Skip to main content

Advertisement

Log in

Associations between atherosclerosis and neurological diseases, beyond ischemia-induced cerebral damage

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Neurodegeneration is traditionally viewed as a consequence of peptide accumulation in the brain, stroke and/or cerebral ischemia. Nonetheless, a number of scattered observations suggest that neurological disease and atherosclerosis may be linked by more complex mechanisms. Understanding the intricate link between atherosclerosis and neurological conditions may have a significant impact on the quality of life of the growing ageing population and of high cardiovascular risk groups in general. Epidemiological data support the notion that neurological dysfunction and atherosclerosis coexist long before any evident clinical complications of cardiovascular disease appear and may be causally linked. Baffling, often overlooked, molecular data suggest that nervous tissue-specific gene expression is relaxed specifically in the atheromatous vascular wall, and/or that a systemic dysregulation of genes involved in nervous system biology dictates a concomitant progression of neurological disease and atherosclerosis. Further epidemiological and experimental work is needed to clarify the details and clinical relevance of those complex links.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tosto G, Bird TD, Bennett DA, Boeve BF, Brickman AM, Cruchaga C, et al. The role of cardiovascular risk factors and stroke in familial Alzheimer disease. JAMA Neurol. 2016;73(10):1231–7. https://doi.org/10.1001/jamaneurol.2016.2539.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cermakova P, Eriksdotter M, Lund LH, Winblad B, Religa P, Religa D. Heart failure and Alzheimer's disease. J Intern Med. 2015;277(4):406–25. https://doi.org/10.1111/joim.12287.

    Article  CAS  PubMed  Google Scholar 

  3. Polidori MC, Mariani E, Mecocci P, Nelles G. Congestive heart failure and Alzheimer's disease. Neurol Res. 2006;28(6):588–94. https://doi.org/10.1179/016164106X130489.

    Article  PubMed  Google Scholar 

  4. Alves TC, Busatto GF. Regional cerebral blood flow reductions, heart failure and Alzheimer's disease. Neurol Res. 2006;28(6):579–87. https://doi.org/10.1179/016164106X130416.

    Article  PubMed  Google Scholar 

  5. Daulatzai MA. Cerebral hypoperfusion and glucose hypometabolism: key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer's disease. J Neurosci Res. 2017;95(4):943–72. https://doi.org/10.1002/jnr.23777.

    Article  CAS  PubMed  Google Scholar 

  6. Bornstein NM, Halevy G, Treves T, Korczyn AD. Cerebral atherosclerosis in parkinsonian patients. Parkinsonism Relat Disord. 1998;4(2):87–90.

    CAS  PubMed  Google Scholar 

  7. Perju-Dumbrava L, Muntean ML, Muresanu DF. Cerebrovascular profile assessment in Parkinson's disease patients. CNS Neurol Disord Drug Targets. 2014;13(4):712–7.

    CAS  PubMed  Google Scholar 

  8. Chen WH, Jin W, Lyu PY, Liu Y, Li R, Hu M, et al. Carotid atherosclerosis and cognitive impairment in nonstroke patients. Chin Med J. 2017;130(19):2375–9. https://doi.org/10.4103/0366-6999.215331.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dolan H, Crain B, Troncoso J, Resnick SM, Zonderman AB, Obrien RJ. Atherosclerosis, dementia, and Alzheimer disease in the Baltimore longitudinal study of aging cohort. Ann Neurol. 2010;68(2):231–40. https://doi.org/10.1002/ana.22055.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Deschaintre Y, Richard F, Leys D, Pasquier F. Treatment of vascular risk factors is associated with slower decline in Alzheimer disease. Neurology. 2009;73(9):674–80. https://doi.org/10.1212/WNL.0b013e3181b59bf3.

    Article  PubMed  Google Scholar 

  11. Geifman N, Brinton RD, Kennedy RE, Schneider LS, Butte AJ. Evidence for benefit of statins to modify cognitive decline and risk in Alzheimer's disease. Alzheimers Res Ther. 2017;9(1):10. https://doi.org/10.1186/s13195-017-0237-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Niu H, Álvarez-Álvarez I, Guillén-Grima F, Aguinaga-Ontoso I. Prevalence and incidence of Alzheimer’s disease in Europe: a meta-analysis. Neurologia. 2017;8(32):523–32.

  13. Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, et al. Incidence of Parkinson's disease: variation by age, gender, and race/ethnicity. Am J Epidemiol. 2003;157(11):1015–22.

    Google Scholar 

  14. Alzheimer's A. 2015 Alzheimer's disease facts and figures. Alzheimers Dement. 2015;11(3):332–84.

    Google Scholar 

  15. Sahay S, Ghosh D, Singh PK, Maji SK. Alteration of structure and aggregation of alpha-Synuclein by familial Parkinson's disease associated mutations. Curr Protein Pept Sci. 2017;18(7):656–76. https://doi.org/10.2174/1389203717666160314151706.

    Article  CAS  PubMed  Google Scholar 

  16. Flagmeier P, Meisl G, Vendruscolo M, Knowles TP, Dobson CM, Buell AK, et al. Mutations associated with familial Parkinson's disease alter the initiation and amplification steps of alpha-synuclein aggregation. Proc Natl Acad Sci U S A. 2016;113(37):10328–33. https://doi.org/10.1073/pnas.1604645113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spivey A. Rotenone and paraquat linked to Parkinson's disease: human exposure study supports years of animal studies. Environ Health Perspect. 2011;119(6):A259. https://doi.org/10.1289/ehp.119-a259a.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Drożdżyński D, Kowalska J. Rapid analysis of organic farming insecticides in soil and produce using ultra-performance liquid chromatography/tandem mass spectrometry. Anal Bioanal Chem. 2009;394(8):2241–7. https://doi.org/10.1007/s00216-009-2931-5.

    Article  CAS  PubMed  Google Scholar 

  19. Qi Z, Miller GW, Voit EO. Rotenone and paraquat perturb dopamine metabolism: a computational analysis of pesticide toxicity. Toxicology. 2014;315:92–101. https://doi.org/10.1016/j.tox.2013.11.003.

    Article  CAS  PubMed  Google Scholar 

  20. Nistico R, Mehdawy B, Piccirilli S, Mercuri N. Paraquat- and rotenone-induced models of Parkinson's disease. Int J Immunopathol Pharmacol. 2011;24(2):313–22. https://doi.org/10.1177/039463201102400205.

    Article  CAS  PubMed  Google Scholar 

  21. Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, et al. Rotenone, paraquat, and Parkinson's disease. Environ Health Perspect. 2011;119(6):866–72. https://doi.org/10.1289/ehp.1002839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke Statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603. https://doi.org/10.1161/CIR.0000000000000485.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Seidell JC, Halberstadt J. The global burden of obesity and the challenges of prevention. Ann Nutr Metab. 2015;66(Suppl 2):7–12. https://doi.org/10.1159/000375143.

    Article  CAS  PubMed  Google Scholar 

  24. Thompson RC, Allam AH, Lombardi GP, Wann LS, Sutherland ML, Sutherland JD, et al. Atherosclerosis across 4000 years of human history: the Horus study of four ancient populations. Lancet. 2013;381(9873):1211–22. https://doi.org/10.1016/S0140-6736(13)60598-X.

    Article  PubMed  Google Scholar 

  25. Palombo C, Kozakova M. Arterial stiffness, atherosclerosis and cardiovascular risk: pathophysiologic mechanisms and emerging clinical indications. Vasc Pharmacol. 2016;77:1–7. https://doi.org/10.1016/j.vph.2015.11.083.

    Article  CAS  Google Scholar 

  26. Gomez-Hernandez A, Beneit N, Diaz-Castroverde S, Escribano O. Differential role of adipose tissues in obesity and related metabolic and vascular complications. Int J Endocrinol. 2016;2016:1216783–15. https://doi.org/10.1155/2016/1216783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Al Rifai M, Silverman MG, Nasir K, Budoff MJ, Blankstein R, Szklo M, et al. The association of nonalcoholic fatty liver disease, obesity, and metabolic syndrome, with systemic inflammation and subclinical atherosclerosis: the Multi-Ethnic Study Of atherosclerosis (MESA). Atherosclerosis. 2015;239(2):629–33. https://doi.org/10.1016/j.atherosclerosis.2015.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rocha VZ, Libby P. Obesity, inflammation, and atherosclerosis. Nat Rev Cardiol. 2009;6(6):399–409. https://doi.org/10.1038/nrcardio.2009.55.

    Article  CAS  PubMed  Google Scholar 

  29. Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res. 2017;113(9):1009–23. https://doi.org/10.1093/cvr/cvx108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bischof GN, Park DC. Obesity and aging: consequences for cognition, brain structure, and brain function. Psychosom Med. 2015;77(6):697–709. https://doi.org/10.1097/PSY.0000000000000212.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Debette S, Seshadri S, Beiser A, Au R, Himali JJ, Palumbo C, et al. Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology. 2011;77(5):461–8. https://doi.org/10.1212/WNL.0b013e318227b227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stewart R, Masaki K, Xue QL, Peila R, Petrovitch H, White LR, et al. A 32-year prospective study of change in body weight and incident dementia: the Honolulu-Asia aging study. Arch Neurol. 2005;62(1):55–60. https://doi.org/10.1001/archneur.62.1.55.

    Article  PubMed  Google Scholar 

  33. Bednarska-Makaruk M, Graban A, Wisniewska A, Lojkowska W, Bochynska A, Gugala-Iwaniuk M, et al. Association of adiponectin, leptin and resistin with inflammatory markers and obesity in dementia. Biogerontology. 2017;18(4):561–80. https://doi.org/10.1007/s10522-017-9701-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kullmann S, Callaghan MF, Heni M, Weiskopf N, Scheffler K, Haring HU, et al. Specific white matter tissue microstructure changes associated with obesity. Neuroimage. 2016;125:36–44. https://doi.org/10.1016/j.neuroimage.2015.10.006.

    Article  PubMed  Google Scholar 

  35. van Bloemendaal L, Ijzerman RG, Ten Kulve JS, Barkhof F, Diamant M, Veltman DJ, et al. Alterations in white matter volume and integrity in obesity and type 2 diabetes. Metab Brain Dis. 2016;31(3):621–9. https://doi.org/10.1007/s11011-016-9792-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nouwen A, Chambers A, Chechlacz M, Higgs S, Blissett J, Barrett TG, et al. Microstructural abnormalities in white and gray matter in obese adolescents with and without type 2 diabetes. Neuroimage Clin. 2017;16:43–51. https://doi.org/10.1016/j.nicl.2017.07.004.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tuulari JJ, Karlsson HK, Antikainen O, Hirvonen J, Pham T, Salminen P, et al. Bariatric surgery induces White and Grey matter density recovery in the morbidly obese: a voxel-based morphometric study. Hum Brain Mapp. 2016;37(11):3745–56. https://doi.org/10.1002/hbm.23272.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bond DJ, Silveira LE, MacMillan EL, Torres IJ, Lang DJ, Su W, et al. Diagnosis and body mass index effects on hippocampal volumes and neurochemistry in bipolar disorder. Transl Psychiatry. 2017;7(3):e1071. https://doi.org/10.1038/tp.2017.42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hidese S, Ota M, Matsuo J, Ishida I, Hiraishi M, Yoshida S, et al. Association of obesity with cognitive function and brain structure in patients with major depressive disorder. J Affect Disord. 2018;225:188–94. https://doi.org/10.1016/j.jad.2017.08.028.

    Article  PubMed  Google Scholar 

  40. Gustafson DR, Karlsson C, Skoog I, Rosengren L, Lissner L, Blennow K. Mid-life adiposity factors relate to blood-brain barrier integrity in late life. J Intern Med. 2007;262(6):643–50. https://doi.org/10.1111/j.1365-2796.2007.01869.x.

    Article  CAS  PubMed  Google Scholar 

  41. Tucsek Z, Toth P, Sosnowska D, Gautam T, Mitschelen M, Koller A, et al. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer's disease. J Gerontol A Biol Sci Med Sci. 2014;69(10):1212–26. https://doi.org/10.1093/gerona/glt177.

    Article  CAS  PubMed  Google Scholar 

  42. Schnaider Beeri M, Goldbourt U, Silverman JM, Noy S, Schmeidler J, Ravona-Springer R, et al. Diabetes mellitus in midlife and the risk of dementia three decades later. Neurology. 2004;63(10):1902–7.

    CAS  PubMed  Google Scholar 

  43. Young SE, Mainous AG 3rd, Carnemolla M. Hyperinsulinemia and cognitive decline in a middle-aged cohort. Diabetes Care. 2006;29(12):2688–93. https://doi.org/10.2337/dc06-0915.

    Article  CAS  PubMed  Google Scholar 

  44. Nazaribadie M, Amini M, Ahmadpanah M, Asgari K, Jamlipaghale S, Nazaribadie S. Executive functions and information processing in patients with type 2 diabetes in comparison to pre-diabetic patients. J Diabetes Metab Disord. 2014;13(1):27. https://doi.org/10.1186/2251-6581-13-27.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ahtiluoto S, Polvikoski T, Peltonen M, Solomon A, Tuomilehto J, Winblad B, et al. Diabetes, Alzheimer disease, and vascular dementia: a population-based neuropathologic study. Neurology. 2010;75(13):1195–202. https://doi.org/10.1212/WNL.0b013e3181f4d7f8.

    Article  CAS  PubMed  Google Scholar 

  46. Schneider ALC, Selvin E, Sharrett AR, Griswold M, Coresh J, Jack CR Jr, et al. Diabetes, prediabetes, and brain volumes and subclinical cerebrovascular disease on MRI: the atherosclerosis risk in communities neurocognitive study (ARIC-NCS). Diabetes Care. 2017;40(11):1514–21. https://doi.org/10.2337/dc17-1185.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Katakami N. Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus. J Atheroscler Thromb. 2018;25(1):27–39. https://doi.org/10.5551/jat.RV17014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Domingueti CP, Dusse LM, Carvalho M, de Sousa LP, Gomes KB, Fernandes AP. Diabetes mellitus: the linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complicat. 2016;30(4):738–45. https://doi.org/10.1016/j.jdiacomp.2015.12.018.

    Article  Google Scholar 

  49. Wang HH, Garruti G, Liu M, Portincasa P, Wang DQ. Cholesterol and lipoprotein metabolism and atherosclerosis: recent advances in reverse cholesterol transport. Ann Hepatol. 2017;16(Suppl. 1: s3-105):s27–42. https://doi.org/10.5604/01.3001.0010.5495.

    Article  CAS  PubMed  Google Scholar 

  50. Hurtubise J, McLellan K, Durr K, Onasanya O, Nwabuko D, Ndisang JF. The different facets of dyslipidemia and hypertension in atherosclerosis. Curr Atheroscler Rep. 2016;18(12):82. https://doi.org/10.1007/s11883-016-0632-z.

    Article  CAS  PubMed  Google Scholar 

  51. Reitz C. Dyslipidemia and the risk of Alzheimer's disease. Curr Atheroscler Rep. 2013;15(3):307. https://doi.org/10.1007/s11883-012-0307-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Magnan C, Levin BE, Luquet S. Brain lipid sensing and the neural control of energy balance. Mol Cell Endocrinol. 2015;418 Pt 1:3–8. https://doi.org/10.1016/j.mce.2015.09.019.

    Article  CAS  PubMed  Google Scholar 

  53. Xie F, Fu H, Hou JF, Jiao K, Costigan M, Chen J. High energy diets-induced metabolic and prediabetic painful polyneuropathy in rats. PLoS One. 2013;8(2):e57427. https://doi.org/10.1371/journal.pone.0057427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bjorkhem I. Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain. J Intern Med. 2006;260(6):493–508. https://doi.org/10.1111/j.1365-2796.2006.01725.x.

    Article  CAS  PubMed  Google Scholar 

  55. Yang W, Shi H, Zhang J, Shen Z, Zhou G, Hu M. Effects of the duration of hyperlipidemia on cerebral lipids, vessels and neurons in rats. Lipids Health Dis. 2017;16(1):26. https://doi.org/10.1186/s12944-016-0401-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Paul R, Choudhury A, Chandra Boruah D, Devi R, Bhattacharya P, Choudhury MD, et al. Hypercholesterolemia causes psychomotor abnormalities in mice and alterations in cortico-striatal biogenic amine neurotransmitters: relevance to Parkinson's disease. Neurochem Int. 2017;108:15–26. https://doi.org/10.1016/j.neuint.2017.01.021.

    Article  CAS  PubMed  Google Scholar 

  57. Ohwaki K, Yano E, Tamura A, Inoue T, Saito I. Hypercholesterolemia is associated with a lower risk of cerebral ischemic small vessel disease detected on brain checkups. Clin Neurol Neurosurg. 2013;115(6):669–72. https://doi.org/10.1016/j.clineuro.2012.07.025.

    Article  PubMed  Google Scholar 

  58. Zhu L, Zhong M, Elder GA, Sano M, Holtzman DM, Gandy S, et al. Phospholipid dysregulation contributes to ApoE4-associated cognitive deficits in Alzheimer's disease pathogenesis. Proc Natl Acad Sci U S A. 2015;112(38):11965–70. https://doi.org/10.1073/pnas.1510011112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hostage CA, Roy Choudhury K, Doraiswamy PM, Petrella JR, Alzheimer's Disease Neuroimaging I. Dissecting the gene dose-effects of the APOE epsilon4 and epsilon2 alleles on hippocampal volumes in aging and Alzheimer's disease. PLoS One. 2013;8(2):e54483. https://doi.org/10.1371/journal.pone.0054483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu M, Bian C, Zhang J, Wen F. Apolipoprotein E gene polymorphism and Alzheimer's disease in Chinese population: a meta-analysis. Sci Rep. 2014;4:4383. https://doi.org/10.1038/srep04383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature. 2017;549(7673):523–7. https://doi.org/10.1038/nature24016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tambini MD, Pera M, Kanter E, Yang H, Guardia-Laguarta C, Holtzman D, et al. ApoE4 upregulates the activity of mitochondria-associated ER membranes. EMBO Rep. 2016;17(1):27–36. https://doi.org/10.15252/embr.201540614.

    Article  CAS  PubMed  Google Scholar 

  63. Hafezi-Moghadam A, Thomas KL, Wagner DD. ApoE deficiency leads to a progressive age-dependent blood-brain barrier leakage. Am J Phys Cell Phys. 2007;292(4):C1256–62. https://doi.org/10.1152/ajpcell.00563.2005.

    Article  CAS  Google Scholar 

  64. Janssen CI, Jansen D, Mutsaers MP, Dederen PJ, Geenen B, Mulder MT, et al. The effect of a high-fat diet on brain plasticity, inflammation and cognition in female ApoE4-Knockin and ApoE-knockout mice. PLoS One. 2016;11(5):e0155307. https://doi.org/10.1371/journal.pone.0155307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lusis AJ. Genetics of atherosclerosis. Trends Genet. 2012;28(6):267–75. https://doi.org/10.1016/j.tig.2012.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Stylianou IM, Bauer RC, Reilly MP, Rader DJ. Genetic basis of atherosclerosis: insights from mice and humans. Circ Res. 2012;110(2):337–55. https://doi.org/10.1161/CIRCRESAHA.110.230854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McPherson R, Tybjaerg-Hansen A. Genetics of coronary artery disease. Circ Res. 2016;118(4):564–78. https://doi.org/10.1161/CIRCRESAHA.115.306566.

    Article  CAS  PubMed  Google Scholar 

  68. Benn M, Nordestgaard BG, Frikke-Schmidt R, Tybjaerg-Hansen A. Low LDL cholesterol, PCSK9 and HMGCR genetic variation, and risk of Alzheimer's disease and Parkinson's disease: Mendelian randomisation study. BMJ. 2017;357:j1648. https://doi.org/10.1136/bmj.j1648.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cunningham D, Danley DE, Geoghegan KF, Griffor MC, Hawkins JL, Subashi TA, et al. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol. 2007;14(5):413–9. https://doi.org/10.1038/nsmb1235.

    Article  CAS  PubMed  Google Scholar 

  70. Lachman S, Boekholdt SM, Luben RN, Sharp SJ, Brage S, Khaw KT, et al. Impact of physical activity on the risk of cardiovascular disease in middle-aged and older adults: EPIC Norfolk prospective population study. Eur J Prev Cardiol. 2018;25(2):200–8. https://doi.org/10.1177/2047487317737628.

    Article  PubMed  Google Scholar 

  71. Ertek S, Cicero A. Impact of physical activity on inflammation: effects on cardiovascular disease risk and other inflammatory conditions. Arch Med Sci. 2012;8(5):794–804. https://doi.org/10.5114/aoms.2012.31614.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pedersen BK. Anti-inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur J Clin Investig. 2017;47(8):600–11. https://doi.org/10.1111/eci.12781.

    Article  CAS  Google Scholar 

  73. Krauss J, Farzaneh-Far R, Puterman E, Na B, Lin J, Epel E, et al. Physical fitness and telomere length in patients with coronary heart disease: findings from the heart and soul study. PLoS One. 2011;6(11):e26983. https://doi.org/10.1371/journal.pone.0026983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. LaRocca TJ, Seals DR, Pierce GL. Leukocyte telomere length is preserved with aging in endurance exercise-trained adults and related to maximal aerobic capacity. Mech Ageing Dev. 2010;131(2):165–7. https://doi.org/10.1016/j.mad.2009.12.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rossman MJ, Kaplon RE, Hill SD, McNamara MN, Santos-Parker JR, Pierce GL, et al. Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function. Am J Phys Heart Circ Phys. 2017;313(5):H890–H5. https://doi.org/10.1152/ajpheart.00416.2017.

    Article  CAS  Google Scholar 

  76. McClean C, Harris RA, Brown M, Brown JC, Davison GW. Effects of exercise intensity on postexercise endothelial function and oxidative stress. Oxidative Med Cell Longev. 2015;2015:723679–8. https://doi.org/10.1155/2015/723679.

    Article  CAS  Google Scholar 

  77. Hamer M, Chida Y. Physical activity and risk of neurodegenerative disease: a systematic review of prospective evidence. Psychol Med. 2009;39(1):3–11. https://doi.org/10.1017/S0033291708003681.

    Article  CAS  PubMed  Google Scholar 

  78. Huttenrauch M, Brauss A, Kurdakova A, Borgers H, Klinker F, Liebetanz D, et al. Physical activity delays hippocampal neurodegeneration and rescues memory deficits in an Alzheimer disease mouse model. Transl Psychiatry. 2016;6:e800. https://doi.org/10.1038/tp.2016.65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Alvarez-Lopez MJ, Castro-Freire M, Cosin-Tomas M, Sanchez-Roige S, Lalanza JF, Del Valle J, et al. Long-term exercise modulates hippocampal gene expression in senescent female mice. J Alzheimers Dis. 2013;33(4):1177–90. https://doi.org/10.3233/JAD-121264.

    Article  CAS  PubMed  Google Scholar 

  80. Duncombe J, Kitamura A, Hase Y, Ihara M, Kalaria RN, Horsburgh K. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci (Lond). 2017;131(19):2451–68. https://doi.org/10.1042/CS20160727.

    Article  CAS  Google Scholar 

  81. Salvadores N, Searcy JL, Holland PR, Horsburgh K. Chronic cerebral hypoperfusion alters amyloid-beta peptide pools leading to cerebral amyloid angiopathy, microinfarcts and haemorrhages in Tg-SwDI mice. Clin Sci (Lond). 2017;131(16):2109–23. https://doi.org/10.1042/CS20170962.

    Article  CAS  Google Scholar 

  82. Patel A, Moalem A, Cheng H, Babadjouni RM, Patel K, Hodis DM, et al. Chronic cerebral hypoperfusion induced by bilateral carotid artery stenosis causes selective recognition impairment in adult mice. Neurol Res. 2017;39(10):910–7. https://doi.org/10.1080/01616412.2017.1355423.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hunt BJ, Jurd KM. Endothelial cell activation. A central pathophysiological process. BMJ. 1998;316(7141):1328–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hughes CG, Pandharipande PP, Thompson JL, Chandrasekhar R, Ware LB, Ely EW, et al. Endothelial activation and blood-brain barrier injury as risk factors for delirium in critically ill patients*. Crit Care Med. 2016;44(9):e809–e17. https://doi.org/10.1097/ccm.0000000000001739.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Gurney KJ, Estrada EY, Rosenberg GA. Blood-brain barrier disruption by stromelysin-1 facilitates neutrophil infiltration in neuroinflammation. Neurobiol Dis. 2006;23(1):87–96. https://doi.org/10.1016/j.nbd.2006.02.006.

    Article  CAS  PubMed  Google Scholar 

  86. Kirk J, Plumb J, Mirakhur M, McQuaid S. Tight junctional abnormality in multiple sclerosis white matter affects all calibres of vessel and is associated with blood-brain barrier leakage and active demyelination. J Pathol. 2003;201(2):319–27. https://doi.org/10.1002/path.1434.

    Article  PubMed  Google Scholar 

  87. Gust J, Hay KA, Hanafi LA, Li D, Myerson D, Gonzalez-Cuyar LF, et al. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov. 2017;7(12):1404–19. https://doi.org/10.1158/2159-8290.CD-17-0698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kayed R, Lasagna-Reeves CA. Molecular mechanisms of amyloid oligomers toxicity. J Alzheimers Dis. 2013;33(Suppl 1):S67–78. https://doi.org/10.3233/JAD-2012-129001.

    Article  CAS  PubMed  Google Scholar 

  89. Bardai FH, Wang L, Mutreja Y, Yenjerla M, Gamblin TC, Feany MB. A conserved cytoskeletal signaling Cascade mediates neurotoxicity of FTDP-17 tau mutations in vivo. J Neurosci. 2018;38(1):108–19. https://doi.org/10.1523/JNEUROSCI.1550-17.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Burre J, Sharma M, Sudhof TC. Definition of a molecular pathway mediating alpha-synuclein neurotoxicity. J Neurosci. 2015;35(13):5221–32. https://doi.org/10.1523/JNEUROSCI.4650-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Garbuzova-Davis S, Hernandez-Ontiveros DG, Rodrigues MC, Haller E, Frisina-Deyo A, Mirtyl S, et al. Impaired blood-brain/spinal cord barrier in ALS patients. Brain Res. 2012;1469:114–28. https://doi.org/10.1016/j.brainres.2012.05.056.

    Article  CAS  PubMed  Google Scholar 

  92. Yamazaki Y, Kanekiyo T. Blood-brain barrier dysfunction and the pathogenesis of Alzheimer's disease. Int J Mol Sci. 2017;18(9). https://doi.org/10.3390/ijms18091965.

  93. Gray MT, Woulfe JM. Striatal blood-brain barrier permeability in Parkinson's disease. J Cereb Blood Flow Metab. 2015;35(5):747–50. https://doi.org/10.1038/jcbfm.2015.32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cramer SP, Modvig S, Simonsen HJ, Frederiksen JL, Larsson HB. Permeability of the blood-brain barrier predicts conversion from optic neuritis to multiple sclerosis. Brain. 2015;138(Pt 9):2571–83. https://doi.org/10.1093/brain/awv203.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ujiie M, Dickstein DL, Carlow DA, Jefferies WA. Blood-brain barrier permeability precedes senile plaque formation in an Alzheimer disease model. Microcirculation. 2003;10(6):463–70. https://doi.org/10.1038/sj.mn.7800212.

    Article  CAS  PubMed  Google Scholar 

  96. van de Haar HJ, Burgmans S, Jansen JF, van Osch MJ, van Buchem MA, Muller M, et al. Blood-brain barrier leakage in patients with early Alzheimer disease. Radiology. 2016;281(2):527–35. https://doi.org/10.1148/radiol.2016152244.

    Article  PubMed  Google Scholar 

  97. Chistiakov DA, Orekhov AN, Bobryshev YV. Contribution of neovascularization and intraplaque haemorrhage to atherosclerotic plaque progression and instability. Acta Physiol (Oxford). 2015;213(3):539–53. https://doi.org/10.1111/apha.12438.

    Article  CAS  Google Scholar 

  98. Moreno PR, Purushothaman KR, Fuster V, Echeverri D, Truszczynska H, Sharma SK, et al. Plaque neovascularization is increased in ruptured atherosclerotic lesions of human Aorta. Circulation. 2004;110(14):2032–8. https://doi.org/10.1161/01.CIR.0000143233.87854.23.

    Article  PubMed  Google Scholar 

  99. Ding X, Gu R, Zhang M, Ren H, Shu Q, Xu G, et al. Microglia enhanced the angiogenesis, migration and proliferation of co-cultured RMECs. BMC Ophthalmol. 2018;18(1):249. https://doi.org/10.1186/s12886-018-0886-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Schultheiss C, Blechert B, Gaertner FC, Drecoll E, Mueller J, Weber GF, et al. In vivo characterization of endothelial cell activation in a transgenic mouse model of Alzheimer's disease. Angiogenesis. 2006;9(2):59–65. https://doi.org/10.1007/s10456-006-9030-4.

    Article  CAS  PubMed  Google Scholar 

  101. Desai BS, Schneider JA, Li JL, Carvey PM, Hendey B. Evidence of angiogenic vessels in Alzheimer's disease. J Neural Transm (Vienna). 2009;116(5):587–97. https://doi.org/10.1007/s00702-009-0226-9.

    Article  CAS  Google Scholar 

  102. Yang SP, Bae DG, Kang HJ, Gwag BJ, Gho YS, Chae CB. Co-accumulation of vascular endothelial growth factor with beta-amyloid in the brain of patients with Alzheimer's disease. Neurobiol Aging. 2004;25(3):283–90. https://doi.org/10.1016/S0197-4580(03)00111-8.

    Article  CAS  PubMed  Google Scholar 

  103. Janelidze S, Lindqvist D, Francardo V, Hall S, Zetterberg H, Blennow K, et al. Increased CSF biomarkers of angiogenesis in Parkinson disease. Neurology. 2015;85(21):1834–42. https://doi.org/10.1212/WNL.0000000000002151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ryu JK, McLarnon JG. Thalidomide inhibition of perturbed vasculature and glial-derived tumor necrosis factor-alpha in an animal model of inflamed Alzheimer's disease brain. Neurobiol Dis. 2008;29(2):254–66. https://doi.org/10.1016/j.nbd.2007.08.019.

    Article  CAS  PubMed  Google Scholar 

  105. Palencia G, Garcia E, Osorio-Rico L, Trejo-Solis C, Escamilla-Ramirez A, Sotelo J. Neuroprotective effect of thalidomide on MPTP-induced toxicity. Neurotoxicology. 2015;47:82–7. https://doi.org/10.1016/j.neuro.2015.02.004.

    Article  CAS  PubMed  Google Scholar 

  106. Kitaguchi H, Ihara M, Saiki H, Takahashi R, Tomimoto H. Capillary beds are decreased in Alzheimer's disease, but not in Binswanger's disease. Neurosci Lett. 2007;417(2):128–31. https://doi.org/10.1016/j.neulet.2007.02.021.

    Article  CAS  PubMed  Google Scholar 

  107. Villar-Cheda B, Sousa-Ribeiro D, Rodriguez-Pallares J, Rodriguez-Perez AI, Guerra MJ, Labandeira-Garcia JL. Aging and sedentarism decrease vascularization and VEGF levels in the rat substantia nigra. Implications for Parkinson's disease. J Cereb Blood Flow Metab. 2009;29(2):230–4. https://doi.org/10.1038/jcbfm.2008.127.

    Article  CAS  PubMed  Google Scholar 

  108. Yang P, Min X-L, Mohammadi M, Turner C, Faull R, Waldvogel H, et al. Endothelial degeneration of parkinson’s disease is related to alpha-synuclein aggregation. J Alzheimers Dis Parkinsonism. 2017;7(5). https://doi.org/10.4172/2161-0460.1000370.

  109. Zacchigna S, Lambrechts D, Carmeliet P. Neurovascular signalling defects in neurodegeneration. Nat Rev Neurosci. 2008;9(3):169–81. https://doi.org/10.1038/nrn2336.

    Article  CAS  PubMed  Google Scholar 

  110. Colin-Castelan D, Phillips-Farfan BV, Gutierrez-Ospina G, Fuentes-Farias AL, Baez-Saldana A, Padilla-Cortes P, et al. EphB4 is developmentally and differentially regulated in blood vessels throughout the forebrain neurogenic niche in the mouse brain: implications for vascular remodeling. Brain Res. 2011;1383:90–8. https://doi.org/10.1016/j.brainres.2011.01.110.

    Article  CAS  PubMed  Google Scholar 

  111. Meléndez-Herrera E, Colín-Castelán D, Varela-Echavarría A, Gutiérrez-Ospina G. Semaphorin-3A and its receptor neuropilin-1 are predominantly expressed in endothelial cells along the rostral migratory stream of young and adult mice. Cell Tissue Res. 2008;333(2):175–84. https://doi.org/10.1007/s00441-008-0643-3.

    Article  CAS  PubMed  Google Scholar 

  112. Cantarella G, Lempereur L, Presta M, Ribatti D, Lombardo G, Lazarovici P, et al. Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo. FASEB J. 2002;16(10):1307–9. https://doi.org/10.1096/fj.01-1000fje.

    Article  CAS  PubMed  Google Scholar 

  113. Cunningham LA, Candelario K, Li L. Roles for HIF-1alpha in neural stem cell function and the regenerative response to stroke. Behav Brain Res. 2012;227(2):410–7. https://doi.org/10.1016/j.bbr.2011.08.002.

    Article  CAS  PubMed  Google Scholar 

  114. Delgado Ana C, Ferrón Sacri R, Vicente D, Porlan E, Perez-Villalba A, Trujillo Carmen M, et al. Endothelial NT-3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction. Neuron. 2014;83(3):572–85. https://doi.org/10.1016/j.neuron.2014.06.015.

    Article  CAS  PubMed  Google Scholar 

  115. Usui T, Naruo A, Okada M, Hayabe Y, Yamawaki H. Brain-derived neurotrophic factor promotes angiogenic tube formation through generation of oxidative stress in human vascular endothelial cells. Acta Physiol (Oxford). 2014;211(2):385–94. https://doi.org/10.1111/apha.12249.

    Article  CAS  Google Scholar 

  116. Li S, Haigh K, Haigh JJ, Vasudevan A. Endothelial VEGF sculpts cortical cytoarchitecture. J Neurosci. 2013;33(37):14809–15. https://doi.org/10.1523/JNEUROSCI.1368-13.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Erskine L, Francois U, Denti L, Joyce A, Tillo M, Bruce F, et al. VEGF-A and neuropilin 1 (NRP1) shape axon projections in the developing CNS via dual roles in neurons and blood vessels. Development. 2017;144(13):2504–16. https://doi.org/10.1242/dev.151621.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Masuda T, Taniguchi M. Contribution of semaphorins to the formation of the peripheral nervous system in higher vertebrates. Cell Adhes Migr. 2016;10(6):593–603. https://doi.org/10.1080/19336918.2016.1243644.

    Article  CAS  Google Scholar 

  119. Fiore R, Puschel AW. The function of semaphorins during nervous system development. Front Biosci. 2003;8:s484–99.

    CAS  PubMed  Google Scholar 

  120. Tillo M, Ruhrberg C, Mackenzie F. Emerging roles for semaphorins and VEGFs in synaptogenesis and synaptic plasticity. Cell Adhes Migr. 2012;6(6):541–6. https://doi.org/10.4161/cam.22408.

    Article  Google Scholar 

  121. Ng T, Ryu JR, Sohn JH, Tan T, Song H, Ming G-L, et al. Class 3 Semaphorin Mediates Dendrite Growth in Adult Newborn Neurons through Cdk5/FAK Pathway. PLoS ONE. 2013;8(6):e65572. https://doi.org/10.1371/journal.pone.0065572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Segarra M, Ohnuki H, Maric D, Salvucci O, Hou X, Kumar A, et al. Semaphorin 6A regulates angiogenesis by modulating VEGF signaling. Blood. 2012;120(19):4104–15. https://doi.org/10.1182/blood-2012-02-410076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Erber R, Eichelsbacher U, Powajbo V, Korn T, Djonov V, Lin J, et al. EphB4 controls blood vascular morphogenesis during postnatal angiogenesis. EMBO J. 2006;25(3):628–41. https://doi.org/10.1038/sj.emboj.7600949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Swift MR, Weinstein BM. Arterial-venous specification during development. Circ Res. 2009;104(5):576–88. https://doi.org/10.1161/CIRCRESAHA.108.188805.

    Article  CAS  PubMed  Google Scholar 

  125. Shu Y, Xiao B, Wu Q, Liu T, Du Y, Tang H, et al. The Ephrin-A5/EphA4 interaction modulates neurogenesis and angiogenesis by the p-Akt and p-ERK pathways in a mouse model of TLE. Mol Neurobiol. 2016;53(1):561–76. https://doi.org/10.1007/s12035-014-9020-2.

    Article  CAS  PubMed  Google Scholar 

  126. Koyanagi I, Akers KG, Vergara P, Srinivasan S, Sakurai T, Sakaguchi M. Memory consolidation during sleep and adult hippocampal neurogenesis. Neural Regen Res. 2019;14(1):20–3. https://doi.org/10.4103/1673-5374.243695.

    Article  PubMed  PubMed Central  Google Scholar 

  127. McAvoy K, Besnard A, Sahay A. Adult hippocampal neurogenesis and pattern separation in DG: a role for feedback inhibition in modulating sparseness to govern population-based coding. Front Syst Neurosci. 2015;9:120. https://doi.org/10.3389/fnsys.2015.00120.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Hollands C, Tobin MK, Hsu M, Musaraca K, Yu TS, Mishra R, et al. Depletion of adult neurogenesis exacerbates cognitive deficits in Alzheimer's disease by compromising hippocampal inhibition. Mol Neurodegener. 2017;12(1):64. https://doi.org/10.1186/s13024-017-0207-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jin H, Chen Y, Wang B, Zhu Y, Chen L, Han X, et al. Association between brain-derived neurotrophic factor and von Willebrand factor levels in patients with stable coronary artery disease. BMC Cardiovasc Disord. 2018;18(1):23. https://doi.org/10.1186/s12872-018-0762-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Nehme A, Kobeissy F, Zhao J, Zhu R, Feugier P, Mechref Y, et al. Functional pathways associated with human carotid atheroma: a proteomics analysis. Hypertens Res. 2019;42(3):362–73. https://doi.org/10.1038/s41440-018-0192-4.

    Article  PubMed  Google Scholar 

  131. Rangel-Salazar R, Wickstrom-Lindholm M, Aguilar-Salinas CA, Alvarado-Caudillo Y, Dossing KB, Esteller M, et al. Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages. BMC Genomics. 2011;12:582. https://doi.org/10.1186/1471-2164-12-582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Furigo IC, Melo HM, Lyra ESNM, Ramos-Lobo AM, Teixeira PDS, Buonfiglio DC, et al. Brain STAT5 signaling modulates learning and memory formation. Brain Struct Funct. 2018;223(5):2229–41. https://doi.org/10.1007/s00429-018-1627-z.

    Article  CAS  PubMed  Google Scholar 

  133. Shim KS, Ferrando-Miguel R, Lubec G. Aberrant protein expression of transcription factors BACH1 and ERG, both encoded on chromosome 21, in brains of patients with down syndrome and Alzheimer's disease. J Neural Transm Suppl. 2003;67:39–49.

    CAS  Google Scholar 

  134. Di Domenico F, Pupo G, Mancuso C, Barone E, Paolini F, Arena A, et al. Bach1 overexpression in down syndrome correlates with the alteration of the HO-1/BVR-a system: insights for transition to Alzheimer's disease. J Alzheimers Dis. 2015;44(4):1107–20. https://doi.org/10.3233/JAD-141254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Losing P, Niturad CE, Harrer M, Reckendorf CMZ, Schatz T, Sinske D, et al. SRF modulates seizure occurrence, activity induced gene transcription and hippocampal circuit reorganization in the mouse pilocarpine epilepsy model. Mol Brain. 2017;10(1):30. https://doi.org/10.1186/s13041-017-0310-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Zaina S, Heyn H, Carmona FJ, Varol N, Sayols S, Condom E, et al. DNA methylation map of human atherosclerosis. Circ Cardiovasc Genet. 2014;7(5):692–700. https://doi.org/10.1161/CIRCGENETICS.113.000441.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

D. Colín-Castelán was supported by a Consejo Nacional de Ciencia y Tecnología (CONACyT, Mexico) Postdoctoral Fellowship no. 2018-000005-01NACV-00163, within the “Estancias Posdoctorales Vinculadas al Fortalecimiento de la Calidad del Posgrado Nacional” program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dannia Colín-Castelán.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colín-Castelán, D., Zaina, S. Associations between atherosclerosis and neurological diseases, beyond ischemia-induced cerebral damage. Rev Endocr Metab Disord 20, 15–25 (2019). https://doi.org/10.1007/s11154-019-09486-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-019-09486-z

Keywords

Navigation