Reviews in Endocrine and Metabolic Disorders

, Volume 20, Issue 1, pp 103–114 | Cite as

The roles of FGF21 in atherosclerosis pathogenesis

  • Farzane Shanebandpour Tabari
  • Ansar Karimian
  • Hadi Parsian
  • Vahid Rameshknia
  • Ata Mahmoodpour
  • Maryam Majidinia
  • Mahmood Maniati
  • Bahman YousefiEmail author


FGF21 is a peptide hormone that regulates homeostasis of lipid and glucose as well as energy metabolism. It is mainly expressed and secreted in liver and adipose tissues, and it is expressed in lower amounts in the aorta. Recent clinical and preclinical studies indicate increased serum FGF21 levels in atherosclerosis patients. Also, FGF21 therapy has been reported to reduce the initiation and progression of atherosclerosis in animal models and in vitro studies. Moreover, growing evidence indicates that administration of exogenous FGF21 induces anti-atherosclerotic effects, because of its ability to reduce lipid profile, alleviation of oxidative stress, inflammation, and apoptosis. Therefore, FGF21 can not only be considered as a biomarker for predicting atherosclerosis, but also induce protective effects against atherosclerosis. Besides, serum levels of FGF21 increase in various diseases including in diabetes mellitus, hypertension, and obesity, which may be related to initiating and exacerbating atherosclerosis. On the other hand, FGF21 therapy significantly improves lipid profiles, and reduces vascular inflammation and oxidative stress in atherosclerosis related diseases. Therefore, further prospective studies are needed to clarify whether FGF21 can be used as a prognostic biomarker to identify individuals at future risk of atherosclerosis in these atherosclerosis-associated diseases. In this review, we will discuss the possible mechanism by which FGF21 protects against atherosclerosis.


FGF21 Lipid Atherosclerosis Hypertension Obesity 


Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.


  1. 1.
    Hoefer IE, Steffens S, Ala-Korpela M, Bäck M, Badimon L, Bochaton-Piallat M-L, et al. Novel methodologies for biomarker discovery in atherosclerosis. 2015;36(39):2635–42.Google Scholar
  2. 2.
    Fisher FM, Maratos-Flier E. Understanding the physiology of FGF21. Annu Rev Physiol. 2016;78:223–41.CrossRefPubMedGoogle Scholar
  3. 3.
    Nishimura T, Nakatake Y, Konishi M, Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver1. Biochimica et Biophysica Acta. 2000;1492(1):203–6.Google Scholar
  4. 4.
    Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem. 2011:jbc. M110. 215889.Google Scholar
  5. 5.
    Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol. 2010;24(10):2050–64.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, et al. Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab. 2007;5(6):415–25.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Muise ES, Azzolina B, Kuo DW, El-Sherbeini M, Tan Y, Yuan X, et al. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor γ and altered metabolic states. Mol Pharmacol. 2008;74(2):403–12.CrossRefPubMedGoogle Scholar
  8. 8.
    Beenken A, Mohammadi M. The structural biology of the FGF19 subfamily. Endocrine FGFs and Klothos: Springer; 2012. p. 1–24.Google Scholar
  9. 9.
    Lin Z, Pan X, Wu F, Ye D, Zhang Y, Wang Y, et al. Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding Protein-2 and induction of adiponectin in mice. Circulation. 2015;131:1861–71.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Xiao Y, Liu L, Xu A, Zhou P, Long Z, Tu Y, et al. Serum fibroblast growth factor 21 levels are related to subclinical atherosclerosis in patients with type 2 diabetes. 2015;14(1):72.Google Scholar
  11. 11.
    Zhang X, Hu Y, Zeng H, Li L, Zhao J, Zhao J, et al. Serum fibroblast growth factor 21 levels is associated with lower extremity atherosclerotic disease in Chinese female diabetic patients. Cardiovasc Diabetol. 2015;14(1):32.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yan X, Chen J, Zhang C, Zeng J, Zhou S, Zhang Z, et al. Fibroblast growth factor 21 deletion aggravates diabetes-induced pathogenic changes in the aorta in type 1 diabetic mice. Cardiovasc Diabetol. 2015;14(1):77.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013;18(3):333–40.CrossRefGoogle Scholar
  14. 14.
    Talukdar S, Zhou Y, Li D, Rossulek M, Dong J, Somayaji V, et al. A long-acting FGF21 molecule, PF-05231023, decreases body weight and improves lipid profile in non-human primates and type 2 diabetic subjects. Cell Metab. 2016;23(3):427–40.CrossRefPubMedGoogle Scholar
  15. 15.
    Kharitonenkov A, Wroblewski VJ, Koester A, Chen Y-F, Clutinger CK, Tigno XT, et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology. 2007;148(2):774–81.CrossRefPubMedGoogle Scholar
  16. 16.
    Lee CH, Woo YC, Chow WS, Cheung CYY, Fong CHY, Yuen MMA, et al. Role of circulating fibroblast growth factor 21 measurement in primary prevention of coronary heart disease among Chinese patients with type 2 diabetes mellitus. J Am Heart Assoc. 2017;6(6):e005344.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou Z-G, Liu F, et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes. 2008;57:1246–53.CrossRefPubMedGoogle Scholar
  18. 18.
    Chou R-H, Huang P-H, Hsu C-Y, Chang C-C, Leu H-B, Huang C-C, et al. Circulating fibroblast growth factor 21 is associated with diastolic dysfunction in heart failure patients with preserved ejection fraction. Sci Rep. 2016;6:33953.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li H, Horke S, Förstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis. 2014;237(1):208–19.CrossRefPubMedGoogle Scholar
  20. 20.
    Husain K, Hernandez W, Ansari RA, Ferder L. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World J Biol Chem. 2015;6(3):209–17.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hamza SM, Dyck JR. Systemic and renal oxidative stress in the pathogenesis of hypertension: modulation of long-term control of arterial blood pressure by resveratrol. Front Physiol. 2014;5:292.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Rahman T, Hosen I, Islam MT, Shekhar HU. Oxidative stress and human health. Adv Biosci Biotechnol. 2012;3(07):997–1019.CrossRefGoogle Scholar
  23. 23.
    Gómez-Sámano MÁ, Grajales-Gómez M, Zuarth-Vázquez JM, Navarro-Flores MF, Martínez-Saavedra M, Juárez-León ÓA, et al. Fibroblast growth factor 21 and its novel association with oxidative stress. Redox Biol. 2017;11:335–41.CrossRefPubMedGoogle Scholar
  24. 24.
    Salminen A, Kaarniranta K, Kauppinen A. Integrated stress response stimulates FGF21 expression: systemic enhancer of longevity. Cell Signal. 2017;40:10–21.CrossRefPubMedGoogle Scholar
  25. 25.
    Lü Y, Liu J-H, Zhang L-K, Du J, Zeng X-J, Hao G, et al. Fibroblast growth factor 21 as a possible endogenous factor inhibits apoptosis in cardiac endothelial cells. Chin Med J. 2010;123(23):3417–21.PubMedGoogle Scholar
  26. 26.
    Zhu S, Ma L, Wu Y, Ye X, Zhang T, Zhang Q, et al. FGF21 treatment ameliorates alcoholic fatty liver through activation of AMPK-SIRT1 pathway. Acta Biochim Biophys Sin. 2014;46(12):1041–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Zhu W, Wang C, Liu L, Li Y, Li X, Cai J, et al. Effects of fibroblast growth factor 21 on cell damage in vitro and atherosclerosis in vivo. Can J Physiol Pharmacol. 2014;92(11):927–35.CrossRefPubMedGoogle Scholar
  28. 28.
    Pober JS, Min W, Bradley JR. Mechanisms of endothelial dysfunction, injury, and death. Annu Rev Pathol. 2009;4:71–95.Google Scholar
  29. 29.
    Jiang S, Yan C, Fang Q-C, Zhang Y-L, Liu Y, Deng Y-P, et al. Fibroblast growth factor 21 is regulated by the IRE1α-XBP1 branch of the unfolded protein response and counteracts ER stress-induced hepatic steatosis. J Biol Chem. 2014:jbc. M114. 565960.Google Scholar
  30. 30.
    Wan X-s, Lu X-h, Xiao Y-c, Lin Y, Zhu H, Ding T, et al. ATF4-and CHOP-dependent induction of FGF21 through endoplasmic reticulum stress. BioMed research international. 2014;2014.Google Scholar
  31. 31.
    Dong K, Li H, Zhang M, Jiang S, Chen S, Zhou J, et al. Endoplasmic reticulum stress induces up-regulation of hepatic β-klotho expression through ATF4 signaling pathway. Biochem Biophys Res Commun. 2015;459(2):300–5.CrossRefPubMedGoogle Scholar
  32. 32.
    Schaap FG, Kremer AE, Lamers WH, Jansen PL, Gaemers IC. Fibroblast growth factor 21 is induced by endoplasmic reticulum stress. Biochimie. 2013;95(4):692–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Malhotra JD, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal. 2007;9(12):2277–94.CrossRefPubMedGoogle Scholar
  34. 34.
    Teske BF, Wek SA, Bunpo P, Cundiff JK, McClintick JN, Anthony TG, et al. The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol Biol Cell. 2011;22(22):4390–405.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011;13(3):184–90.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Regulation H. The Unfolded Protein Response: From Stress Pathway to. Science. 2011;1209038(1081):334.Google Scholar
  37. 37.
    Wang X-M, Song S-S, Xiao H, Gao P, Li X-J, Si L-Y. Fibroblast growth factor 21 protects against high glucose induced cellular damage and dysfunction of endothelial nitric-oxide synthase in endothelial cells. Cell Physiol Biochem. 2014;34(3):658–71.CrossRefPubMedGoogle Scholar
  38. 38.
    Jia H, Cheng J, Zhou Q, Peng J, Pan Y, Han H. Fibroblast growth factor 21 attenuates inflammation and oxidative stress in atherosclerotic rat via enhancing the Nrf1-ARE signaling pathway. Int J Clin Exp Pathol. 2018;11(3):1308–17.Google Scholar
  39. 39.
    Juan S, Lee T, Tseng K, Liou J, Shyue S, Wu K, et al. Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation. 2001;104(13):1519–25.CrossRefPubMedGoogle Scholar
  40. 40.
    Yet S-F, Layne MD, Liu X, Chen Y-H, Ith B, Sibinga NE, et al. Absence of heme oxygenase-1 exacerbates atherosclerotic lesion formation and vascular remodeling. FASEB J. 2003;17(12):1759–61.CrossRefPubMedGoogle Scholar
  41. 41.
    Biswas SK, Newby DE, Rahman I, Megson IL. Depressed glutathione synthesis precedes oxidative stress and atherogenesis in Apo-E−/− mice. Biochem Biophys Res Commun. 2005;338(3):1368–73.CrossRefPubMedGoogle Scholar
  42. 42.
    Kim S-Y, Jeoung NH, Oh CJ, Choi Y-K, Lee H-J, Kim H-J, et al. Activation of NAD (P) H: quinone oxidoreductase 1 prevents arterial restenosis by suppressing vascular smooth muscle cell proliferation. Circ Res. 2009;104(7):842–50.CrossRefPubMedGoogle Scholar
  43. 43.
    Fukai T, Ushio-Fukai M. Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal. 2011;15(6):1583–606.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhao Y, Vanhoutte PM, Leung SW. Vascular nitric oxide: Beyond eNOS. J Pharmacol Sci. 2015;129(2):83–94.CrossRefPubMedGoogle Scholar
  45. 45.
    Kolluru GK, Bir SC, Kevil CG. Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. J Vasc Med. 2012;2012:1–30.Google Scholar
  46. 46.
    Jahanban-Esfahlan R, de la Guardia M, Ahmadi D, Yousefi B. Modulating tumor hypoxia by nanomedicine for effective cancer therapy. J Cell Physiol. 2018;233(3):2019–2031.Google Scholar
  47. 47.
    Förstermann U. Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat Rev Cardiol. 2008;5(6):338.CrossRefGoogle Scholar
  48. 48.
    Landmesser U, Dikalov S, Price SR, McCann L, Fukai T, Holland SM, et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J Clin Invest. 2003;111(8):1201–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Chen D-D, Chen L-Y, Xie J-B, Shu C, Yang T, Zhou S, et al. Tetrahydrobiopterin regulation of eNOS redox function. Curr Pharm Des. 2014;20(22):3554–62.CrossRefPubMedGoogle Scholar
  50. 50.
    McCabe TJ, Fulton D, Roman LJ, Sessa WC. Enhanced electron flux and reduced calmodulin dissociation may explain “calcium-independent” eNOS activation by phosphorylation. J Biol Chem. 2000;275(9):6123–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Huang PL. eNOS, metabolic syndrome and cardiovascular disease. Trends Endocrinol Metab. 2009;20(6):295–302.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Wu X, Qi Y-F, Chang J-R, Lu W-W, Zhang J-S, Wang S-P, et al. Possible role of fibroblast growth factor 21 on atherosclerosis via amelioration of endoplasmic reticulum stress-mediated apoptosis in apoE−/− mice. Heart Vessel. 2015;30(5):657–68.CrossRefGoogle Scholar
  53. 53.
    Li Y, Guo Y, Tang J, Jiang J, Chen Z. New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim Biophys Sin. 2014;46(8):629–40.CrossRefPubMedGoogle Scholar
  54. 54.
    Tsukano H, Gotoh T, Endo M, Miyata K, Tazume H, Kadomatsu T, et al. The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques. Arterioscler Thromb Vasc Biol. 2010;30(10):1925–32.CrossRefPubMedGoogle Scholar
  55. 55.
    Thorp E, Li G, Seimon TA, Kuriakose G, Ron D, Tabas I. Reduced apoptosis and plaque necrosis in advanced atherosclerotic lesions of Apoe−/− and Ldlr−/− mice lacking CHOP. Cell Metab. 2009;9(5):474–81.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kutuk O, Basaga H. Bcl-2 protein family: implications in vascular apoptosis and atherosclerosis. Apoptosis. 2006;11(10):1661–75.CrossRefPubMedGoogle Scholar
  57. 57.
    Liang P, Zhong L, Gong L, Wang J, Zhu Y, Liu W, et al. Fibroblast growth factor 21 protects rat cardiomyocytes from endoplasmic reticulum stress by promoting the fibroblast growth factor receptor 1-extracellular signal-regulated kinase 1/2 signaling pathway. Int J Mol Med. 2017;40(5):1477–85.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Li E, Wang T, Wang F, Wang T, Sun L-Q, Li L, et al. FGF21 protects against ox-LDL induced apoptosis through suppressing CHOP expression in THP1 macrophage derived foam cells. BMC Cardiovasc Disord. 2015;15(1):80.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Weiss D, Kools JJ, Taylor WR. Angiotensin II–induced hypertension accelerates the development of atherosclerosis in ApoE-deficient mice. 2001.Google Scholar
  60. 60.
    Weiss D, Taylor WR. Deoxycorticosterone acetate salt hypertension in apolipoprotein E−/− mice results in accelerated atherosclerosis: the role of angiotensin II. Hypertension. 2008;51(2):218–24.CrossRefPubMedGoogle Scholar
  61. 61.
    Knowles JW, Maeda N. Genetic modifiers of atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 2000;20(11):2336–45.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Casalnuovo G, Gerdts E, Simone GD, Izzo R, Marco MD, Giudice R, et al. Arterial stiffness is associated with carotid atherosclerosis in hypertensive patients (the Campania Salute Network). Oxford University Press; 2012.Google Scholar
  63. 63.
    Yamazaki D, Hitomi H, Nishiyama A. Hypertension with diabetes mellitus complications. Hypertens Res. 2018;1.Google Scholar
  64. 64.
    Semba RD, Crasto C, Strait J, Sun K, Schaumberg DA, Ferrucci L. Elevated serum fibroblast growth factor 21 is associated with hypertension in community-dwelling adults. J Hum Hypertens. 2013;27(6):397–9.CrossRefPubMedGoogle Scholar
  65. 65.
    He J-L, Zhao M, Xia J-J, Guan J, Liu Y, Wang L-Q, et al. FGF21 ameliorates the neurocontrol of blood pressure in the high fructose-drinking rats. Sci Rep. 2016;6:29582.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Pan X, Shao Y, Wu F, Wang Y, Xiong R, Zheng J, et al. FGF21 prevents angiotensin II-induced hypertension and vascular dysfunction by activation of ACE2/angiotensin-(1–7) Axis in mice. Cell Metab. 2018;27:1323–1337.e5.CrossRefPubMedGoogle Scholar
  67. 67.
    Montezano AC, Cat AND, Rios FJ, Touyz RM. Angiotensin II and vascular injury. Curr Hypertens Rep. 2014;16(6):431.CrossRefPubMedGoogle Scholar
  68. 68.
    Wang Y, Tikellis C, Thomas MC, Golledge J. Angiotensin converting enzyme 2 and atherosclerosis. Atherosclerosis. 2013;226(1):3–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Mazzolai L, Duchosal MA, Korber M, Bouzourene K, Aubert JF, Hao H, et al. Endogenous angiotensin II induces atherosclerotic plaque vulnerability and elicits a Th1 response in ApoE−/− mice. Hypertension. 2004;44(3):277–82.CrossRefPubMedGoogle Scholar
  70. 70.
    Daugherty A, Manning MW, Cassis LA. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E–deficient mice. J Clin Invest. 2000;105(11):1605–12.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Candido R, Jandeleit-Dahm KA, Cao Z, Nesteroff SP, Burns WC, Twigg SM, et al. Prevention of accelerated atherosclerosis by angiotensin-converting enzyme inhibition in diabetic apolipoprotein E–deficient mice. Circulation. 2002;106(2):246–53.CrossRefPubMedGoogle Scholar
  72. 72.
    Daugherty A, Poduri A, Chen X, Lu H, Cassis LA. Genetic variants of the renin angiotensin system: effects on atherosclerosis in experimental models and humans. Curr Atheroscler Rep. 2010;12(3):167–73.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Mazzolai L, Hayoz D. The renin-angiotensin system and atherosclerosis. Curr Hypertens Rep. 2006;8(1):47–53.CrossRefPubMedGoogle Scholar
  74. 74.
    Fraga-Silva RA, Ferreira AJ, dos Santos RAS. Opportunities for targeting the angiotensin-converting enzyme 2/angiotensin-(1-7)/mas receptor pathway in hypertension. Curr Hypertens Rep. 2013;15(1):31–8.CrossRefPubMedGoogle Scholar
  75. 75.
    Patel VB, Zhong J-C, Grant MB, Oudit GY. Role of the ACE2/angiotensin 1–7 axis of the renin–angiotensin system in heart failure. Circ Res. 2016;118(8):1313–26.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Zhang Y-H, Y-h Z, Dong X-F, Hao Q-Q, Zhou X-M, Yu Q-T, et al. ACE2 and Ang-(1–7) protect endothelial cell function and prevent early atherosclerosis by inhibiting inflammatory response. Inflamm Res. 2015;64(3–4):253–60.CrossRefPubMedGoogle Scholar
  77. 77.
    da Silveira KD, Coelho FM, Vieira AT, Sachs D, Barroso LC, Costa VV, et al. Anti-inflammatory effects of the activation of the angiotensin-(1–7) receptor, MAS, in experimental models of arthritis. J Immunol. 2010;1000314.Google Scholar
  78. 78.
    Zhong J, Guo D, Chen CB, Wang W, Schuster M, Loibner H, et al. Prevention of angiotensin II–mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Hypertension. 2011;57(2):314–22.CrossRefPubMedGoogle Scholar
  79. 79.
    Benter IF, Yousif MH, Dhaunsi GS, Kaur J, Chappell MC, Diz DI. Angiotensin-(1–7) prevents activation of NADPH oxidase and renal vascular dysfunction in diabetic hypertensive rats. Am J Nephrol. 2008;28(1):25–33.CrossRefPubMedGoogle Scholar
  80. 80.
    Hsuchou H, Pan W, Kastin AJ. The fasting polypeptide FGF21 can enter brain from blood. Peptides. 2007;28(12):2382–6.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Cheng WH, Lu PJ, Hsiao M, Hsiao CH, Ho WY, Cheng PW, et al. Renin activates PI3K-Akt-eNOS signalling through the angiotensin AT1 and mas receptors to modulate central blood pressure control in the nucleus tractus solitarii. Br J Pharmacol. 2012;166(7):2024–35.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Tsekouras N, Katsargyris A, Skrapari I, Bastounis E, Georgopoulos S, Klonaris C, et al. The role of carotid plaque echogenicity in baroreflex sensitivity. J Vasc Surg. 2011;54(1):93–9.CrossRefPubMedGoogle Scholar
  83. 83.
    Bristow J, Gribbin B, Honour A, Pickering T, Sleight P. Diminished baroreflex sensitivity in high blood pressure and ageing man. J Physiol. 1969;202(1):45P–6P.CrossRefPubMedGoogle Scholar
  84. 84.
    Lakka TA, Salonen R, Kaplan GA, Salonen JT. Blood pressure and the progression of carotid atherosclerosis in middle-aged men. Hypertension. 1999;34(1):51–6.CrossRefPubMedGoogle Scholar
  85. 85.
    Cuspidi C, Sala C, Tadic M, Rescaldani M, De Giorgi GA, Grassi G, et al. Untreated masked hypertension and carotid atherosclerosis: a meta-analysis. Blood Press. 2015;24(2):65–71.CrossRefPubMedGoogle Scholar
  86. 86.
    Lonn E, Yusuf S, Dzavik V, Doris C, Yi Q, Smith S, et al. Effects of ramipril and vitamin E on atherosclerosis: the study to evaluate carotid ultrasound changes in patients treated with ramipril and vitamin E (SECURE). Circulation. 2001;103(7):919–25.CrossRefPubMedGoogle Scholar
  87. 87.
    Marfella R, Siniscalchi M, Nappo F, Gualdiero P, Esposito K, Sasso FC, et al. Regression of carotid atherosclerosis by control of morning blood pressure peak in newly diagnosed hypertensive patients. Am J Hypertens. 2005;18(3):308–18.CrossRefPubMedGoogle Scholar
  88. 88.
    Chow WS, Xu A, Woo YC, Tso AW, Cheung SC, Fong CH, et al. Serum fibroblast growth factor-21 levels are associated with carotid atherosclerosis independent of established cardiovascular risk factors. Arterioscler Thromb Vasc Biol. 2013;33(10):2454–9.CrossRefPubMedGoogle Scholar
  89. 89.
    Lusis AJ. Atherosclerosis. Nature. 2000;407(6801):233–41.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Silverman MG, Ference BA, Im K, Wiviott SD, Giugliano RP, Grundy SM, et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. Jama. 2016;316(12):1289–97.CrossRefPubMedGoogle Scholar
  91. 91.
    Gofman JW, Lindgren F, Elliott H, Mantz W, Hewitt J, Strisower B, et al. The role of lipids and lipoproteins in atherosclerosis. Science. 1950;111(2877):166–86.CrossRefPubMedGoogle Scholar
  92. 92.
    Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013;18(3):333–40.CrossRefGoogle Scholar
  93. 93.
    Do HT, Tselykh TV, Mäkelä J, Ho TH, Olkkonen VM, Bornhauser BC, et al. Fibroblast growth factor-21 (FGF21) regulates low-density lipoprotein receptor (LDLR) levels in cells via the E3-ubiquitin ligase Mylip/idol and the Canopy2 (Cnpy2)/Mylip-interacting saposin-like protein (Msap). J Biol Chem. 2012;287(16):12602–11.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Lin X-L, He X-L, Zeng J-F, Zhang H, Zhao Y, Tan J-K, et al. FGF21 increases cholesterol efflux by upregulating ABCA1 through the ERK1/2–PPARγ–LXRα pathway in THP1 macrophage-derived foam cells. DNA Cell Biol. 2014;33(8):514–21.CrossRefPubMedGoogle Scholar
  95. 95.
    Shang W, Yu X, Wang H, Chen T, Fang Y, Yang X, et al. Fibroblast growth factor 21 enhances cholesterol efflux in THP-1 macrophage-derived foam cells. Mol Med Rep. 2015;11(1):503–8.CrossRefPubMedGoogle Scholar
  96. 96.
    Dong B, Wu M, Cao A, Li H, Liu J. Suppression of idol expression is an additional mechanism underlying statin-induced up-regulation of hepatic LDL receptor expression. Int J Mol Med. 2011;27(1):103–10.Google Scholar
  97. 97.
    Yvan-Charvet L, Wang N, Tall AR. Role of HDL, ABCA1, and ABCG1 transporters in cholesterol efflux and immune responses. Arterioscler Thromb Vasc Biol. 2010;30(2):139–43.CrossRefPubMedGoogle Scholar
  98. 98.
    Tall AR, Yvan-Charvet L, Terasaka N, Pagler T, Wang N. HDL, ABC transporters, and cholesterol efflux: implications for the treatment of atherosclerosis. Cell Metab. 2008;7(5):365–75.CrossRefPubMedGoogle Scholar
  99. 99.
    Goldstein BJ, Scalia R. Adiponectin: a novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab. 2004;89(6):2563–8.CrossRefPubMedGoogle Scholar
  100. 100.
    Villarreal-Molina M, Antuna-Puente B. Adiponectin: anti-inflammatory and cardioprotective effects. Biochimie. 2012;94(10):2143–9.CrossRefPubMedGoogle Scholar
  101. 101.
    Liang B, Wang X, Guo X, Yang Z, Bai R, Liu M, et al. Adiponectin upregulates ABCA1 expression through liver X receptor alpha signaling pathway in RAW 264.7 macrophages. Int J Clin Exp Pathol. 2015;8(1):450.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Wolf AM, Wolf D, Rumpold H, Enrich B, Tilg H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem Biophys Res Commun. 2004;323(2):630–5.CrossRefPubMedGoogle Scholar
  103. 103.
    Holland WL, Adams AC, Brozinick JT, Bui HH, Miyauchi Y, Kusminski CM, et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 2013;17(5):790–7.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Lin Z, Tian H, Lam KS, Lin S, Hoo RC, Konishi M, et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013;17(5):779–89.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPARγ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50(9):2094–9.CrossRefPubMedGoogle Scholar
  106. 106.
    Holland WL, Adams AC, Brozinick JT, Bui HH, Miyauchi Y, Kusminski CM, et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 2013;17(5):790–7.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Lin Z, Tian H, Lam KS, Lin S, Hoo RC, Konishi M, et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013;17(5):779–89.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Li G, Yin J, Fu J, Li L, Grant SFA, Li C, et al. FGF21 deficiency is associated with childhood obesity, insulin resistance and hypoadiponectinaemia: the BCAMS study. Diabetes Metab. 2017;43(3):253–60.CrossRefPubMedGoogle Scholar
  109. 109.
    Hui E, Xu A, Chow WS, Lee PC, Fong CH, Cheung SC, et al. Hypoadiponectinemia as an independent predictor for the progression of carotid atherosclerosis: a 5-year prospective study. Metab Syndr Relat Disord. 2014;12(10):517–22.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Dieplinger B, Poelz W, Haltmayer M, Mueller T. Hypoadiponectinemia is associated with symptomatic atherosclerotic peripheral arterial disease. Clin Chem Lab Med. 2006;44(7):830–3.CrossRefPubMedGoogle Scholar
  111. 111.
    Barseghian A, Gawande D, Bajaj M. Adiponectin and vulnerable atherosclerotic plaques. J Am Coll Cardiol. 2011;57(7):761–70.CrossRefPubMedGoogle Scholar
  112. 112.
    Singhal G, Fisher FM, Chee MJ, Tan TG, El Ouaamari A, Adams AC, et al. Fibroblast growth factor 21 (FGF21) protects against high fat diet induced inflammation and islet hyperplasia in pancreas. PLoS One. 2016;11(2):e0148252.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Zhang C, Shao M, Yang H, Chen L, Yu L, Cong W, et al. Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal inflammation. PLoS One. 2013;8(12):e82275.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Wang WF, Li SM, Ren GP, Zheng W, Lu YJ, Yu YH, et al. Recombinant murine fibroblast growth factor 21 ameliorates obesity-related inflammation in monosodium glutamate-induced obesity rats. Endocrine. 2015;49(1):119–29.CrossRefPubMedGoogle Scholar
  115. 115.
    Yu Y, Li S, Liu Y, Tian G, Yuan Q, Bai F, et al. Fibroblast growth factor 21 (FGF21) ameliorates collagen-induced arthritis through modulating oxidative stress and suppressing nuclear factor-kappa B pathway. Int Immunopharmacol. 2015;25(1):74–82.CrossRefGoogle Scholar
  116. 116.
    Li JY, Wang N, Khoso MH, Shen CB, Guo MZ, Pang XX, et al. FGF-21 elevated IL-10 production to correct LPS-induced inflammation. Inflammation. 2018;41(3):751–9.CrossRefPubMedGoogle Scholar
  117. 117.
    Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023.Google Scholar
  118. 118.
    Yang SJ, Hong HC, Choi HY, Yoo HJ, Cho GJ, Hwang TG, et al. Effects of a three-month combined exercise programme on fibroblast growth factor 21 and fetuin-A levels and arterial stiffness in obese women. 2011;75(4):464–9.Google Scholar
  119. 119.
    Lenart-Lipińska M, Matyjaszek-Matuszek B, Gernand W, Nowakowski A, Solski JJDr, practice c. Serum fibroblast growth factor 21 is predictive of combined cardiovascular morbidity and mortality in patients with type 2 diabetes at a relatively short-term follow-up. 2013;101(2):194–200.Google Scholar
  120. 120.
    Díaz-Delfín J, Hondares E, Iglesias R, Giralt M, Caelles C, Villarroya FJE. TNF-α represses β-Klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway. 2012;153(9):4238–45.Google Scholar
  121. 121.
    Shen Y, Ma X, Zhou J, Pan X, Hao Y, Zhou M, et al. Additive relationship between serum fibroblast growth factor 21 level and coronary artery disease. 2013;12(1):124.Google Scholar
  122. 122.
    Ong K-L, Januszewski AS, O’Connell R, Jenkins AJ, Xu A, Sullivan DR, et al. The relationship of fibroblast growth factor 21 with cardiovascular outcome events in the Fenofibrate Intervention and Event Lowering in Diabetes study. 2015;58(3):464–73.Google Scholar
  123. 123.
    Tomiyama H, Koji Y, Yambe M, Shiina K, Motobe K, Yamada J, et al. Brachial-ankle pulse wave velocity is a simple and independent predictor of prognosis in patients with acute coronary syndrome 2005;69(7):815–22.Google Scholar
  124. 124.
    Paraskevas KI, Kotsikoris I, Koupidis SA, Giannoukas AD, Mikhailidis DP. Ankle—brachial index: a marker of both peripheral arterial disease and systemic atherosclerosis as well as a predictor of vascular events. Los Angeles: Sage Publications Sage CA; 2010.Google Scholar
  125. 125.
    Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. 2013;18(3):333–40.Google Scholar
  126. 126.
    Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS, Maratos-Flier EJD. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. 2010;59(11):2781–9.Google Scholar
  127. 127.
    Ding X, Boney-Montoya J, Owen BM, Bookout AL, Coate KC, Mangelsdorf DJ, et al. βKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. 2012;16(3):387–93.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cellular and Molecular Biology Research Center, Health Research InstituteBabol University of Medical SciencesBabolIran
  2. 2.Student Research CommitteeBabol University of Medical SciencesBabolIran
  3. 3.Faculty of Medicine, Tabriz BranchIslamic Azad UniversityTabrizIran
  4. 4.Department of BiochemistryBaku State UniversityBakuAzerbaijan
  5. 5.Anesthesiology Research TeamTabriz University of Medical SciencesTabrizIran
  6. 6.Immunology Research CenterTabriz University of Medical SciencesTabrizIran
  7. 7.Solid Tumor Research CenterUrmia University of Medical SciencesUrmiaIran
  8. 8.Faculty of MedicineJundishapur University of Medical SciencesAhvazIran
  9. 9.Aging Research InstituteTabriz University of Medical SciencesTabrizIran
  10. 10.Molecular Medicine Research CenterTabriz University of Medical SciencesTabrizIran
  11. 11.Department of Biochemistry and Clinical Laboratories, Faculty of MedicineTabriz University of Medical ScienceTabrizIran

Personalised recommendations