Skip to main content

Differential activity of the corticosteroidogenic enzymes in normal cycling women and women with polycystic ovary syndrome

Abstract

The phenotypic complex of patients with definitive diagnosis of polycystic ovary syndrome may include patients with normal and high serum androgen levels. Patients with hyperandrogenemia seem to present higher risk of changes to the glucose and lipid metabolism and, eventually, of earlier development of cardiovascular diseases than normoandrogenemic patients or healthy women. From a laboratory and clinical point of view, it is important to check androgen levels in patients with polycystic ovary syndrome. The identification of partial insufficiency of a given corticosteroidogenic enzyme is also relevant to understand the physiopathology of androgen increase in polycystic ovary syndrome. Therefore, the present review analyzes the functions of the different enzymes involved in the ovary and adrenal steroidogenesis in normal cycling women and in patients with polycystic ovary syndrome. In addition, it emphasizes appropriate reason for investigating eventual enzyme deficiency to provide rationale for prescription and follow-up of women with polycystic ovary syndrome.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Knochenhauer ES, Key TJ, Kahsar-Miller M, Waggoner W, Boots LR, Azziz R. Prevalence of the polycystic ovary syndrome in unselected black and white women of the southeastern United States: A prospective study. J Clin Endocrinol Metab. 1998;83:3078–82.

    CAS  Google Scholar 

  2. Van Hooff MHA, Voorhorst FJ, Kaptein MBH, Hirasing RA, Koppenaal C, Schoemaker J. Endocrine features of polycystic ovary syndrome in a random population sample of 14-16 year old adolescents. Hum Reprod. 1999;14:2223–9.

    Article  PubMed  Google Scholar 

  3. Mechanick JI, Futterweit W. Hypothesis: Aberrant puberty and Stein-Leventhal syndrome. Int J Fertil. 1984;29:35–8.

    CAS  PubMed  Google Scholar 

  4. de Medeiros SF, Yamamoto MMW, Bueno HB, Belizario D, Barbosa JS. Prevalence of elevated glycated hemoglobin concentrations in the polycystic ovary syndrome: Anthropometrical and metabolic relationship in Amazonian women. J Clin Med Res. 2014;6:278–86.

    PubMed  PubMed Central  Google Scholar 

  5. Dunaif A, Segal KR, Shelley DR, Green G, Dobrjansky A, Licholai T. Evidence for distinctive and intrinsic defects in insulin action in polycystic ovary syndrome. Diabetes. 1992;41:1257–66.

    Article  CAS  PubMed  Google Scholar 

  6. Lujan ME, Chizen DR, Peppin AK, Dhir A, Pierson RA. Assessment of ultrasonographic features of polycystic ovaries is associated with modest levels of inter-observer agreement. J Ovarian Res. 2009;2:1–9.

    Article  Google Scholar 

  7. Stein IF, Leventhal ML. Amenorrhea associated with bilateral polycystic ovary syndromes. Am J Obstet Gynecol. 1935;29:181–91.

    Article  Google Scholar 

  8. Zawadski JK, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: Towards a rational approach. In: AGJ D, Hasltine F, editors. Polycystic ovary syndrome. Boston: Black wall Scientific; 1992. p. 377–84.

    Google Scholar 

  9. The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Grup. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19–25.

    Google Scholar 

  10. Balen AH, Laven JS, Tan SL, Dewailly D. Ultrasound assessment of the polycystic ovary: International consensus definitions. Hum Reprod Update. 2003;9:505–14.

    Article  PubMed  Google Scholar 

  11. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, et al. Androgen excess society. Positions statement: Criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: An androgen excess society guideline. J Clin Endocrinol Metab. 2006;91:4237–45.

  12. Fauser BC, Tarlatzis BC, Rebar RW, Legro RS, Balen AH, Lobo R, et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): The Amsterdam ESHRE/ASRM-sponsored 3rd PCOS consensus workshop group. Fertil Steril. 2012;97:28–38.

    Article  PubMed  Google Scholar 

  13. Teede HJ, Misso ML, Boyle JA, Garad RM, McAllister V, Downes L, et al. Translation and implementation of the Australian-led PCOS guideline: Clinical summary and translation resources from the international evidence-based guideline for the assessment and Management of Polycystic Ovary Syndrome. International PCOS Network Med J Aust. 2018;209:S3–8.

  14. Elting MW, Kwee J, KorsenTJ R-MLT, Schoemaker J. Aging women with polycystic ovary syndrome who achieve regular menstrual cycles have a smaller follicle cohort than those who continue to have irregular cycles. Fertil Steril. 2003;79:1154–60.

    Article  PubMed  Google Scholar 

  15. Alsamarai S, Adams JM, Murphy MK, Post MD, Hayden DL, Hall JE, et al. Criteria for polycystic ovary syndrome as a function of age. J Clin Endocrinol Metab. 2009;94:4961–70.

  16. Brown ZA, Louwers YV, Fong SL, Valkenburg O, Birnie E, de Jong FH, et al. The phenotype of polycystic ovary syndrome ameliorates with aging. Fertil Steril. 2011;96:1259–65.

  17. Welt CK, Carmina E. Clinical review: Lifecycle of polycystic ovary syndrome (PCOS): from in utero to menopause. J Clin Endocrinol Metab. 2013;98:4629–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Panidis D, Macut D, Tziomalos K, Papadakis E, Mikhailidis K, Kandaraki EA, et al. Prevalence of metabolic syndrome in women with polycystic ovary syndrome. Clin Endocrinol. 2013;78:586–92.

  19. Maroulis GB. Evaluation of hirsutism and hyperandrogenemia. Fertil Steril. 1981;36:273–305.

    Article  CAS  PubMed  Google Scholar 

  20. de Medeiros SF. Tratamento da Síndrome dos Ovários Policísticos. PROAGO. Programa de Atualização em Ginecologia e Obstetrícia. Ciclo 1 Módulo. 4th ed. Porto Alegre: Médica Panamericana; 2004.

  21. Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab. 2004;89:2745–9.

    Article  CAS  Google Scholar 

  22. de Medeiros SF, Ângelo LCA, de Medeiros MAS, Banhara CR, Barbosa BB, Yamamoto MMW. The role of c-peptide as marker of cardiometabolic risk in women with polycystic ovary syndrome: A controlled study. J Clin Med Res. 2018;10:260–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. de Medeiros SF, Barbosa JS, Yamamoto MMW. Comparison of steroidogenic pathways among normoandrogenic and hyperandrogenic polycystic ovary syndrome patients and normal cycling women. J Obstet Gynaecol Res. 2015;41:254–63.

    Article  CAS  PubMed  Google Scholar 

  24. Qin K, Ehrmann DA, Cox N, Refetoff S, Rosenfield RL. Identification of a functional polymorphism of the human type 5-17 beta-hydroxysteroid dehydrogenase gene associated with polycystic ovary syndrome. J Clin Endocrinol Metab. 2006;91:270–6.

    Article  CAS  PubMed  Google Scholar 

  25. Gil-Junior AB, Rezende APR, Carmo AV, Duarte EI, Medeiros MMWY, de Medeiros SF. Adrenal androgen participation in the polycystic ovary syndrome. Rer Bras Gynecol Obstet. 2010;32:541–8.

    Article  Google Scholar 

  26. Stanczyk PJ, Lai FA, Zissimopoulos S. Genetic and Biochemical Approaches for In Vivo and In Vitro Assessment of Protein Oligomerization: The Ryanodine Receptor Case Study. J Vis Exp. 2016;27(113).

  27. Pasquali R, Zanotti L, Fanelli F, Mezzullo M, Fazzini A, Labate AMM, et al. Defining hyperandrogenism in women with polycystic ovary syndrome: A challenging perspective. J Clin Endocrinol Metab. 2016;101:2013–22.

    Article  CAS  PubMed  Google Scholar 

  28. Kushnir MM, Rockwood AL, Roberts WL, Pattison EG, Owen WE, Bunker AM, et al. Development and performance evaluation of a tandem mass spectrometry assay for 4 adrenal steroids. Clin Chem. 2006;52:1559–67.

  29. Legro RS, Schlaff WD, Diamond MP, Coutifaris C, Casson PR, Brzyski RG, et al. Total testosterone assays in women with polycystic ovary syndrome: Precision and correlation with hirsutism. J Clin Endocrinol Metab. 2010;95:5305–13.

  30. Learchbaum E, Schwetz V, Rabe T, Giuliani A, Obermayer-Pietsch B. Hyperandrogenemia in polycystic ovary syndrome: Exploration of the role of free testosterone and androstenedione in metabolic phenotype. PLoS One. 2014;9:e108263.

    Article  CAS  Google Scholar 

  31. Moran LJ, Luscombe-Marsh ND, Noakes M, Wittert GA, Keogh JB, Clifton PM. The satiating effect of dietary protein is unrelated to postprandial ghrelin secretion. J Clin Endocrinol Metab. 2005;90:5205–11.

    Article  CAS  PubMed  Google Scholar 

  32. Nadaraja D, Sthaneshwar P, Razali N. Estabilishing the cut off values of androgen markers in the assessment of polycystic ovary syndrome. Malaysuan J Pathol. 2018;40:33–9.

    CAS  Google Scholar 

  33. Moran LJ, Norman RJ, Teede HJ. Metabolic risk in PCOS and adiposity impact. Trends Endocrinol Metab. 2015;26:136–43.

    Article  CAS  PubMed  Google Scholar 

  34. Van Santbrink EJ, Hop WC, Fauser BC. Classification of normogonadotropic infertility: Polycystic ovaries diagnosed by ultrasound versus endocrine characteristics of polycystic ovary syndrome. Fertil Steril. 1997;67:452–8.

    Article  PubMed  Google Scholar 

  35. Silfen ME, Denburg MR, Manibo AM, Lobo RA, Jaffe R, Ferin M, et al. Early endocrine, metabolic and sonographic characteristics of polycystic ovary syndrome (PCOS): Comparison between nonobese and adolecents. J Clin Endocrinol Metab. 2003;88:4682–8.

  36. Sung YA, Oh JY, Chung H, Lee H. Hyperandrogenemia is implicated in both the metabolic and reproductive morbidities of polycystic ovary syndrome. Fertil Steril. 2014;101:840–5.

    Article  CAS  PubMed  Google Scholar 

  37. Carmina E, Gonzalez F, Chang L, Lobo RA. Reassessment of adrenal androgen secretion in women with polycystic ovary syndrome. Obstet Gynecol. 1995;85:971–6.

    Article  CAS  PubMed  Google Scholar 

  38. Blumenfeld Z, Kaidar G, Zuckerman-Levin N, Dumin E, Knopf C, Hochberg Z. Cortisol-metabolizing enzymes in polycystic ovary syndrome. Clin Med Insights Reprod Health. 2016;10:9–13.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Doi SA, Al-Zaid M, Towers PA, Scott CJ, Al-Shoumer KA. Steroidogenic alterations and adrenal androgen excess in PCOS. Steroids. 2006;71:751–9.

    Article  CAS  PubMed  Google Scholar 

  40. Suzuki T, Sasano H, Takeyama J, Kaneko C, Freije WA, Carr BR, et al. Developmental changes in steroidogenic enzymes in human postnatal adrenal cortex: Immunohistochemical studies. Clin Endocrinol. 2000;53:739–47.

  41. Rainey WE, Nakamura Y. Regulation of the androgen biosynthesis. J Steroid Biochem Mol Biol. 2008;108:281–6.

    Article  CAS  PubMed  Google Scholar 

  42. de Medeiros SF, Gil-Junior AB, Barbosa JS, Isaias ED, Yamamoto MMW. New insights into steroidogenesis in normo- and hyperandrogenic polycystic ovary syndrome patients. Arq Bras Endocrinol Metab. 2013;57:437–44.

    Article  Google Scholar 

  43. Gilling-Smith C. StoryH, RogersV, franks S. Evidence for a primary abnormality of thecal cell steroidgenesis in the polycystic ovary syndrome. Clin Endocrinol. 1997;47:93–9.

    Article  CAS  Google Scholar 

  44. McAllister JM, Kerin JFP, Trant JM, Estabrook RE, Maon JI, Waterman MR, et al. Regulation of cholesterol side-chain cleavage and 17α-hydroxylase/lyase activities in proliferatin theca interna cells in long term monolayer culture. Endocrinol. 1989;125:1959–66.

    Article  CAS  Google Scholar 

  45. Nelson VL, Legro RS, Strauss JF, JM MA. Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol Endocrinol. 1999;13:946–57.

    Article  CAS  PubMed  Google Scholar 

  46. Chang YT, Zhang L, Alkaddour HS, Mason JI, Lin K, Yang X, et al. Absence of molecular defect in the type II 3β-hydroxysteroid dehydrogenase (3β-HSD) gene in premature pubarche children and hirsute female patients with moderately decreased adrenal 3β-HSD activity. Pediatr Res. 1995;37:820–4.

    Article  CAS  PubMed  Google Scholar 

  47. Ditkoff EC, Fruzzetti F, Chang L, Stancyzk FZ, Lobo RA. The impact of estrogen on adrenal androgen sensitivity and secretion in polycystic ovary syndrome. J Clin Endocrinol Metab. 1995;80:603–7.

    CAS  PubMed  Google Scholar 

  48. Rosenfield RL, Barnes RB, Cara JF, Lucky AW. Dysregulation of cytochrome P450c 17 alpha as the cause of polycystic ovarian syndrome. Fertil Steril. 1990;53:785–91.

    Article  CAS  PubMed  Google Scholar 

  49. Gonzalez F, Chang L, Horab T, Lobo RA. Evidence for heterogeneous etiologies of adrenal dysfunction in polycystic ovary syndrome. Fertil Steril. 1996;66:354–61.

    Article  CAS  PubMed  Google Scholar 

  50. Miller WL. Steroidogenesis: Unanswered questions. Trends in Endocrinol Metab. 2017;28:771–93.

    Article  CAS  Google Scholar 

  51. Garg D, Merhi Z. Relationship between advanced glycation end products and steroidogenesis in PCOS. Reprod Biol Endocrinol. 2016;14:71.

  52. Zhang LH, Rodrigues H, Ohno S, Miller WL. Serine phosphorylation of human P450c17 increases 17,20lyase activity: Implications for adrenarche and the polycystic ovary syndrome. Proc Natl Acad Sci U S A. 1995;92:10619–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Katagiri M, Kagawa N, Waterman MR. The role of cytochrome b5 in the biosynthesis of androgens by human P450c17. Arch Biochem Biophys. 1995;317:343–7.

    Article  CAS  PubMed  Google Scholar 

  54. Moghetti P, Castello R, Negri C, Tosi F, Spiazzi GG, Brun E, et al. Insulin infusion amplifies 17-α hydroxycorticoteroid intermediate response to adrenocorticotropin in hyperandrogenic women. Apparent relative impairment of 17,20lyase activity. J Clin Endocrinol Metab. 1996;81:881–6.

  55. Tee MK, Dong Q, Miller WL. Pathways leading to phosphorylation of P450c17 and to the posttranslational regulation of androgen biosynthesis. Endocrinology. 2008;149:2667–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Azziz R, Bradley EL Jr, Potter HD, Boots LR. Adrenal androgen excess in women: Lack of a role for 17-hydroxylase and 17,20-lyase dysregulation. J Clin Endocrinol Metab. 1995;80:400–5.

    CAS  PubMed  Google Scholar 

  57. Nestler JE, Jakubowicz DJ. Decreases in ovarian cytochrome P450c17 alpha activity and serum free testosterone after reduction of insulin secretion in polycystic ovary syndrome. N Engl J Med. 1996;335:617–23.

    Article  CAS  PubMed  Google Scholar 

  58. Nelson VL, Qin K, Rosenfield RL, Wood JR, Penning TM, Legro RS, et al. The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2001;86:5925–33.

  59. Ehrmann DA, Barnes RB, Rosenfiel RL. Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Endocr Rev. 1995;16:322–53.

    Article  CAS  PubMed  Google Scholar 

  60. Wichenheisser JK, Quinn PG, Nelson VL, Legro RS, Strauss JF, McAllister JM. Differential activity of the cytochrome P450 17alpha-hydroxylase and steroidogenic acute regulatory protein gene promoters in normal and polycystic ovary syndrome. J Clin Endocrinol Metb. 2000;85:2304–11.

    Google Scholar 

  61. Gonzalez F, Hatala DA, Speroff L. Adrenal and ovarian steroid hormone responses to gonadotropin-releasing hormone agonist treatment in polycystic ovary syndrome. Am J Obstet Gynecol. 1991;165(3):535–45.

    Article  CAS  PubMed  Google Scholar 

  62. Bayoumy HA, Althman NA. Adrenal contribution to polycystic ovary syndrome. Med Principles Pract. 2001;10:151–5.

    Article  Google Scholar 

  63. Lin D, Black SM, Nagahama Y, Miller WL. Steroid 17α-hydroxylase and 17,20-lyase activities of P450c 17: Contributions of serine 106 and P450 reductase. Endocrinology. 1993;132:2498–506.

    Article  CAS  PubMed  Google Scholar 

  64. de Medeiros SF, Ormond CM, de Medeiros MAS, de Souza SN, Banhara CR, Yamamoto MMW. Metabolic and endocrine connections of 17-hydroxypregnenolone in polycystic ovary syndrome women. Endo Connect. 2017;6:479–88.

    Article  Google Scholar 

  65. Guido M, Romualdi D, Suriano R, Giuliani M, Costantini B, Apa R, et al. Effect of pioglitazone treatment on the adrenal androgen response to corticotrophin in obese patients with polycystic ovary syndrome. Hum Reprod. 2004;19:534–9.

    Article  CAS  PubMed  Google Scholar 

  66. Lobo RA, Goebelsmann U. Evidence for reduced 3β-hydroxysteroid dehydrogenase activity in some hirsute women thought to have polycystic ovary syndrome. J Clin Endocrinol Metab. 1981;53:394–400.

    Article  CAS  PubMed  Google Scholar 

  67. Doldi N, Grossi D, Destefani A, Gessi A, Ferrari A. Polycystic ovary syndrome: Evidence for reduced 3 beta-hydroxysteroid dehydrogenase gene expression in human luteinizing granulosa cells. Gynecol Endocrinol. 2000;14:32–7.

    Article  CAS  PubMed  Google Scholar 

  68. Gibson M, Lackritz R, Schiff I, Tulchinsky D. Abnormal adrenal responses to adrenocorticotropic hormone in hyperandrogenic women. Fertil Steril. 1980;33:43–9.

    Article  CAS  PubMed  Google Scholar 

  69. Eldar-Geva T, Hurwitz A, Vecsei P, Palti Z, Milwidsky A, Rösler A. Secondary biosynthetic defects in women with late-onset congenital adrenal hyperplasia. N Engl J Med. 1990;323:855–63.

    Article  CAS  PubMed  Google Scholar 

  70. Rhéaume E, Lachance Y, Zhao H, Breton N, Dumont M, de Launoit Y, et al. Structure and expression of a new complementary DNA encoding almost exclusive 3β-hydroxysteroid dehydrogenase/ 5− 4 isomerase in human adrenals and gonads. Mol Endocrinol. 1991;5:1147–57.

    Article  PubMed  Google Scholar 

  71. Schram P, Zerah M, Mani P, Jewelewicz R, Jaffe S, New MI. Nonclassical 3beta-hydroxysteroid dehydrogenase deficiency: A review of our experience with 25 female patients. Fertil Steril. 1992;58:129–36.

    Article  CAS  PubMed  Google Scholar 

  72. Pang S, Carbunaru G, Haider A, Copeland KC, Chang YT, Lutfallah C, et al. Carriers for type II 3beta-hydroxysteroid dehydrogenase (HSD3B2) deficiency can only be identified by HSD3B2 genotype study and not by hormone test. Clin Endocrinol. 2003;58:323–31.

  73. Pang SY, Lerner AJ, Stoner E, Levine LS, Oberfield SE, Engel I, et al. Late-onset adrenal steroid 3 beta-hydroxysteroid dehydrogenase deficiency a cause of hirsutism in pubertal and postpubertal women. J Clin Endocrinol Metab. 1985;60:428–39.

    Article  CAS  PubMed  Google Scholar 

  74. Cobin RH, Futterweit W, Fiedler RP, Thornton JC. Adrenocorticotropic hormone testing in idiopathic hirsutism and polycystic ovarian disease: A test of limited usefulness. Fertil Steril. 1985;44:224–6.

    Article  CAS  PubMed  Google Scholar 

  75. Benjamin F, Deutsch S, Saperstain H, Seltzer VL. Prevalence of and markers for the attenuated form of congenital adrenal hyperplasia and hiperprolactinemia masquerading as polycystic ovarian disease. Fertil Steril. 1986;46:215–21.

    Article  CAS  PubMed  Google Scholar 

  76. Azziz R, Hincapie LA, Knochenhauer ES, Dewailly D, Fox L, Boots LR. Screening for 21-hydroxylase-deficient nonclassic adrenal hyperplasia among hyperandrogenic women: A prospective study. Fertil Steril. 1999;72:915–25.

    Article  CAS  PubMed  Google Scholar 

  77. Pall M, Azziz R, Beires J, Pignatelli D. The phenotype of hirsute women: A comparison of polycystic ovary syndrome and 21-hydroxylase-deficient nonclassic adrenal hyperplasia. Fertil Steril. 2010;94:684–9.

    Article  CAS  PubMed  Google Scholar 

  78. Trakakis E, Rizos D, Loghis C, Chryssikopoulos A, Spyropoulou M, Salamalekis E, et al. The prevalence of non-classical congenital adrenal hyperplasia due to 21-hydroxylase deficiency in greek women with hirsutismo and polycystic ovary syndrome. Endocr J. 2008;55:33–9.

    Article  CAS  PubMed  Google Scholar 

  79. Kelestimur F, Everest H, Dundar M, Tanriverdi F, White C, Witchel SF. The frequency of CYP 21 gene mutations in Turkish women with hyperandrogenism. Exp Clin Endocrinol Diabetes. 2009;117:205–8.

    Article  CAS  PubMed  Google Scholar 

  80. Bouallouche A, Brerault JL, Fiet J, Julien R, Vermeulen C, Cathelineau G. Evidence for adrenal and/or ovarian dysfunction as a possible etiology of idiopathic hirsutism. Am J Obstet Gynecol. 1983;147:54–63.

    Article  Google Scholar 

  81. Azziz R, Boots LR, Parker CR Jr, Bradley E, Zacur HA. 11b-hydroxylase deficiency in hyperandrogenism. Fertil Steril. 1991;55:733–41.

    Article  CAS  PubMed  Google Scholar 

  82. Kelestimur F, Sahin Y, Ayata D, Tutus A. The prevalence of non-classic adrenal hyperplasia due to 11β-hydroxylase deficiency among hirsute women in a Turkish population. Clin Endocrinol. 1996;45:381–4.

    Article  CAS  Google Scholar 

  83. Sahin Y, Keleştimur F. The frequency of late-onset 21-hydroxylase and 11 beta-hydroxylase deficiency in women with polycystic ovary syndrome. Eur J Endocrinol. 1997;137:670–4.

    Article  CAS  PubMed  Google Scholar 

  84. Gambineri A, Vicennati V, Genghini S, Tomassoni F, Pagotto U, Pasquali R, et al. Genetic variation in 11β-hydroxysteroid dehydrogenase type 1 predicts adrenal hyperandrogenism among lean women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2006;91:2295–303.

  85. Lucky AW, Rosenfield RL, McGuire J, Rudy S, Helke J. Adrenal androgen hyperrespnsiveness to adrenocorticotropin in women with acne and/or hirsutismo: Adrenal enzyme defects and exaggerated adrenarche. J Clin Endocrinol Metab. 1986;62:840–8.

    Article  CAS  PubMed  Google Scholar 

  86. Dolfing JG, Tucker KE, Lem CM, Uittenbogaart J, Verzijl JC, Schweitzer DH. Low 11-deoxycortisol to cortisol conversion reflects extra-adrenal factors in the majority of women with normo-gonadotrophic normo-estrogenic infertility. Hum Reprod. 2003;18:333–7.

    Article  CAS  PubMed  Google Scholar 

  87. Rask E, Walker BR, Soderberg S, Livingstone DE, Eliasson M, Johnson O, et al. Tissue-specific changes in peripheral cortisol metabolism in obese women: Increased adipose 11β-hydroxysteroid dehydrogenase type 1 activity. J Clin Endocrinol Metab. 2002;87:3330–6.

    CAS  PubMed  Google Scholar 

  88. Moran C, Renteria JL, Moran S, Herrera J, Gonzalez S, Bermudez JA. Obesity differentially affects serum levels of androstenedione and testosterone in polycystic ovary syndrome. Fertil Steril. 2008;90:2310–7.

    Article  CAS  PubMed  Google Scholar 

  89. Georgopoulos NA, Papadakis E, Armeni AK, Katsikis I, Roupas ND, Panidis D. Elevated serum androstenedione is associated with a more severe phenotype in women with polycystic ovary syndrome (PCOS). Hormones (Athens). 2014;13:213–21.

    Article  Google Scholar 

  90. Münzker J, Lindheim L, Adaway J, Trummer C, Lerchbaum E, Pieber TR, et al. High salivary testosterone-to-androstenedione ratio and adverse metabolic phenotypes in women with polycystic ovary syndrome. Clin Endocrinol (Oxf). 2016;86:567–75.

    Article  CAS  Google Scholar 

  91. Marioli DJ, Saltamavros AD, Vervita V, Koika V, Adonakis G, Decavalas G, et al. Association of the 17-hydroxysteroid dehydrogenase type 5 gene polymorphism (−71A/G HSD17B5 SNP) with hyperandrogenemia in polycystic ovary syndrome (PCOS). Fertil Steril. 2009;92:648–52.

  92. Goodarzi MO, Jones MR, Antoine HJ, Pall M, Chen YI, Azziz R. Nonreplication of the type 5 17β-hydroxysteroid dehydrogenase gene association with polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93:300–3.

    Article  CAS  PubMed  Google Scholar 

  93. Barbieri RI. Human ovarian 17-ketosteroid oxiredutase: Unique characteristics the granulosa-luteal cell and stromal enzyme. Am J Obstet Gynecol. 1992;166:1117–23.

    Article  CAS  PubMed  Google Scholar 

  94. Pittaway DE, Andersen RN, Coleman SA, Givens JR, Wiser WL. Human ovarian 17β-hydroxysteroid oxidoredutase activity: A comparison of normal and polycystic ovarian tissues. J Clin Endocrinol Metab. 1983;56:715–9.

    Article  CAS  PubMed  Google Scholar 

  95. Jakimiuk AJ, Weitsman SR, Brzechffa PR, Magoffin DA. Aromatase mRNA expression. In individual follicles from polycystic ovaries. Mol Hum Reprod. 1998;4:1–8.

    Article  CAS  PubMed  Google Scholar 

  96. Wang H, Li Q, Wang T, Yang G, Wang Y, Zhang X, et al. A common polymorphism in the human aromatase gene alters the risk for polycystic ovary syndrome and modifies aromatase activity in vitro. Mol Hum Reprod. 2011;17:386–91.

  97. Hurwitz A, Brautbar C, Milwidsky A, Vecsei P, Milewicz A, Navot D, et al. Combined 21- and 11 beta-hydroxylase deficiency in familial congenital adrenal hyperplasia. J Clin Endocrinol Metab. 1985;60:631–8.

    Article  CAS  PubMed  Google Scholar 

  98. Sharma DC, Forchielli E, Dorfman RI. Inhibition of enzymatic steroid 11β-hydroxylation by androgens. J Biol Chem. 1963;238:572–5.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastião Freitas de Medeiros.

Ethics declarations

Conflict of interest

The authors fully declare there is no either any financial or other conflict of interest that could be perceived as prejudicing the impartiality of this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, M.M.W., de Medeiros, S.F. Differential activity of the corticosteroidogenic enzymes in normal cycling women and women with polycystic ovary syndrome. Rev Endocr Metab Disord 20, 3–13 (2019). https://doi.org/10.1007/s11154-019-09482-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-019-09482-3

Keywords

  • Polycystic ovary syndrome
  • Hyperandrogenism
  • Enzymes
  • Steroid hydroxylases