Skip to main content

Advertisement

Log in

Novel insights into the pathophysiology and clinical aspects of diabetic nephropathy

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Diabetic nephropathy (DN) is a well-described complication of diabetes mellitus and the leading cause of end stage renal disease (ESRD). Although increased albuminuria has been the gold standard for screening, data suggests that renal damage starts long before the onset of clinically apparent increases in macro and even micro-albuminuria. Clinical practice guidelines for the prevention of DN have been traditionally focused on the control of serum glucose, blood pressure and dyslipidemia, with some focus on the renin-angiotensin-aldosterone system (RAAS) as a main target for successful therapy. Recent evidence has led to a better understanding of the underlying mechanisms of the pathophysiology of this disease and suggests that various novels pathways can be targeted to delay and even prevent the progression of DN. Hence a more comprehensive therapeutic approach to therapy is on the horizon, carrying the promise for a more successful and impactful management. This review will highlight new insights into the pathophysiology, clinical aspects and future diagnostic and therapeutic modalities for DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang SCW, Chan GCW, Lai KN. Recent advances in managing and understanding diabetic nephropathy. F1000Research. 2016;5:1044.

    Article  Google Scholar 

  2. Sheira G, Noreldin N, Tamer A, Saad M. Urinary biomarker N-acetyl-β-D-glucosaminidase can predict severity of renal damage in diabetic nephropathy. J Diabetes Metab Disord. 2015;14:4.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pugliese G. Updating the natural history of diabetic nephropathy. Acta Diabetol. 2014;51:905–15.

    Article  CAS  PubMed  Google Scholar 

  4. Kitada M, Ogura Y, Koya D. Rodent models of diabetic nephropathy: their utility and limitations. Int J Nephrol Renov Dis. 2016;9:279–90.

    Article  Google Scholar 

  5. Tuttle KR, et al. Diabetic kidney disease: a report from an ADA consensus conference. Am J Kidney Dis. 2014;64:510–33.

    Article  PubMed  Google Scholar 

  6. Grassi G, Mancia G, Nilsson PM. Specific blood pressure targets for patients with diabetic nephropathy? Diabetes Care. 2016;39:S228–33.

    Article  PubMed  Google Scholar 

  7. Arieff, A. I. Diabetic Nephropathy and Treatment of Hypertension. Endotext. South Dartmouth, MDText.com, Inc. (2000)

  8. Fioretto P, Steffes MW, Brown DM, Mauer SM. An overview of renal pathology in insulin-dependent diabetes mellitus in relationship to altered glomerular hemodynamics. Am J Kidney Dis. 1992;20:549–58.

    Article  CAS  PubMed  Google Scholar 

  9. Tervaert TWC, et al. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010;21:556–63.

    Article  PubMed  Google Scholar 

  10. Makita Z, et al. Advanced glycosylation end products in patients with diabetic nephropathy. N Engl J Med. 1991;325:836–42.

    Article  CAS  PubMed  Google Scholar 

  11. Zhuang A, Forbes JM. Diabetic kidney disease: a role for advanced glycation end-product receptor 1 (AGE-R1)? Glycoconj J. 2016;33:645–52.

    Article  CAS  PubMed  Google Scholar 

  12. Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol. 2012;8:293–300.

    Article  CAS  PubMed  Google Scholar 

  13. Kohan DE, Pollock DM. Endothelin antagonists for diabetic and non-diabetic chronic kidney disease. Br J Clin Pharmacol. 2013;76(4):573–9. doi:10.1111/bcp.12064.

  14. Wolf G, Ziyadeh FN. Molecular mechanisms of diabetic renal hypertrophy. Kidney Int. 1999;56:393–405.

    Article  CAS  PubMed  Google Scholar 

  15. Gnudi L, Coward RJM, Long DA. Diabetic nephropathy: perspective on novel molecular mechanisms. Trends Endocrinol Metab. 2016;27:820–30.

    Article  CAS  PubMed  Google Scholar 

  16. Mishra R, Emancipator SN, Kern T, Simonson MS. High glucose evokes an intrinsic proapoptotic signaling pathway in mesangial cells. Kidney Int. 2005;67:82–93.

    Article  CAS  PubMed  Google Scholar 

  17. Chen X, et al. Effects of astragalosides from radix Astragali on high glucose-induced proliferation and extracellular matrix accumulation in glomerular mesangial cells. Exp Ther Med. 2016;11:2561–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ge J, Miao J-J, Sun X-Y, Yu J-Y. Huangkui capsule, an extract from Abelmoschus manihot (L.) medic, improves diabetic nephropathy via activating peroxisome proliferator-activated receptor (PPAR)-α/γ and attenuating endoplasmic reticulum stress in rats. J Ethnopharmacol. 2016;189:238–49.

    Article  PubMed  Google Scholar 

  19. Li X-Q, et al. Corosolic acid inhibits the proliferation of glomerular mesangial cells and protects against diabetic renal damage. Sci Rep. 2016;6:26854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81:807–69.

    CAS  PubMed  Google Scholar 

  21. Bakris GL, et al. Effects of blood pressure level on progression of diabetic nephropathy: results from the RENAAL study. Arch Intern Med. 2003;163:1555–65.

    Article  PubMed  Google Scholar 

  22. Andersen S, Bröchner-Mortensen J, Parving H-H, Irbesartan in Patients With Type 2 Diabetes and Microalbuminuria Study Group. Kidney function during and after withdrawal of long-term irbesartan treatment in patients with type 2 diabetes and microalbuminuria. Diabetes Care. 2003;26:3296–302.

    Article  PubMed  Google Scholar 

  23. Fried LF, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013;369:1892–903.

    Article  CAS  PubMed  Google Scholar 

  24. Navaneethan SD, Nigwekar SU, Sehgal AR, Strippoli GFM. Aldosterone antagonists for preventing the progression of chronic kidney disease: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2009;4:542–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bakris GL, et al. Effect of Finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015;314:884–94.

    Article  CAS  PubMed  Google Scholar 

  26. Pitt B, et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94-8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur Heart J. 2013;34:2453–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gnudi L. Angiopoietins and diabetic nephropathy. Diabetologia. 2016;59:1616–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Campbell KN, Raij L, Mundel P. Role of angiotensin II in the development of nephropathy and podocytopathy of diabetes. Curr Diabetes Rev. 2011;7:3–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dessapt-Baradez C, et al. Targeted glomerular angiopoietin-1 therapy for early diabetic kidney disease. J Am Soc Nephrol. 2014;25:33–42.

    Article  CAS  PubMed  Google Scholar 

  30. Han WK, Wagener G, Zhu Y, Wang S, Lee HT. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol. 2009;4:873–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Devarajan P. Review: neutrophil gelatinase-associated lipocalin: a troponin-like biomarker for human acute kidney injury. Nephrology. 2010;15:419–28.

    Article  PubMed  Google Scholar 

  32. Lerma EV. Novel biomarkers of renal function. Medscape. 2014. Available at: http://emedicine.medscape.com/article/1925619-overview?pa=%2FGtmM73DBZFmtTffEHSFX2XD0UWcdSi7DXPfoSe7zBywo8ipOq3YULQ%2BZSoBuiHospswqWccMSSJyUypC1ttLOejCO3Rk4DWsD37DrSZWvU%3D. Accessed 17 Jan 2017.

  33. Papadopoulou-Marketou N, Chrousos GP, Kanaka-Gantenbein C. Diabetic nephropathy in type 1 diabetes: a review of early natural history, pathogenesis, and diagnosis. Diabetes Metab Res Rev. 2016; doi:10.1002/dmrr.2841.

    PubMed  Google Scholar 

  34. Bouvet BR, et al. Evaluation of urinary N-acetyl-beta-D-glucosaminidase as a marker of early renal damage in patients with type 2 diabetes mellitus. Arq Bras Endocrinol Metabol. 2014;58:798–801.

    Article  PubMed  Google Scholar 

  35. Al-Refai AA, Tayel SI, Ragheb A, Dala AG, Zahran A. Urinary neutrophil gelatinase associated lipocalin as a marker of tubular damage in type 2 diabetic patients with and without albuminuria. Open J Nephrol. 2014;4:37–46.

    Article  Google Scholar 

  36. Ibrahim MA, et al. Value of urinary Cystatin C in early detection of Diabeticnephropathy in type 2 diabetes mellitus. Int J Adv Res BiolSci Int J Adv Res Biol Sci. 2015;2:211–23.

    Google Scholar 

  37. Čabarkapa V. Cystatin C - more than the marker of the glomerular filtration rate. Med Pregl. 68:173–9.

  38. Olsson MG, et al. Pathological conditions involving extracellular hemoglobin: molecular mechanisms, clinical significance, and novel therapeutic opportunities for α1-microglobulin. Antioxid Redox Signal. 2012;17:813–46.

    Article  CAS  PubMed  Google Scholar 

  39. Saif A, Soliman N. Urinary α1 -microglobulin and albumin excretion in children and adolescents with type 1 diabetes. J Diabetes. 2017;9:61–4.

    Article  CAS  PubMed  Google Scholar 

  40. Robles-Osorio ML, Sabath E. Tubular dysfunction and non-albuminuric renal disease in subjects with type 2 diabetes mellitus. Rev Investig Clin. 66:234–9.

  41. Yashima I, Hirayama T, Shiiki H, Kanauchi M, Dohi K. Diagnostic significance of urinary immunoglobulin G in diabetic nephropathy. Nihon Jinzo Gakkai Shi. 1999;41:787–96.

    CAS  PubMed  Google Scholar 

  42. Narita T, Hosoba M, Kakei M, Ito S. Increased urinary excretions of immunoglobulin g, ceruloplasmin, and transferrin predict development of microalbuminuria in patients with type 2 diabetes. Diabetes Care. 2006;29:142–4.

    Article  CAS  PubMed  Google Scholar 

  43. Nikolov A, et al. Serum anti-collagen type IV IgM antibodies and development of diabetic nephropathy in diabetics with essential hypertension. Cent J Immunol. 2016;41:86–92.

    Article  Google Scholar 

  44. Jim B, et al. Dysregulated nephrin in diabetic nephropathy of type 2 diabetes: a cross sectional study. PLoS One. 2012;7:e36041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. do Nascimento JF, et al. Messenger RNA levels of podocyte-associated proteins in subjects with different degrees of glucose tolerance with or without nephropathy. BMC Nephrol. 2013;14:214.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wada Y, et al. Original research: potential of urinary nephrin as a biomarker reflecting podocyte dysfunction in various kidney disease models. Exp Biol Med (Maywood). 2016;241(1865–76)

  47. Zhuang Z, et al. Increased urinary angiotensinogen precedes the onset of albuminuria in normotensive type 2 diabetic patients. Int J Clin Exp Pathol. 2015;8:11464–9.

    PubMed  PubMed Central  Google Scholar 

  48. Viswanathan V, Sivakumar S, Sekar V, Umapathy D, Kumpatla S. Clinical significance of urinary liver-type fatty acid binding protein at various stages of nephropathy. Indian J Nephrol. 2015;25:269–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kamijo-Ikemori A, et al. Urinary liver type fatty acid binding protein in diabetic nephropathy. Clin Chim Acta. 2013;424:104–8.

    Article  CAS  PubMed  Google Scholar 

  50. Perez-Gomez MV, et al. Horizon 2020 in diabetic kidney disease: the clinical trial pipeline for add-on therapies on top of renin angiotensin system blockade. J Clin Med. 2015;4:1325–47.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhang J, Fu H, Xu Y, Niu Y, An X. Hyperoside reduces albuminuria in diabetic nephropathy at the early stage through ameliorating renal damage and podocyte injury. J Nat Med. 2016;70:740–8.

    Article  CAS  PubMed  Google Scholar 

  52. Mende C. Management of Chronic Kidney Disease: the relationship between serum uric acid and development of nephropathy. Adv Ther. 2015;32:1177–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hosoya T, et al. Effects of topiroxostat on the serum urate levels and urinary albumin excretion in hyperuricemic stage 3 chronic kidney disease patients with or without gout. Clin Exp Nephrol. 2014;18:876–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kato S, et al. Randomized control trial for the assessment of the anti-albuminuric effects of topiroxostat in hyperuricemic patients with diabetic nephropathy (the ETUDE study). Nagoya J Med Sci. 2016;78:135–42.

    PubMed  PubMed Central  Google Scholar 

  55. de Zeeuw D, et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet. 2010;376:1543–51.

    Article  PubMed  Google Scholar 

  56. Sanchez-Niño M-D, et al. Beyond proteinuria: VDR activation reduces renal inflammation in experimental diabetic nephropathy. Am J Physiol Ren Physiol. 2012;302:F647–57.

    Article  Google Scholar 

  57. Xu L, et al. Vitamin D and its receptor regulate lipopolysaccharide-induced transforming growth factor-β, angiotensinogen expression and podocytes apoptosis through the nuclear factor-κB pathway. J Diabetes Investig. 2016;7:680–8.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Fujita T, et al. Antiproteinuric effect of the calcium channel blocker cilnidipine added to renin-angiotensin inhibition in hypertensive patients with chronic renal disease. Kidney Int. 2007;72:1543–9.

    Article  CAS  PubMed  Google Scholar 

  59. Singh VK, et al. Reduction of microalbuminuria in type-2 diabetes mellitus with angiotensin-converting enzyme inhibitor alone and with cilnidipine. Indian J Nephrol. 2015;25:334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ohno S, et al. Ablation of the N-type calcium channel ameliorates diabetic nephropathy with improved glycemic control and reduced blood pressure. Sci Rep. 2016;6:27192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. de Zeeuw D, et al. Renal effects of atorvastatin and rosuvastatin in patients with diabetes who have progressive renal disease (PLANET I): a randomised clinical trial. Lancet Diabetes Endocrinol. 2015;3:181–90.

    Article  PubMed  Google Scholar 

  62. Takazakura A, et al. Renoprotective effects of atorvastatin compared with pravastatin on progression of early diabetic nephropathy. J Diabetes Investig. 2015;6:346–53.

    Article  CAS  PubMed  Google Scholar 

  63. Apostolopoulou M, Corsini A, Roden M. The role of mitochondria in statin-induced myopathy. Eur J Clin Investig. 2015;45:745–54.

    Article  CAS  Google Scholar 

  64. Aiman U, Najmi A, Khan R. Statin induced diabetes and its clinical implications. J Pharmacol Pharmacother. 2014;5:181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ravindran S, Kuruvilla V, Wilbur K, Munusamy S. Nephroprotective effects of metformin in diabetic nephropathy. J Cell Physiol. 2017;232:731–42.

    Article  CAS  PubMed  Google Scholar 

  66. Kim Y, Park CW. New therapeutic agents in diabetic nephropathy. Korean J Intern Med. 2017;32:11–25.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bhattacharjee N, Barma S, Konwar N, Dewanjee S, Manna P. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: an update. Eur J Pharmacol. 2016;791:8–24.

    Article  CAS  PubMed  Google Scholar 

  68. Parving H-H, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med. 2012;367:2204–13.

    Article  CAS  PubMed  Google Scholar 

  69. Soleymanian T, et al. Non-diabetic renal disease with or without diabetic nephropathy in type 2 diabetes: clinical predictors and outcome. Ren Fail. 2015;37:572–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armand Krikorian.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyas, Z., Chaiban, J.T. & Krikorian, A. Novel insights into the pathophysiology and clinical aspects of diabetic nephropathy. Rev Endocr Metab Disord 18, 21–28 (2017). https://doi.org/10.1007/s11154-017-9422-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-017-9422-3

Keywords

Navigation