 

  53. Klonisch T, Hoang-Vu C, Hombach-Klonisch S. Thyroid stem cells and cancer. Thyroid. 2009;19(12):1303–15.

    Article  PubMed  Google Scholar 

  54. Davies TF, Ando T, Lin RY, Tomer Y, Latif R. Thyrotropin receptor-associated diseases: from adenomata to graves disease. J Clin Invest. 2005;115(8):1972–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zheng X, Cui D, Xu S, Brabant G, Derwahl M. Doxorubicin fails to eradicate cancer stem cells derived from anaplastic thyroid carcinoma cells: characterization of resistant cells. Int J Oncol. 2010;37(2):307–15.

    CAS  PubMed  Google Scholar 

  56. Friedman S, Lu M, Schultz A, Thomas D, Lin RY. 'CD133+ anaplastic thyroid cancer cells initiate tumors in immunodeficient mice and are regulated by thyrotropin. PLoS One. 2009;4(4):e5395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Mirshahidi S, Simental A, Lee SC, De Andrade Filho PA, Peterson NR, Cao W, et al. Subpopulations of cancer stem cells found in papillary thyroid carcinoma. Exp Cell Res. 2018;362(2):515–24.

    Article  CAS  PubMed  Google Scholar 

  58. Grosse-Gehling P, Fargeas CA, Dittfeld C, Garbe Y, Alison MR, Corbeil D, et al. CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J Pathol. 2013;229(3):355–78.

    Article  CAS  PubMed  Google Scholar 

  59. Canettieri G, Franchi A, Sibilla R, Guzmán E, Centanni M. Functional characterisation of the CRE/TATA box unit of type 2 deiodinase gene promoter in a human choriocarcinoma cell line. J Mol Endocrinol. 2004;33(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  60. Ambrosio R, De Stefano MA, Di Girolamo D, Salvatore D. Thyroid hormone signaling and deiodinase actions in muscle stem/progenitor cells. Mol Cell Endocrinol. 2017;459:79–83.

    Article  CAS  PubMed  Google Scholar 

  61. Visser TJ. Thyroid hormone transport across the placenta. Ann Endocrinol (Paris). 2016;77(6):680–3.

    Article  Google Scholar 

  62. Casula S, Bianco AC. Thyroid hormone deiodinases and cancer. Front Endocrinol (Lausanne). 2012;3:74.

    Article  CAS  Google Scholar 

  63. Shimamura M, Yamamoto K, Kurashige T, Nagayama Y. Intracellular redox status controls spherogenicity, an in vitro cancer stem cell marker, in thyroid cancer cell lines. Exp Cell Res. 2018;370(2):699–707.

    Article  CAS  PubMed  Google Scholar 

  64. Zhao W, Chen S, Hou X, Chen G, Zhao Y. CHK2 promotes Anoikis and is associated with the progression of papillary thyroid Cancer. Cell Physiol Biochem. 2018;45(4):1590–602.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EA designed the idea, EA and KA drafted and revised the manuscript, KA designed the figure while EA drafted the table. Both authors approved the manuscript.

Corresponding author

Correspondence to Ebtesam A. Al-Suhaimi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Author disclosure statement

No competing financial interests exist.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Suhaimi, E.A., Al-Khater, K. Functions of stem cells of thyroid glands in health and disease. Rev Endocr Metab Disord 20, 187–195 (2019). https://doi.org/10.1007/s11154-019-09496-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-019-09496-x

Keywords

Navigation