PET/CT in thyroid nodule and differentiated thyroid cancer patients. The evidence-based state of the art

  • Arnoldo PiccardoEmail author
  • Pierpaolo Trimboli
  • Luca Foppiani
  • Giorgio Treglia
  • Giulia Ferrarazzo
  • Michela Massollo
  • Gianluca Bottoni
  • Luca Giovanella


A more conservative approach to the clinical management of thyroid nodules and differentiated thyroid cancer has recently been proposed by the 2015 ATA guidelines. In this context, fine-needle aspiration biopsy has been reserved for nodules with particular ultrasound features or dimensions that exclude low-risk thyroid lesions. Accordingly, a less aggressive surgical approach (i.e. lobectomy) has been recommended as the first-choice treatment in nodules with indeterminate cytology or in small cytologically confirmed malignant nodules. At the same time, radioactive remnant ablation has been considered only for DTC patients with concrete risks of disease persistence/relapse after thyroidectomy. In addition, further radioactive iodine therapies (RAI) have been proposed only for patients presenting unresectable and iodine-avid structural relapse. In this complex scenario, which requires attention to each clinical aspect of the patient, the introduction of accurate diagnostic tools is highly warranted. PET/CT is a very sensitive and specific diagnostic procedure that can better characterize the risk of thyroid nodules, identify DTC relapse early and predict the response to RAI. Thus, it seems essential to customize a more conservative approach to thyroid nodules and DTC patients. The aim of this review is to report the principal clinical context in which PET/CT has been used and to evaluate the evidence-based support for each diagnostic indication.


PET/CT Diagnosis Thyroid nodules Differentiated thyroid Cancer 



differentiated thyroid cancer






negative predictive value


whole-body scan




anti-thyroglobulin autoantibodies


radioactive iodine therapy


tyrosine kinase inhibitor


68Ga-Prostate-specific membrane antigen


recombinant human TSH


Compliance with ethical standards

Conflict of interest

The authors have nothing to disclose.


  1. 1.
    Treglia G, Bertagna F, Piccardo A, Giovanella L. “131I whole body scan or 18F-FDG PET/CT for patients with elevated Tg and negative ultrasound?. Clinical and Translational Imaging. 01/2013;1:175–183.Google Scholar
  2. 2.
    Luster M, Clarke SE, Dietlein M, Lassmann M, Lind P, Oyen WJ, Tennvall J, Bombardieri E, European Association of Nuclear Medicine (EANM).; European Association of Nuclear Medicine (EANM). Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2008; 35:1941–1959.Google Scholar
  3. 3.
    Burguera B, Gharib H. Thyroid incidentalomas. Prevalence, diagnosis, significance, and management. Endocrinol Metab Clin N Am. 2000;29:187–203.CrossRefGoogle Scholar
  4. 4.
    Iyer NG, Shaha AR, Silver CE, Devaney KO, Rinaldo A, Pellitteri PK, et al. Thyroid incidentalomas: to treat or not to treat. Eur Arch Otorhinolaryngol. 2010;267:1019–26.CrossRefGoogle Scholar
  5. 5.
    Bertagna F, Treglia G, Piccardo A, Giubbini R. Diagnostic and clinical significance of F-18-FDG-PET/CT thyroid incidentalomas. J Clin Endocrinol Metab. 2012;97:3866–75.CrossRefGoogle Scholar
  6. 6.
    Treglia G, Bertagna F, Sadeghi R, Verburg FA, Ceriani L, Giovanella L. Focal thyroid incidental uptake detected by 18F-fluorodeoxyglucose positron emission tomography. Meta-analysis on prevalence and malignancy risk. Nuklearmedizin. 2013;52:130–6.CrossRefGoogle Scholar
  7. 7.
    Shie P, Cardarelli R, Sprawls K, Fulda KG, Taur A. Systematic review: prevalence of malignant incidental thyroid nodules identified on fluorine-18 fluorodeoxyglucose positron emission tomography. Nucl Med Commun. 2009;30:742–8.CrossRefGoogle Scholar
  8. 8.
    Soelberg KK, Bonnema SJ, Brix TH, Hegedus L. Risk of malignancy in thyroid incidentalomas detected by 18F-fluorodeoxyglucose positron emission tomography: a systematic review. Thyroid. 2012;22:918–25.CrossRefGoogle Scholar
  9. 9.
    Qu N, Zhang L, Lu ZW, Wei WJ, Zhang Y, Ji QH. Risk of malignancy in focal thyroid lesions identified by (18)F-fluorodeoxyglucose positron emission tomography or positron emission tomography/computed tomography: evidence from a large series of studies. Tumour Biol. 2014;35:6139–47.CrossRefGoogle Scholar
  10. 10.
    Nayan S, Ramakrishna J, Gupta MK. The proportion of malignancy in incidental thyroid lesions on 18-FDG PET study: a systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2014;151:190–200.CrossRefGoogle Scholar
  11. 11.
    Fadda G, Basolo F, Bondi A, Bussolati G, Crescenzi A, Nappi O, Nardi F, Papotti M, Taddei G, Palombini L, SIAPEC-IAP Italian Consensus Working Group. SIAPEC-IAP Italian consensus working group. Cytological classification of thyroid nodules. Proposal of the SIAPEC-IAP Italian consensus working group. Pathologica 2010 ;102: 405–408.Google Scholar
  12. 12.
    Trimboli P, Condorelli E, Catania A, Sorrenti S. Clinical and ultrasound parameters in the approach to thyroid nodules cytologically classified as indeterminate neoplasm. Diagn Cytopathol. 2009;37:783–5.CrossRefGoogle Scholar
  13. 13.
    Gharib H, Papini E, Paschke R, Duick DS, Valcavi R, Hegedus L, et al. AACE/AME/ETA task force on thyroid nodules, American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European thyroid association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: executive summary of recommendations. Endocr Pract. 2010;16:468–75.CrossRefGoogle Scholar
  14. 14.
    Trimboli P, Treglia G, Sadeghi R, Romanelli F, Giovanella L. Reliability of real-time elastography to diagnose thyroid nodules previously read at FNAC as indeterminate: a meta-analysis. Endocrine. 2015;50:335–43.CrossRefGoogle Scholar
  15. 15.
    Piccardo A, Puntoni M, Treglia G, Foppiani L, Bertagna F, Paparo F, et al. Thyroid nodules with indeterminate cytology: prospective comparison between 18F-FDG-PET/CT, multiparametric neck ultrasonography, 99mTc-MIBI scintigraphy and histology. Eur J Endocrinol. 2016;174:693–703.CrossRefGoogle Scholar
  16. 16.
    Kresnik E, Gallowitsch HJ, Mikosch P, Stettner H, Igerc I, Gomezi, Kumnig G & Lind et al. P. Fluorine-18-fluorodeoxyglucose positron emission tomography in the preoperative assessment of thyroid nodules in an endemic goiter area. Surgery 2003; 133: 294–299.Google Scholar
  17. 17.
    de Geus-Oei LF, Pieters GF, Bonenkamp JJ, Mudde AH, Bleeker-Rovers CP, Corstens FH et al. 18F FDG PET reduces unnecessary hemithyroidectomies for thyroid nodules with inconclusive cytologic results. J Nucl Med 2006; 47: 770–775.Google Scholar
  18. 18.
    Sebastianes FM, Cerci JJ, Zanoni PH, Soares J Jr, Chibana LK, Tomimori EK, et al. Role of 18F fluorodeoxyglucose positron emission tomography in preoperative assessment of cytologically indeterminate thyroid nodules. J Clin Endocrinol Metab. 2007;92:4485–8.CrossRefGoogle Scholar
  19. 19.
    Hales NW, Krempl GA, Medina JE. Is there a role for fluorodeoxyglucose positron emission tomography/computed tomography in cytologically indeterminate thyroid nodules? Am J Otolaryngol. 2008;29:113–8.CrossRefGoogle Scholar
  20. 20.
    Traugott AL, Dehdashti F, Trinkaus K, Cohen M, Fialkowski E, Quayle F, et al. Exclusion of malignancy in thyroid nodules with indeterminate fine-needle aspiration cytology after negative 18F-fluorodeoxyglucose positron emission tomography: interim analysis. World J Surg. 2010;34:1247–53.CrossRefGoogle Scholar
  21. 21.
    Kim JM, Ryu JS, Kim TY, Kim WB, Kwon GY, Gong G, et al. 18F-Fluorodeoxyglucose positron emission tomography does not predict malignancy in thyroid nodules cytologically diagnosed as follicular neoplasm. J Clin Endocrinol Metab. 2007;92:1630–4.CrossRefGoogle Scholar
  22. 22.
    Giovanella L, Suriano S, Maffioli M, Ceriani L. 18FDG-positron emission tomography/computed tomography (PET/CT) scanning in thyroid nodules with nondiagnostic cytology. Clin Endocrinol. 2011;74:644–8.CrossRefGoogle Scholar
  23. 23.
    Wang N, Zhai H, Lu Y. Is fluorine-18fluorodeoxyglucose positron emission tomography useful for the thyroid nodules with indeterminate fine needle aspiration biopsy? A meta-analysis of the literature Journal of Otolaryngology – Head & Neck Surgery. 2013;42:38–45.CrossRefGoogle Scholar
  24. 24.
    Vriens D, Adang EMM, Netea-Maier RT, Smit JWA, de Wilt JHW, Oyen WJG, et al. Cost-effectiveness of FDG-PET/CT for cytologically indeterminate thyroid nodules: a decision analytic approach. J Clin Endocrinol Metab. 2014;99:3263–74.CrossRefGoogle Scholar
  25. 25.
    Vriens D, de Wilt JH, van der Wilt GJ, Netea-Maier RT, Oyen WJ, de Geus-Oei LF. The role of [(18) F]-2-fluoro-2-deoxy-d-glucose-positron emission tomography in thyroid nodules with indeterminate fine-needle aspiration biopsy: systematic review and meta-analysis of the literature. Cancer. 2011;117:4582–94.CrossRefGoogle Scholar
  26. 26.
    Deandreis D, Al Ghuzlan A, Auperin A, Vielh P, Caillou B, Chami L, et al. Is(18)F-fluorodeoxyglucose-PET/CT useful for the presurgical characterization ofthyroid nodules with indeterminate fine needle aspiration cytology? Thyroid. 2012;22:165–72.CrossRefGoogle Scholar
  27. 27.
    Ruhlmann M, Ruhlmann J, Görges R, Herrmann K, Antoch G, Keller HW, et al. 18F-FDG PET/CT may exclude malignancy in sonographically suspicious and scintigraphically hypofunctional thyroid nodules and reduce unnecessary thyroid surgeries. Thyroid. 2017 Aug;10 [Epub ahead of print].Google Scholar
  28. 28.
    Zhang L, Wei WJ, Ji QH, Zhu YX, Wang ZY, Wang Y, et al. Risk factors for neck nodal metastasis in papillary thyroid microcarcinoma: a study of 1066 patients. J Clin Endocrinol Metab. 2012;97:1250–7.CrossRefGoogle Scholar
  29. 29.
    Qu H, Sun GR, Liu Y, He QS. Clinical risk factors for central lymph node metastasis in papillary thyroid carcinoma: a systematic review and meta-analysis. Clin Endocrinol. 2015 Jul;83(1):124–32.CrossRefGoogle Scholar
  30. 30.
    Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013;309:1493–501.CrossRefGoogle Scholar
  31. 31.
    Gandolfi G, Ragazzi M, Frasoldati A, Piana S, Ciarrocchi A, Sancisi V. TERT promoter mutations are associated with distant metastases in papillary thyroid carcinoma. Eur J Endocrinol. 2015;172:403–13.CrossRefGoogle Scholar
  32. 32.
    Vuong HG, Altibi AMA, Duong UNP, Hassell L. Prognostic implication of BRAF and TERT promoter mutation combination in papillary thyroid carcinoma-a meta-analysis. Clin Endocrinol. 2017;87:411–7.CrossRefGoogle Scholar
  33. 33.
    Al-Sarraf N, Gately K, Lucey J, Aziz R, Doddakula K, Wilson L, et al. Clinical implication and prognostic significance of standardised uptake value of primary non-small cell lung cancer on positron emission tomography: analysis of 176 cases. Eur J Cardiothorac Surg. 2008;34:892–7.CrossRefGoogle Scholar
  34. 34.
    Hyun SH, Choi JY, Shim YM, Kim K, Lee SJ, Cho YS, et al. Prognostic value of metabolic tumor volume measured by 18Ffluorodeoxyglucose positron emission tomography in patients with esophageal carcinoma. Ann Surg Oncol. 2010;17:115–22.CrossRefGoogle Scholar
  35. 35.
    Park JC, Lee JH, Cheoi K, Chung H, Yun MJ, Lee H, et al. Predictive value of pretreatment metabolic activity measured by fluorodeoxyglucose positron emission tomography in patients with metastatic advanced gastric cancer: the maximal SUV of the stomach is a prognostic factor. Eur J Nucl Med Mol Imaging. 2012;39:1107–16.CrossRefGoogle Scholar
  36. 36.
    Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91:498–505.CrossRefGoogle Scholar
  37. 37.
    Are C, Hsu JF, Ghossein RA, Schoder H, Shah JP, Shaha AR. Histological aggressiveness of fluorodeoxyglucose positronemission tomogram (FDG-PET)-detected incidental thyroid carcinomas. Ann Surg Oncol. 2007;14:3210–5.CrossRefGoogle Scholar
  38. 38.
    Kim BS, Kim SJ, Kim IJ, Pak K, Kim K. Factors associated with positive F-18 flurodeoxyglucose positron emission tomography before thyroidectomy in patients with papillary thyroid carcinoma. Thyroid. 2012 Jul;22:725–9.CrossRefGoogle Scholar
  39. 39.
    Piccardo A, Puntoni M, Bertagna F, Treglia G, Foppiani L, Arecco F, et al. 18F-FDG uptake as a prognostic variable in primary differentiated thyroid cancer incidentally detected by PET/CT: a multicentre study. Eur J Nucl Med Mol Imaging. 2014;41:1482–91.CrossRefGoogle Scholar
  40. 40.
    Kim SK, So Y, Chung HW, Yoo YB, Park KS, Hwang TS, et al. Analysis of predictability of F-18 fluorodeoxyglucose-PET/CT in the recurrence of papillary thyroid carcinoma. Cancer Med. 2016;5:2756–62.CrossRefGoogle Scholar
  41. 41.
    Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid Cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid Cancer. Thyroid. 2016;26:1–133.CrossRefGoogle Scholar
  42. 42.
    Jeong HS, Baek CH, Son YI, Choi JY, Kim HJ, Ko YH, et al. Integrated 18F-FDG PET/CT for the initial evaluation of cervical node level of patients with papillary thyroid carcinoma: comparison with ultrasound and contrast-enhanced CT. Clin Endocrinol. 2006;65:402–7.CrossRefGoogle Scholar
  43. 43.
    Choi WH, Chung YA, Han EJ, Sohn HS & Lee SH b clinical value of integrated [18F]fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography in the preoperative assessment of papillary thyroid carcinoma: comparison with sonography. J Ultrasound Med 2011;30: 1267–1273.Google Scholar
  44. 44.
    Morita S, Mizoguchi K, Suzuki M, Iizuka K. The accuracy of (18)[F]-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography, ultrasonography, and enhanced computed tomography alone in the preoperative diagnosis of cervical lymph node metastasis in patients with papillary thyroid carcinoma. World J Surg. 2010;34:2564–9.CrossRefGoogle Scholar
  45. 45.
    Rosenbaum-Krumme SJ, Görges R, Bockisch A, Binse I. 18F-FDG-PET/CT changes therapy management in high-risk DTC after first radioiodine therapy. Eur J Nucl Med Mol Imaging. 2012;39:1373–80.CrossRefGoogle Scholar
  46. 46.
    Pryma DA, Schöder M, Gönen H, Robbins RJ, Larson SM, Yeung HWD. Diagnostic accuracy and prognostic value of 18F-FDG PET in Hrthle cell thyroid cancer patients. J Nucl Med. 2006;47(8):1260–6.Google Scholar
  47. 47.
    Lowe VJ, Mullan BP, Hay ID, McIver B, Kasperbauer JL. 18F-FDG PET of patients with Hürthle cell carcinoma. J Nucl Med. 2003;44:1402–6.Google Scholar
  48. 48.
    Plotkin M, Hautzel H, Krause BJ, Schmidt D, Larisch R, Mottaghy FM, et al. Implication of 2- 18fluor-2-deoxyglucose positron emission tomography in the follow-up of Hürthle cell thyroid cancer. Thyroid. 2002;12:155–61.CrossRefGoogle Scholar
  49. 49.
    Treglia G, Annunziata S, Muoio B, Salvatori M, Ceriani L, Giovanella L. The role of fluorine-18-fluorodeoxyglucose positron emission tomography in aggressive histological subtypes of thyroid cancer: an overview. Int J Endocrinol. 2013;2013:856189.CrossRefGoogle Scholar
  50. 50.
    Salvatori M, Biondi B, Rufini V. Imaging in endocrinology: 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography in differentiated thyroid carcinoma: clinical indications and controversies in diagnosis and follow-up. Eur J Endocrinol. 2015;173:115–30.CrossRefGoogle Scholar
  51. 51.
    Dong MJ, Liu ZF, Zhao K, Ruan LX, Wang GL, Yang SY, et al. Value of 18F-FDG-PET/PET-CT in differentiated thyroid carcinoma with radioiodine-negative whole-body scan: a meta-analysis. Nucl Med Commun. 2009;30:639–50.CrossRefGoogle Scholar
  52. 52.
    Miller ME, Chen Q, Elashoff D, Abemayor E, St John M. Positron emission tomography and positron emission tomography-CT evaluation for recurrent papillary thyroid carcinoma: meta-analysis and literature review. Head Neck. 2011:33:562–5.Google Scholar
  53. 53.
    Caetano R, Bastos CR, de Oliveira IA, da Silva RM, Fortes CP, Pepe VL, et al. Accuracy of positron emission tomography and positron emission tomography-CT in the detection of differentiated thyroid cancer recurrence with negative (131) I whole-body scan results: a meta-analysis. Head Neck. 2016;38:316–27.CrossRefGoogle Scholar
  54. 54.
    Haslerud T, Brauckhoff K, Reisæter L, Küfner Lein R, Heinecke A, Varhaug JE, et al. F18-FDG-PET for recurrent differentiated thyroid cancer: a systematic meta-analysis. Acta Radiol. 2016;57:1193–200.CrossRefGoogle Scholar
  55. 55.
    Schütz F, Lautenschläger C, Lorenz K, Haerting J. Positron emission tomography (PET) and PET/CT in thyroid Cancer: a systematic review and meta-analysis. Eur Thyroid J. 2018;7:13–20.CrossRefGoogle Scholar
  56. 56.
    Kim SJ, Lee SW, Pak K, Shim SR. Diagnostic performance of PET in thyroid cancer with elevated anti-Tg ab. Endocr Relat Cancer. 2018;25:643–52.CrossRefGoogle Scholar
  57. 57.
    Ma C, Xie J, Lou Y, Gao Y, Zuo S, Wang X. The role of TSH for 18F-FDG-PET in the diagnosis of recurrence and metastases of differentiated thyroid carcinoma with elevated Tg and negative scan: a meta-analysis. Eur J Endocrinol. 2010;163:177–83.CrossRefGoogle Scholar
  58. 58.
    Abraham T, Schöder H. Thyroid cancer–indications and opportunities for positron emission tomography/computed emission tomography/computed tomography imaging. Semin Nucl Med. 2011;41:121–38.CrossRefGoogle Scholar
  59. 59.
    Giovanella L, Ceriani L, De Palma D, Suriano S, Castellani M, Verburg FA. Relationship between serum Tg and 18FDG-PET/CT in 131I-negative differentiated thyroid carcinomas. Head Neck. 2012;34:626–31.CrossRefGoogle Scholar
  60. 60.
    Giovanella L, Trimboli P, Verburg FA, Treglia G, Piccardo A, Foppiani L, et al. Tg levels and Tg doubling time independently predict a positive (18) FFDG PET/CT scan in patients with biochemical recurrence of differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2013;40:874–80.CrossRefGoogle Scholar
  61. 61.
    Leboulleux S, El Bez I, Borget I, Elleuch M, Deandreis D, Al Ghuzlan A, et al. Postradioiodine treatment whole body scan in the era of fluorodesoxyglucose positron emission tomography for differentiated thyroid carcinoma with elevated serum Tg levels. Thyroid. 2012;22:832–8.CrossRefGoogle Scholar
  62. 62.
    Kim WG, Ryu JS, Kim EY, Lee JH, Baek JH, Yoon JH, et al. Empiric high-dose 131-iodine therapy lacks efficacy for treated papillary thyroid cancer patients with detectable serum Tg, but negative cervical sonography and 18F-Fluorodeoxyglucose positron emission tomography scan. J Clin Endocrinol Metab. 2010;95:1169–73.CrossRefGoogle Scholar
  63. 63.
    Giovanella L. Positron emission tomography/computed tomography in patients treated for differentiated thyroid carcinomas. Expert Rev Endocrinol Metab. 2011;7:35–43.CrossRefGoogle Scholar
  64. 64.
    Schönberger J, Rüschoff J, Grimm D, Marienhagen J, Rümmele P, Meyringer R, et al. Glucose transporter 1 gene expression is related to thyroid neoplasms with an unfavorable prognosis: an immunohistochemical study. Thyroid. 2002;12:747–54.CrossRefGoogle Scholar
  65. 65.
    Treglia G, Giovanella L. Prognostic role of FDG-PET/CT in differentiated thyroid carcinoma: where are we now? J Med Imaging Radiat Oncol. 2015;59:278–80.CrossRefGoogle Scholar
  66. 66.
    Deandreis D, Al Ghuzlan A, Leboulleux S, Lacroix L, Garsi JP, Talbot M, et al. Do histological, immunohistochemical, and metabolic (radioiodine and fluorodeoxyglucose uptakes) patterns of metastatic thyroid cancer correlate with patient outcome? Endocr Relat Cancer. 2011;13(18):159–69.CrossRefGoogle Scholar
  67. 67.
    Vural GU, Akkas BE, Ercakmak N, Basu S, Alavi A. Prognostic significance of FDG PET/CT on the follow-up of patients of differentiated thyroid carcinoma with negative 131I whole-body scan and elevated Tg levels: correlation with clinical and histopathologic characteristics and long-term follow-up data. Clin Nucl Med. 2012;37:953–9.CrossRefGoogle Scholar
  68. 68.
    Marcus C, Antoniou A, Rahmim A, Ladenson P, Subramaniam RM. Fluorodeoxyglucose positron emission tomography/computerized tomography in differentiated thyroid cancer management: importance of clinical justification and value in predicting survival. J Med Imaging Radiat Oncol. 2015;59:281–8.CrossRefGoogle Scholar
  69. 69.
    Bogsrud TV, Hay ID, Karantanis D, Nathan MA, Mullan BP, Wiseman GA, et al. Prognostic value of 18F-fluorodeoxyglucose-positron emission tomography in patients with differentiated thyroid carcinoma and circulating antiTg autoantibodies. Nucl Med Commun. 2011;32:245–51.CrossRefGoogle Scholar
  70. 70.
    Santhanam P, Khthir R, Solnes LB, Ladenson PW. The relationship of BRAF(V600E) mutation status to FDG PET/CT avidity in thyroid cancer: a review and meta-analysis. Endocr Pract. 2018;24:21–6.CrossRefGoogle Scholar
  71. 71.
    Feine U, Lietzenmayer R, Hanke JP, Wöhrle H, Müller-Schauenburg W. 18FDG whole-body PET in differentiated thyroid carcinoma. Flipflop in uptake patterns of 18FDG and 131I. Nuklearmedizin 1995; 34:127–134.Google Scholar
  72. 72.
    Schlumberger M, Brose M, Elisei R, Leboulleux S, Luster M, Pitoia F, et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol. 2014;2:356–8.CrossRefGoogle Scholar
  73. 73.
    Iwano S, Kato K, Ito S, Tsuchiya K, Naganawa S. FDGPET performed concurrently with initial I-131 ablation for differentiated thyroid cancer. Ann Nucl Med. 2012;26:207–13.CrossRefGoogle Scholar
  74. 74.
    Piccardo A, Foppiani L, Morbelli S, Bianchi P, Barbera F, Biscaldi E, et al. Could [18]F-fluorodeoxyglucose PET/CT change the therapeutic management of stage IV thyroid cancer with positive (131) I whole body scan? Q J Nucl Med Mol Imaging. 2011;55:57–65.Google Scholar
  75. 75.
    Van Nostrand D. Radioiodine refractory differentiated thyroid Cancer: time to update the classifications. Thyroid. 2018;28:1083–93.CrossRefGoogle Scholar
  76. 76.
    Haugen BR, Sherman SI. Evolving approaches to patients with advanced differentiated thyroid cancer. Endocr Rev. 2013;34:439–55.CrossRefGoogle Scholar
  77. 77.
    Baudin E, Schlumberger M. New therapeutic approaches for metastatic thyroid carcinoma. Lancet Oncol. 2007;8:148–56.CrossRefGoogle Scholar
  78. 78.
    Carr LL, Mankoff DA, Goulart BH, Eaton KD, Capell PT, Kell EM, et al. Phase II, study of daily sunitinib in FDGPET-positive, iodine-refractory differentiated thyroid cancer and metastatic medullary carcinoma of the thyroid with functional imaging correlation. Clin Cancer Res. 2010;16:5260–8.CrossRefGoogle Scholar
  79. 79.
    Kloos RT, Ringel MD, Knopp MV, Hall NC, King M, Stevens R, et al. Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol. 2009;27:1675–84.CrossRefGoogle Scholar
  80. 80.
    Marotta V, Ramundo V, Camera L, Del Prete M, Fonti R, Esposito R, et al. Sorafenib in advanced iodine-refractory differentiated thyroid cancer: efficacy, safety and exploratory analysis of role of serum Tg and FDG-PET. Clin Endocrinol. 2013;78:760–7.CrossRefGoogle Scholar
  81. 81.
    Leboulleux S, Bastholt L, Krause T, de la Fouchardiere C, Tennvall J, Awada A at al. Vandetanib in locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 2 trial. Lancet Oncol. 2012;13:897–905.Google Scholar
  82. 82.
    Takeuchi S, Shiga T, Hirata K, Taguchi J, Magota K, Ariga S et al. Early prediction of lenvatinib treatment efficacy by using (18)F-FDG PET/CT in patients with unresectable or advanced thyroid carcinoma that is refractory to radioiodine treatment: a protocol for a non-randomized single-arm multicenter observational study. BMJ Open. 2018:30;8:e021001.Google Scholar
  83. 83.
    Schlumberger M, Mancusi F, Baudin E, Pacini F. 131I therapy for elevated thyroglobulin levels. Thyroid. 1997;7:273–6.CrossRefGoogle Scholar
  84. 84.
    Ma C, Xie J, Kuang A. Is empiric 131I therapy justified for patients with positive thyroglobulin and negative 131I whole-body scanning results? J Nucl Med. 2005;46:1164–70.Google Scholar
  85. 85.
    Chao M Management of differentiated thyroid cancer with rising thyroglobulin and negative diagnostic radioiodine whole body scan. Clin Oncol (R Coll Radiol) 2010;22:438–447.Google Scholar
  86. 86.
    Freudenberg LS, Jentzen W, Stahl A, Bockisch A, Rosenbaum-Krumme SJ. Clinical applications of 124I-PET/CT in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2011;38(Suppl 1):S48–56.CrossRefGoogle Scholar
  87. 87.
    Phan HT, Jager PL, Paans AM, Plukker JT, Sturkenboom MG, Sluiter WJ, et al. The diagnostic value of 124I-PET in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35:958–65.CrossRefGoogle Scholar
  88. 88.
    Freudenberg LS, Antoch G, Frilling A, Jentzen W, Rosenbaum SJ, Kühl H, et al. Combined metabolic and morphologic imaging in thyroid carcinoma patients with elevated serum thyroglobulin and negative cervical ultrasonography: role of 124I-PET/CT and FDG-PET. Eur J Nucl Med Mol Imaging. 2008;35:950–7.CrossRefGoogle Scholar
  89. 89.
    Freudenberg LS, Jentzen W, Müller SP, Bockisch A. Disseminated iodine-avid lung metastases in differentiated thyroid cancer: a challenge to 124I PET. Eur J Nucl Med Mol Imaging. 2008;35:502–8.CrossRefGoogle Scholar
  90. 90.
    Kist JW, de Keizer B, van der Vlies M, Brouwers AH, Huysmans DA, van der Zant FM, et al. THYROPET study group; other members of the THYROPET study group are John M.H. de Klerk. 124I PET/CT to predict the outcome of blind 131I treatment in patients with biochemical recurrence of differentiated thyroid Cancer: results of a multicenter diagnostic cohort study (THYROPET). J Nucl Med 2016; 57:701–707.Google Scholar
  91. 91.
    Khorjekar GR, Van Nostrand D, Garcia C, O'Neil J, Moreau S, Atkins FB, et al. Do negative 124I pretherapy positron emission tomography scans in patients with elevated serum Tg levels predict negative 131I posttherapy scans? Thyroid. 2014;24:1394–9.CrossRefGoogle Scholar
  92. 92.
    Capoccetti F, Criscuoli B, Rossi G, Ferretti F, Manni C, Brianzoni E. The effectiveness of 124I PET/CT in patients with differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2009;53:536–45.Google Scholar
  93. 93.
    Ruhlmann M, Jentzen W, Ruhlmann V, Pettinato C, Rossi G, Binse I, et al. High level of agreement between Pretherapeutic 124I PET and Intratherapeutic 131I imaging in detecting iodine-positive thyroid Cancer metastases. J Nucl Med. 2016;57:1339–42.CrossRefGoogle Scholar
  94. 94.
    Van Nostrand D, Khorjekar GR, O'Neil J, Moreau S, Atkins FB, Kharazi P, et al. Recombinant human thyroid-stimulating hormone versus thyroid hormone withdrawal in the identification of metastasis in differentiated thyroid cancer with 131I planar whole-body imaging and 124I PET. J Nucl Med. 2012;53:359–62.CrossRefGoogle Scholar
  95. 95.
    Santhanam P, Taieb D, Solnes L, Marashdeh W, Ladenson PW. Utility of I-124 PET/CT in identifying radioiodine avid lesions in differentiated thyroid cancer: a systematic review and meta-analysis. Clin Endocrinol. 2017;86:645–51.CrossRefGoogle Scholar
  96. 96.
    de Pont C, Halders S, Bucerius J, Mottaghy F, Brans B. 124I PET/CT in the pretherapeutic staging of differentiated thyroid carcinoma: comparison with posttherapy 131I SPECT/CT. Eur J Nucl Med Mol Imaging. 2013;40:693–700.CrossRefGoogle Scholar
  97. 97.
    Gulec SA, Kuker RA, Goryawala M, Fernandez C, Perez R, Khan-Ghany A et al. (124) I PET/CT in Patients with Differentiated Thyroid Cancer: Clinical and Quantitative Image Analysis. Thyroid. 2016;26:441–8.Google Scholar
  98. 98.
    Middendorp M, Selkinski I, Happel C, Kranert WT, Grünwald F. Comparison of positron emission tomography with [(18)F] FDG and [(68)Ga] DOTATOC in recurrent differentiated thyroid cancer: preliminary data. Q J Nucl Med Mol Imaging. 2010;54:76–83.Google Scholar
  99. 99.
    Traub-Weidinger T, Putzer D, von Guggenberg E, Dobrozemsky G, Nilica B, Kendler D, et al. Multiparametric PET imaging in thyroid malignancy characterizing tumour heterogeneity: somatostatin receptors and glucose metabolism. Eur J Nucl Med Mol Imaging. 2015;42:1995–2001.CrossRefGoogle Scholar
  100. 100.
    Kundu P, Lata S, Sharma P, Singh H, Malhotra A, Bal C. Prospective evaluation of (68)Ga-DOTANOC PET-CT in differentiated thyroid cancer patients with raised thyroglobulin and negative (131)I-whole body scan: comparison with (18)F-FDG PET-CT. Eur J Nucl Med Mol Imaging. 2014;41:1354–62.CrossRefGoogle Scholar
  101. 101.
    Binse I, Poeppel TD, Ruhlmann M, Ezziddin S, Görges R, Sabet A, et al. 68Ga-DOTATOC PET/CT in patients with iodine- and 18F-FDG-negative differentiated thyroid carcinoma and elevated serum thyroglobulin. J Nucl Med. 2016;57:1512–7.CrossRefGoogle Scholar
  102. 102.
    Versari A, Sollini M, Frasoldati A, Fraternali A, Filice A, Froio A, et al. Differentiated thyroid cancer: a new perspective with radiolabeled somatostatin analogues for imaging and treatment of patients. Thyroid. 2014;24:715–26.CrossRefGoogle Scholar
  103. 103.
    Outtara A, Ribeiro de Oliveira T, Holz S, Van den Bossche H, Strybol D, Assenmacher C, et al. Incidental detection of occult thyroid carcinoma with 11C-choline PET/CT for high risk prostate cancer. Curr Urol. 2016;10:217–20.CrossRefGoogle Scholar
  104. 104.
    Thanseer NTK, Bhadada SK, Sood A, Parihar AS, Dahiya D, Singh P, et al. Dual pathologies of parathyroid adenoma and papillary thyroid cancer on fluorocholine and fluorodeoxyglucose PET/CT. Nucl Me d Mol Imaging. 2018;52:154–8.CrossRefGoogle Scholar
  105. 105.
    Ciappuccini R, Jeanne C, Bardet S. Incidental focal thyroid uptake on 18F-choline PET/CT: need to rule out thyroid cancer. Endocrine. 2018;62:729–30. Scholar
  106. 106.
    Albano D, Durmo R, Bertagna F, Giubbini R. 18F-choline PET/CT incidental thyroid uptake in patients studied for prostate cancer. Endocrine. 2018 Dec 29. [Epub ahead of print].
  107. 107.
    Bertagna F, Albano D, Giovanella L, Giubbini R, Treglia G. F18-choline/C11-choline PET/CT thyroid incidentalomas. Endocrine. 2019 Jan 12.
  108. 108.
    Wu HB, Wang QS, Wang MF, Li HS. Utility of 11C-choline imaging as a supplement to F-18 FDG PET imaging for detection of thyroid carcinoma. Clin Nucl Med. 2011;36:91–5. Scholar
  109. 109.
    Piccardo A, Massollo M, Bandelloni R, Arlandini A, Foppiani L. Lymph node metastasis from tall-cell thyroid cancer negative on 18F-FDG PET/CT and detected by 18F-choline PET/CT. Clin Nucl Med. 2015;40:e417–9.CrossRefGoogle Scholar
  110. 110.
    Sager S, Vatankulu B, Uslu L, Sönmezoglu K. Incidental detection of follicular thyroid carcinoma in 68Ga-PSMA PET/CT imaging. J Nucl Med Technol. 2016;44:199–200.CrossRefGoogle Scholar
  111. 111.
    Kanthan GL, Drummond J, Schembri GP, Izard MA, Hsiao E. Follicular thyroid adenoma showing avid uptake on 68Ga PSMA-HBED-CC PET/CT. Clin Nucl Med. 2016;4:331–2.CrossRefGoogle Scholar
  112. 112.
    Bychkov A, Vutrapongwatana U, Tepmongkol S, Keelawat S. PSMA expression by microvasculature of thyroid tumors - potential implications for PSMA theranostics. Sci Rep. 2017 Jul 12;7:5202. Scholar
  113. 113.
    Heitkötter B, Steinestel K, Trautmann M, Grünewald I, Barth P, Gevensleben H et al. Neovascular PSMA expression is a common feature in malignant neoplasms of the thyroid. Oncotarget. 2018 4;9:9867-9874. eCollection 2018 Feb 9.
  114. 114.
    Verburg FA, Krohn T, Heinzel A, Mottaghy FM, Behrendt FF. First evidence of PSMA expression in differentiated thyroid cancer using 68GaPSMA-HBED-CC PET/CT. Eur J Nucl Med Mol Imaging. 2015;42:1622–3.CrossRefGoogle Scholar
  115. 115.
    Lütje S, Gomez B, Cohnen J, Umutlu L, Gotthardt M, Poeppel TD, et al. Imaging of prostate-specific membrane antigen expression in metastatic differentiated thyroid Cancer using 68Ga-HBED-CC-PSMA PET/CT. Clin Nucl Med. 2017;42:20–5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Nuclear MedicineGalliera Hospital, E.O. Ospedali GallieraGenoaItaly
  2. 2.Clinic of Nuclear Medicine and Molecular ImagingImaging Institute of Southern SwitzerlandLuganoSwitzerland
  3. 3.Department of Internal MedicineGalliera HospitalGenoaItaly
  4. 4.Health Technology Assessment Unit, General DirectorateEnte Ospedaliero CantonaleBellinzonaSwitzerland
  5. 5.Department of Nuclear Medicine and Molecular ImagingLausanne University HospitalLausanneSwitzerland

Personalised recommendations