Knochenhauer ES, Key TJ, Kahsar-Miller M, Waggoner W, Boots LR, Azziz R. Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: A prospective study. J Clin Endocrinol Metab. 1998;83:3078–82.
CAS
Google Scholar
Van Hooff MHA, Voorhorst FJ, Kaptein MBH, Hirasing RA, Koppenaal C, Schoemaker J. Endocrine features of polycystic ovary syndrome in a random population sample of 14-16 year old adolescents. Hum Reprod. 1999;14:2223–9.
Article
PubMed
Google Scholar
Mechanick JI, Futterweit W. Hypothesis: Aberrant puberty and Stein-Leventhal syndrome. Int J Fertil. 1984;29:35–8.
CAS
PubMed
Google Scholar
de Medeiros SF, Yamamoto MMW, Bueno HB, Belizario D, Barbosa JS. Prevalence of elevated glycated hemoglobin concentrations in the polycystic ovary syndrome: Anthropometrical and metabolic relationship in Amazonian women. J Clin Med Res. 2014;6:278–86.
PubMed
PubMed Central
Google Scholar
Dunaif A, Segal KR, Shelley DR, Green G, Dobrjansky A, Licholai T. Evidence for distinctive and intrinsic defects in insulin action in polycystic ovary syndrome. Diabetes. 1992;41:1257–66.
Article
CAS
PubMed
Google Scholar
Lujan ME, Chizen DR, Peppin AK, Dhir A, Pierson RA. Assessment of ultrasonographic features of polycystic ovaries is associated with modest levels of inter-observer agreement. J Ovarian Res. 2009;2:1–9.
Article
Google Scholar
Stein IF, Leventhal ML. Amenorrhea associated with bilateral polycystic ovary syndromes. Am J Obstet Gynecol. 1935;29:181–91.
Article
Google Scholar
Zawadski JK, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: Towards a rational approach. In: AGJ D, Hasltine F, editors. Polycystic ovary syndrome. Boston: Black wall Scientific; 1992. p. 377–84.
Google Scholar
The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Grup. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19–25.
Google Scholar
Balen AH, Laven JS, Tan SL, Dewailly D. Ultrasound assessment of the polycystic ovary: International consensus definitions. Hum Reprod Update. 2003;9:505–14.
Article
PubMed
Google Scholar
Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. Androgen excess society. Positions statement: Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: An androgen excess society guideline. J Clin Endocrinol Metab. 2006;91:4237–45.
Fauser BC, Tarlatzis BC, Rebar RW, Legro RS, Balen AH, Lobo R, et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): The Amsterdam ESHRE/ASRM-sponsored 3rd PCOS consensus workshop group. Fertil Steril. 2012;97:28–38.
Article
PubMed
Google Scholar
Teede HJ, Misso ML, Boyle JA, Garad RM, McAllister V, Downes L, et al. Translation and implementation of the Australian-led PCOS guideline: Clinical summary and translation resources from the international evidence-based guideline for the assessment and Management of Polycystic Ovary Syndrome. International PCOS Network Med J Aust. 2018;209:S3–8.
Elting MW, Kwee J, KorsenTJ R-MLT, Schoemaker J. Aging women with polycystic ovary syndrome who achieve regular menstrual cycles have a smaller follicle cohort than those who continue to have irregular cycles. Fertil Steril. 2003;79:1154–60.
Article
PubMed
Google Scholar
Alsamarai S, Adams JM, Murphy MK, Post MD, Hayden DL, Hall JE, et al. Criteria for polycystic ovary syndrome as a function of age. J Clin Endocrinol Metab. 2009;94:4961–70.
Brown ZA, Louwers YV, Fong SL, Valkenburg O, Birnie E, de Jong FH, et al. The phenotype of polycystic ovary syndrome ameliorates with aging. Fertil Steril. 2011;96:1259–65.
Welt CK, Carmina E. Clinical review: Lifecycle of polycystic ovary syndrome (PCOS): from in utero to menopause. J Clin Endocrinol Metab. 2013;98:4629–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Panidis D, Macut D, Tziomalos K, Papadakis E, Mikhailidis K, Kandaraki EA, et al. Prevalence of metabolic syndrome in women with polycystic ovary syndrome. Clin Endocrinol. 2013;78:586–92.
Maroulis GB. Evaluation of hirsutism and hyperandrogenemia. Fertil Steril. 1981;36:273–305.
Article
CAS
PubMed
Google Scholar
de Medeiros SF. Tratamento da Síndrome dos Ovários Policísticos. PROAGO. Programa de Atualização em Ginecologia e Obstetrícia. Ciclo 1 Módulo. 4th ed. Porto Alegre: Médica Panamericana; 2004.
Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab. 2004;89:2745–9.
Article
CAS
Google Scholar
de Medeiros SF, Ângelo LCA, de Medeiros MAS, Banhara CR, Barbosa BB, Yamamoto MMW. The role of c-peptide as marker of cardiometabolic risk in women with polycystic ovary syndrome: A controlled study. J Clin Med Res. 2018;10:260–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Medeiros SF, Barbosa JS, Yamamoto MMW. Comparison of steroidogenic pathways among normoandrogenic and hyperandrogenic polycystic ovary syndrome patients and normal cycling women. J Obstet Gynaecol Res. 2015;41:254–63.
Article
CAS
PubMed
Google Scholar
Qin K, Ehrmann DA, Cox N, Refetoff S, Rosenfield RL. Identification of a functional polymorphism of the human type 5-17 beta-hydroxysteroid dehydrogenase gene associated with polycystic ovary syndrome. J Clin Endocrinol Metab. 2006;91:270–6.
Article
CAS
PubMed
Google Scholar
Gil-Junior AB, Rezende APR, Carmo AV, Duarte EI, Medeiros MMWY, de Medeiros SF. Adrenal androgen participation in the polycystic ovary syndrome. Rer Bras Gynecol Obstet. 2010;32:541–8.
Article
Google Scholar
Stanczyk PJ, Lai FA, Zissimopoulos S. Genetic and Biochemical Approaches for In Vivo and In Vitro Assessment of Protein Oligomerization: The Ryanodine Receptor Case Study. J Vis Exp. 2016;27(113).
Pasquali R, Zanotti L, Fanelli F, Mezzullo M, Fazzini A, Labate AMM, et al. Defining hyperandrogenism in women with polycystic ovary syndrome: A challenging perspective. J Clin Endocrinol Metab. 2016;101:2013–22.
Article
CAS
PubMed
Google Scholar
Kushnir MM, Rockwood AL, Roberts WL, Pattison EG, Owen WE, Bunker AM, et al. Development and performance evaluation of a tandem mass spectrometry assay for 4 adrenal steroids. Clin Chem. 2006;52:1559–67.
Legro RS, Schlaff WD, Diamond MP, Coutifaris C, Casson PR, Brzyski RG, et al. Total testosterone assays in women with polycystic ovary syndrome: Precision and correlation with hirsutism. J Clin Endocrinol Metab. 2010;95:5305–13.
Learchbaum E, Schwetz V, Rabe T, Giuliani A, Obermayer-Pietsch B. Hyperandrogenemia in polycystic ovary syndrome: Exploration of the role of free testosterone and androstenedione in metabolic phenotype. PLoS One. 2014;9:e108263.
Article
CAS
Google Scholar
Moran LJ, Luscombe-Marsh ND, Noakes M, Wittert GA, Keogh JB, Clifton PM. The satiating effect of dietary protein is unrelated to postprandial ghrelin secretion. J Clin Endocrinol Metab. 2005;90:5205–11.
Article
CAS
PubMed
Google Scholar
Nadaraja D, Sthaneshwar P, Razali N. Estabilishing the cut off values of androgen markers in the assessment of polycystic ovary syndrome. Malaysuan J Pathol. 2018;40:33–9.
CAS
Google Scholar
Moran LJ, Norman RJ, Teede HJ. Metabolic risk in PCOS and adiposity impact. Trends Endocrinol Metab. 2015;26:136–43.
Article
CAS
PubMed
Google Scholar
Van Santbrink EJ, Hop WC, Fauser BC. Classification of normogonadotropic infertility: Polycystic ovaries diagnosed by ultrasound versus endocrine characteristics of polycystic ovary syndrome. Fertil Steril. 1997;67:452–8.
Article
PubMed
Google Scholar
Silfen ME, Denburg MR, Manibo AM, Lobo RA, Jaffe R, Ferin M, et al. Early endocrine, metabolic and sonographic characteristics of polycystic ovary syndrome (PCOS): Comparison between nonobese and adolecents. J Clin Endocrinol Metab. 2003;88:4682–8.
Sung YA, Oh JY, Chung H, Lee H. Hyperandrogenemia is implicated in both the metabolic and reproductive morbidities of polycystic ovary syndrome. Fertil Steril. 2014;101:840–5.
Article
CAS
PubMed
Google Scholar
Carmina E, Gonzalez F, Chang L, Lobo RA. Reassessment of adrenal androgen secretion in women with polycystic ovary syndrome. Obstet Gynecol. 1995;85:971–6.
Article
CAS
PubMed
Google Scholar
Blumenfeld Z, Kaidar G, Zuckerman-Levin N, Dumin E, Knopf C, Hochberg Z. Cortisol-metabolizing enzymes in polycystic ovary syndrome. Clin Med Insights Reprod Health. 2016;10:9–13.
Article
PubMed
PubMed Central
Google Scholar
Doi SA, Al-Zaid M, Towers PA, Scott CJ, Al-Shoumer KA. Steroidogenic alterations and adrenal androgen excess in PCOS. Steroids. 2006;71:751–9.
Article
CAS
PubMed
Google Scholar
Suzuki T, Sasano H, Takeyama J, Kaneko C, Freije WA, Carr BR, et al. Developmental changes in steroidogenic enzymes in human postnatal adrenal cortex: Immunohistochemical studies. Clin Endocrinol. 2000;53:739–47.
Rainey WE, Nakamura Y. Regulation of the androgen biosynthesis. J Steroid Biochem Mol Biol. 2008;108:281–6.
Article
CAS
PubMed
Google Scholar
de Medeiros SF, Gil-Junior AB, Barbosa JS, Isaias ED, Yamamoto MMW. New insights into steroidogenesis in normo- and hyperandrogenic polycystic ovary syndrome patients. Arq Bras Endocrinol Metab. 2013;57:437–44.
Article
Google Scholar
Gilling-Smith C. StoryH, RogersV, franks S. Evidence for a primary abnormality of thecal cell steroidgenesis in the polycystic ovary syndrome. Clin Endocrinol. 1997;47:93–9.
Article
CAS
Google Scholar
McAllister JM, Kerin JFP, Trant JM, Estabrook RE, Maon JI, Waterman MR, et al. Regulation of cholesterol side-chain cleavage and 17α-hydroxylase/lyase activities in proliferatin theca interna cells in long term monolayer culture. Endocrinol. 1989;125:1959–66.
Article
CAS
Google Scholar
Nelson VL, Legro RS, Strauss JF, JM MA. Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol Endocrinol. 1999;13:946–57.
Article
CAS
PubMed
Google Scholar
Chang YT, Zhang L, Alkaddour HS, Mason JI, Lin K, Yang X, et al. Absence of molecular defect in the type II 3β-hydroxysteroid dehydrogenase (3β-HSD) gene in premature pubarche children and hirsute female patients with moderately decreased adrenal 3β-HSD activity. Pediatr Res. 1995;37:820–4.
Article
CAS
PubMed
Google Scholar
Ditkoff EC, Fruzzetti F, Chang L, Stancyzk FZ, Lobo RA. The impact of estrogen on adrenal androgen sensitivity and secretion in polycystic ovary syndrome. J Clin Endocrinol Metab. 1995;80:603–7.
CAS
PubMed
Google Scholar
Rosenfield RL, Barnes RB, Cara JF, Lucky AW. Dysregulation of cytochrome P450c 17 alpha as the cause of polycystic ovarian syndrome. Fertil Steril. 1990;53:785–91.
Article
CAS
PubMed
Google Scholar
Gonzalez F, Chang L, Horab T, Lobo RA. Evidence for heterogeneous etiologies of adrenal dysfunction in polycystic ovary syndrome. Fertil Steril. 1996;66:354–61.
Article
CAS
PubMed
Google Scholar
Miller WL. Steroidogenesis: Unanswered questions. Trends in Endocrinol Metab. 2017;28:771–93.
Article
CAS
Google Scholar
Garg D, Merhi Z. Relationship between advanced glycation end products and steroidogenesis in PCOS. Reprod Biol Endocrinol. 2016;14:71.
Zhang LH, Rodrigues H, Ohno S, Miller WL. Serine phosphorylation of human P450c17 increases 17,20lyase activity: Implications for adrenarche and the polycystic ovary syndrome. Proc Natl Acad Sci U S A. 1995;92:10619–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katagiri M, Kagawa N, Waterman MR. The role of cytochrome b5 in the biosynthesis of androgens by human P450c17. Arch Biochem Biophys. 1995;317:343–7.
Article
CAS
PubMed
Google Scholar
Moghetti P, Castello R, Negri C, Tosi F, Spiazzi GG, Brun E, et al. Insulin infusion amplifies 17-α hydroxycorticoteroid intermediate response to adrenocorticotropin in hyperandrogenic women. Apparent relative impairment of 17,20lyase activity. J Clin Endocrinol Metab. 1996;81:881–6.
Tee MK, Dong Q, Miller WL. Pathways leading to phosphorylation of P450c17 and to the posttranslational regulation of androgen biosynthesis. Endocrinology. 2008;149:2667–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Azziz R, Bradley EL Jr, Potter HD, Boots LR. Adrenal androgen excess in women: Lack of a role for 17-hydroxylase and 17,20-lyase dysregulation. J Clin Endocrinol Metab. 1995;80:400–5.
CAS
PubMed
Google Scholar
Nestler JE, Jakubowicz DJ. Decreases in ovarian cytochrome P450c17 alpha activity and serum free testosterone after reduction of insulin secretion in polycystic ovary syndrome. N Engl J Med. 1996;335:617–23.
Article
CAS
PubMed
Google Scholar
Nelson VL, Qin K, Rosenfield RL, Wood JR, Penning TM, Legro RS, et al. The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2001;86:5925–33.
Ehrmann DA, Barnes RB, Rosenfiel RL. Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Endocr Rev. 1995;16:322–53.
Article
CAS
PubMed
Google Scholar
Wichenheisser JK, Quinn PG, Nelson VL, Legro RS, Strauss JF, McAllister JM. Differential activity of the cytochrome P450 17alpha-hydroxylase and steroidogenic acute regulatory protein gene promoters in normal and polycystic ovary syndrome. J Clin Endocrinol Metb. 2000;85:2304–11.
Google Scholar
Gonzalez F, Hatala DA, Speroff L. Adrenal and ovarian steroid hormone responses to gonadotropin-releasing hormone agonist treatment in polycystic ovary syndrome. Am J Obstet Gynecol. 1991;165(3):535–45.
Article
CAS
PubMed
Google Scholar
Bayoumy HA, Althman NA. Adrenal contribution to polycystic ovary syndrome. Med Principles Pract. 2001;10:151–5.
Article
Google Scholar
Lin D, Black SM, Nagahama Y, Miller WL. Steroid 17α-hydroxylase and 17,20-lyase activities of P450c 17: Contributions of serine 106 and P450 reductase. Endocrinology. 1993;132:2498–506.
Article
CAS
PubMed
Google Scholar
de Medeiros SF, Ormond CM, de Medeiros MAS, de Souza SN, Banhara CR, Yamamoto MMW. Metabolic and endocrine connections of 17-hydroxypregnenolone in polycystic ovary syndrome women. Endo Connect. 2017;6:479–88.
Article
Google Scholar
Guido M, Romualdi D, Suriano R, Giuliani M, Costantini B, Apa R, et al. Effect of pioglitazone treatment on the adrenal androgen response to corticotrophin in obese patients with polycystic ovary syndrome. Hum Reprod. 2004;19:534–9.
Article
CAS
PubMed
Google Scholar
Lobo RA, Goebelsmann U. Evidence for reduced 3β-hydroxysteroid dehydrogenase activity in some hirsute women thought to have polycystic ovary syndrome. J Clin Endocrinol Metab. 1981;53:394–400.
Article
CAS
PubMed
Google Scholar
Doldi N, Grossi D, Destefani A, Gessi A, Ferrari A. Polycystic ovary syndrome: Evidence for reduced 3 beta-hydroxysteroid dehydrogenase gene expression in human luteinizing granulosa cells. Gynecol Endocrinol. 2000;14:32–7.
Article
CAS
PubMed
Google Scholar
Gibson M, Lackritz R, Schiff I, Tulchinsky D. Abnormal adrenal responses to adrenocorticotropic hormone in hyperandrogenic women. Fertil Steril. 1980;33:43–9.
Article
CAS
PubMed
Google Scholar
Eldar-Geva T, Hurwitz A, Vecsei P, Palti Z, Milwidsky A, Rösler A. Secondary biosynthetic defects in women with late-onset congenital adrenal hyperplasia. N Engl J Med. 1990;323:855–63.
Article
CAS
PubMed
Google Scholar
Rhéaume E, Lachance Y, Zhao H, Breton N, Dumont M, de Launoit Y, et al. Structure and expression of a new complementary DNA encoding almost exclusive 3β-hydroxysteroid dehydrogenase/∆
5−
∆
4 isomerase in human adrenals and gonads. Mol Endocrinol. 1991;5:1147–57.
Article
PubMed
Google Scholar
Schram P, Zerah M, Mani P, Jewelewicz R, Jaffe S, New MI. Nonclassical 3beta-hydroxysteroid dehydrogenase deficiency: A review of our experience with 25 female patients. Fertil Steril. 1992;58:129–36.
Article
CAS
PubMed
Google Scholar
Pang S, Carbunaru G, Haider A, Copeland KC, Chang YT, Lutfallah C, et al. Carriers for type II 3beta-hydroxysteroid dehydrogenase (HSD3B2) deficiency can only be identified by HSD3B2 genotype study and not by hormone test. Clin Endocrinol. 2003;58:323–31.
Pang SY, Lerner AJ, Stoner E, Levine LS, Oberfield SE, Engel I, et al. Late-onset adrenal steroid 3 beta-hydroxysteroid dehydrogenase deficiency a cause of hirsutism in pubertal and postpubertal women. J Clin Endocrinol Metab. 1985;60:428–39.
Article
CAS
PubMed
Google Scholar
Cobin RH, Futterweit W, Fiedler RP, Thornton JC. Adrenocorticotropic hormone testing in idiopathic hirsutism and polycystic ovarian disease: A test of limited usefulness. Fertil Steril. 1985;44:224–6.
Article
CAS
PubMed
Google Scholar
Benjamin F, Deutsch S, Saperstain H, Seltzer VL. Prevalence of and markers for the attenuated form of congenital adrenal hyperplasia and hiperprolactinemia masquerading as polycystic ovarian disease. Fertil Steril. 1986;46:215–21.
Article
CAS
PubMed
Google Scholar
Azziz R, Hincapie LA, Knochenhauer ES, Dewailly D, Fox L, Boots LR. Screening for 21-hydroxylase-deficient nonclassic adrenal hyperplasia among hyperandrogenic women: A prospective study. Fertil Steril. 1999;72:915–25.
Article
CAS
PubMed
Google Scholar
Pall M, Azziz R, Beires J, Pignatelli D. The phenotype of hirsute women: A comparison of polycystic ovary syndrome and 21-hydroxylase-deficient nonclassic adrenal hyperplasia. Fertil Steril. 2010;94:684–9.
Article
CAS
PubMed
Google Scholar
Trakakis E, Rizos D, Loghis C, Chryssikopoulos A, Spyropoulou M, Salamalekis E, et al. The prevalence of non-classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency in greek women with hirsutismo and polycystic ovary syndrome. Endocr J. 2008;55:33–9.
Article
CAS
PubMed
Google Scholar
Kelestimur F, Everest H, Dundar M, Tanriverdi F, White C, Witchel SF. The frequency of CYP 21 gene mutations in Turkish women with hyperandrogenism. Exp Clin Endocrinol Diabetes. 2009;117:205–8.
Article
CAS
PubMed
Google Scholar
Bouallouche A, Brerault JL, Fiet J, Julien R, Vermeulen C, Cathelineau G. Evidence for adrenal and/or ovarian dysfunction as a possible etiology of idiopathic hirsutism. Am J Obstet Gynecol. 1983;147:54–63.
Article
Google Scholar
Azziz R, Boots LR, Parker CR Jr, Bradley E, Zacur HA. 11b-hydroxylase deficiency in hyperandrogenism. Fertil Steril. 1991;55:733–41.
Article
CAS
PubMed
Google Scholar
Kelestimur F, Sahin Y, Ayata D, Tutus A. The prevalence of non-classic adrenal hyperplasia due to 11β-hydroxylase deficiency among hirsute women in a Turkish population. Clin Endocrinol. 1996;45:381–4.
Article
CAS
Google Scholar
Sahin Y, Keleştimur F. The frequency of late-onset 21-hydroxylase and 11 beta-hydroxylase deficiency in women with polycystic ovary syndrome. Eur J Endocrinol. 1997;137:670–4.
Article
CAS
PubMed
Google Scholar
Gambineri A, Vicennati V, Genghini S, Tomassoni F, Pagotto U, Pasquali R, et al. Genetic variation in 11β-hydroxysteroid dehydrogenase type 1 predicts adrenal hyperandrogenism among lean women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2006;91:2295–303.
Lucky AW, Rosenfield RL, McGuire J, Rudy S, Helke J. Adrenal androgen hyperrespnsiveness to adrenocorticotropin in women with acne and/or hirsutismo: Adrenal enzyme defects and exaggerated adrenarche. J Clin Endocrinol Metab. 1986;62:840–8.
Article
CAS
PubMed
Google Scholar
Dolfing JG, Tucker KE, Lem CM, Uittenbogaart J, Verzijl JC, Schweitzer DH. Low 11-deoxycortisol to cortisol conversion reflects extra-adrenal factors in the majority of women with normo-gonadotrophic normo-estrogenic infertility. Hum Reprod. 2003;18:333–7.
Article
CAS
PubMed
Google Scholar
Rask E, Walker BR, Soderberg S, Livingstone DE, Eliasson M, Johnson O, et al. Tissue-specific changes in peripheral cortisol metabolism in obese women: Increased adipose 11β-hydroxysteroid dehydrogenase type 1 activity. J Clin Endocrinol Metab. 2002;87:3330–6.
CAS
PubMed
Google Scholar
Moran C, Renteria JL, Moran S, Herrera J, Gonzalez S, Bermudez JA. Obesity differentially affects serum levels of androstenedione and testosterone in polycystic ovary syndrome. Fertil Steril. 2008;90:2310–7.
Article
CAS
PubMed
Google Scholar
Georgopoulos NA, Papadakis E, Armeni AK, Katsikis I, Roupas ND, Panidis D. Elevated serum androstenedione is associated with a more severe phenotype in women with polycystic ovary syndrome (PCOS). Hormones (Athens). 2014;13:213–21.
Article
Google Scholar
Münzker J, Lindheim L, Adaway J, Trummer C, Lerchbaum E, Pieber TR, et al. High salivary testosterone-to-androstenedione ratio and adverse metabolic phenotypes in women with polycystic ovary syndrome. Clin Endocrinol (Oxf). 2016;86:567–75.
Article
CAS
Google Scholar
Marioli DJ, Saltamavros AD, Vervita V, Koika V, Adonakis G, Decavalas G, et al. Association of the 17-hydroxysteroid dehydrogenase type 5 gene polymorphism (−71A/G HSD17B5 SNP) with hyperandrogenemia in polycystic ovary syndrome (PCOS). Fertil Steril. 2009;92:648–52.
Goodarzi MO, Jones MR, Antoine HJ, Pall M, Chen YI, Azziz R. Nonreplication of the type 5 17β-hydroxysteroid dehydrogenase gene association with polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93:300–3.
Article
CAS
PubMed
Google Scholar
Barbieri RI. Human ovarian 17-ketosteroid oxiredutase: Unique characteristics the granulosa-luteal cell and stromal enzyme. Am J Obstet Gynecol. 1992;166:1117–23.
Article
CAS
PubMed
Google Scholar
Pittaway DE, Andersen RN, Coleman SA, Givens JR, Wiser WL. Human ovarian 17β-hydroxysteroid oxidoredutase activity: A comparison of normal and polycystic ovarian tissues. J Clin Endocrinol Metab. 1983;56:715–9.
Article
CAS
PubMed
Google Scholar
Jakimiuk AJ, Weitsman SR, Brzechffa PR, Magoffin DA. Aromatase mRNA expression. In individual follicles from polycystic ovaries. Mol Hum Reprod. 1998;4:1–8.
Article
CAS
PubMed
Google Scholar
Wang H, Li Q, Wang T, Yang G, Wang Y, Zhang X, et al. A common polymorphism in the human aromatase gene alters the risk for polycystic ovary syndrome and modifies aromatase activity in vitro. Mol Hum Reprod. 2011;17:386–91.
Hurwitz A, Brautbar C, Milwidsky A, Vecsei P, Milewicz A, Navot D, et al. Combined 21- and 11 beta-hydroxylase deficiency in familial congenital adrenal hyperplasia. J Clin Endocrinol Metab. 1985;60:631–8.
Article
CAS
PubMed
Google Scholar
Sharma DC, Forchielli E, Dorfman RI. Inhibition of enzymatic steroid 11β-hydroxylation by androgens. J Biol Chem. 1963;238:572–5.
CAS
Google Scholar