Skip to main content

Thyroid dysfunction and kidney disease: An update

Abstract

Thyroid hormones influence renal development, kidney hemodynamics, glomerular filtration rate and sodium and water homeostasis. Hypothyroidism and hyperthyroidism affect renal function by direct renal effects as well as systemic hemodynamic, metabolic and cardiovascular effects. Hypothyroidism has been associated with increased serum creatinine and decreased glomerular filtration rate. The reverse effects have been reported in thyrotoxicosis. Most of renal manifestations of thyroid dysfunction are reversible with treatment. Kidney disease may also cause thyroid dysfunction by several mechanisms. Nephrotic syndrome has been associated to changes in serum thyroid hormone concentrations. Different forms of glomerulonephritis and tubulointerstitial disease may be linked to thyroid derangements. A high prevalence of thyroid hormone alteration has been reported in acute kidney injury. Thyroid dysfunction is highly prevalent in chronic kidney disease patients. Subclinical hypothyroidism and low triiodothyronine syndrome are common features in patients with chronic kidney disease. Patients treated by both hemodialysis and peritoneal dialysis, and renal transplantation recipients, exhibit thyroid hormone alterations and thyroid disease with higher frequency than that found in the general population. Drugs used in the therapy of thyroid disease may lead to renal complications and, similarly, drugs used in kidney disorders may be associated to thyroid alterations. Lastly, low thyroid hormones, especially low triiodothyronine levels, in patients with chronic kidney disease have been related to a higher risk of cardiovascular disease and all-cause mortality. Interpretation of the interactions between thyroid and renal function is a challenge for clinicians involved in the treatment of patients with thyroid and kidney disease.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Katz AI, Emmanouel DS, Lindheimer MD. Thyroid hormone and the kidney. Nephron. 1975;3–5:223–49.

    Article  Google Scholar 

  2. Iglesias P, Diez JJ. Thyroid dysfunction and kidney disease. Eur J Endocrinol. 2009;4:503–15.

    Article  CAS  Google Scholar 

  3. Mariani LH, Berns JS. The renal manifestations of thyroid disease. J Am Soc Nephrol. 2012;1:22–6.

    Article  CAS  Google Scholar 

  4. Dousdampanis P, Trigka K, Vagenakis GA, Fourtounas C. The thyroid and the kidney: a complex interplay in health and disease. Int J Artif Organs. 2014;1:1–12.

    Article  CAS  Google Scholar 

  5. Braunlich H. Postnatal development of kidney function in rats receiving thyroid hormones. Exp Clin Endocrinol. 1984;3:243–50.

    Article  Google Scholar 

  6. Basu G, Mohapatra A. Interactions between thyroid disorders and kidney disease. Indian J Endocrinol Metab. 2012;2:204–13.

    Article  CAS  Google Scholar 

  7. Kobori H, Ichihara A, Miyashita Y, Hayashi M, Saruta T. Mechanism of hyperthyroidism-induced renal hypertrophy in rats. J Endocrinol. 1998;1:9–14.

    Article  Google Scholar 

  8. Pracyk JB, Slotkin TA. Thyroid hormone differentially regulates development of beta-adrenergic receptors, adenylate cyclase and ornithine decarboxylase in rat heart and kidney. J Dev Physiol. 1991;4:251–61.

    Google Scholar 

  9. Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med. 2001;7:501–9.

    Google Scholar 

  10. Klein I, Danzi S. Thyroid disease and the heart. Circulation. 2007;15:1725–35.

    Article  Google Scholar 

  11. Cini G, Carpi A, Mechanick J, Cini L, Camici M, Galetta F, et al. Thyroid hormones and the cardiovascular system: pathophysiology and interventions. Biomed Pharmacother. 2009;10:742–53.

    Article  CAS  Google Scholar 

  12. Koch CA, Chrousos GP. Overview of endocrine hypertension. [Updated Oct 2016]. In: Chrousos G, editor. Adrenal disease and function. Endotext [Internet]. Available: http://www.endotext.org/section/adrenal/.

  13. Danzi S, Klein I. Thyroid hormone and blood pressure regulation. Curr Hypertens Rep. 2003;6:513–20.

    Article  Google Scholar 

  14. Kotsis V, Alevizaki M, Stabouli S, Pitiriga V, Rizos Z, Sion M, et al. Hypertension and hypothyroidism: results from an ambulatory blood pressure monitoring study. J Hypertens. 2007;5:993–9.

    Article  CAS  Google Scholar 

  15. Stabouli S, Papakatsika S, Kotsis V. Hypothyroidism and hypertension. Expert Rev Cardiovasc Ther. 2010;11:1559–65.

    Article  Google Scholar 

  16. Vargas F, Moreno JM, Rodriguez-Gomez I, Wangensteen R, Osuna A, Alvarez-Guerra M, et al. Vascular and renal function in experimental thyroid disorders. Eur J Endocrinol. 2006;2:197–212.

    Article  CAS  Google Scholar 

  17. Ichihara A, Kobori H, Miyashita Y, Hayashi M, Saruta T. Differential effects of thyroid hormone on renin secretion, content, and mRNA in juxtaglomerular cells. Am J Physiol. 1998;2(Pt 1):E224–31.

    Google Scholar 

  18. Vargas F, Rodriguez-Gomez I, Vargas-Tendero P, Jimenez E, Montiel M. The renin-angiotensin system in thyroid disorders and its role in cardiovascular and renal manifestations. J Endocrinol. 2012;1:25–36.

    Article  CAS  Google Scholar 

  19. van Hoek I, Daminet S. Interactions between thyroid and kidney function in pathological conditions of these organ systems: a review. Gen Comp Endocrinol. 2009;3:205–15.

    Article  CAS  Google Scholar 

  20. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;13:1296–305.

    Article  Google Scholar 

  21. Zimmerman RS, Ryan J, Edwards BS, Klee G, Zimmerman D, Scott N, et al. Cardiorenal endocrine dynamics during volume expansion in hypothyroid dogs. Am J Physiol. 1988;1(Pt 2):R61–6.

    Google Scholar 

  22. Singer MA. Of mice and men and elephants: metabolic rate sets glomerular filtration rate. Am J Kidney Dis. 2001;1:164–78.

    Article  Google Scholar 

  23. Schmid C, Brandle M, Zwimpfer C, Zapf J, Wiesli P. Effect of thyroxine replacement on creatinine, insulin-like growth factor 1, acid-labile subunit, and vascular endothelial growth factor. Clin Chem. 2004;1:228–31.

    Article  CAS  Google Scholar 

  24. Sato Y, Nakamura R, Satoh M, Fujishita K, Mori S, Ishida S, et al. Thyroid hormone targets matrix Gla protein gene associated with vascular smooth muscle calcification. Circ Res. 2005;6:550–7.

    Article  CAS  Google Scholar 

  25. Lo JC, Chertow GM, Go AS, Hsu CY. Increased prevalence of subclinical and clinical hypothyroidism in persons with chronic kidney disease. Kidney Int. 2005;3:1047–52.

    Article  Google Scholar 

  26. Sun MT, Hsiao FC, Su SC, Pei D, Hung YJ. Thyrotropin as an independent factor of renal function and chronic kidney disease in normoglycemic euthyroid adults. Endocr Res. 2012;3:110–6.

    Article  CAS  Google Scholar 

  27. Gopinath B, Harris DC, Wall JR, Kifley A, Mitchell P. Relationship between thyroid dysfunction and chronic kidney disease in community-dwelling older adults. Maturitas. 2013;2:159–64.

    Article  Google Scholar 

  28. Montenegro J, Gonzalez O, Saracho R, Aguirre R, Gonzalez O, Martinez I. Changes in renal function in primary hypothyroidism. Am J Kidney Dis. 1996;2:195–8.

    Article  Google Scholar 

  29. den Hollander JG, Wulkan RW, Mantel MJ, Berghout A. Correlation between severity of thyroid dysfunction and renal function. Clin Endocrinol. 2005;4:423–7.

    Article  Google Scholar 

  30. Asvold BO, Bjoro T, Vatten LJ. Association of thyroid function with estimated glomerular filtration rate in a population-based study: the HUNT study. Eur J Endocrinol. 2011;1:101–5.

    Article  CAS  Google Scholar 

  31. Karanikas G, Schutz M, Szabo M, Becherer A, Wiesner K, Dudczak R, et al. Isotopic renal function studies in severe hypothyroidism and after thyroid hormone replacement therapy. Am J Nephrol. 2004;1:41–5.

    Article  CAS  Google Scholar 

  32. Capasso G, De Tommaso G, Pica A, Anastasio P, Capasso J, Kinne R, et al. Effects of thyroid hormones on heart and kidney functions. Miner Electrolyte Metab. 1999;1–2:56–64.

    Article  Google Scholar 

  33. Wiesli P, Schwegler B, Spinas GA, Schmid C. Serum cystatin C is sensitive to small changes in thyroid function. Clin Chim Acta. 2003;1–2:87–90.

    Article  CAS  Google Scholar 

  34. Fricker M, Wiesli P, Brandle M, Schwegler B, Schmid C. Impact of thyroid dysfunction on serum cystatin C. Kidney Int. 2003;5:1944–7.

    Article  Google Scholar 

  35. Hataya Y, Igarashi S, Yamashita T, Komatsu Y. Thyroid hormone replacement therapy for primary hypothyroidism leads to significant improvement of renal function in chronic kidney disease patients. Clin Exp Nephrol. 2013;4:525–31.

    Article  CAS  Google Scholar 

  36. Shin DH, Lee MJ, Kim SJ, Oh HJ, Kim HR, Han JH, et al. Preservation of renal function by thyroid hormone replacement therapy in chronic kidney disease patients with subclinical hypothyroidism. J Clin Endocrinol Metab. 2012;8:2732–40.

    Article  CAS  Google Scholar 

  37. Shin DH, Lee MJ, Lee HS, Oh HJ, Ko KI, Kim CH, et al. Thyroid hormone replacement therapy attenuates the decline of renal function in chronic kidney disease patients with subclinical hypothyroidism. Thyroid. 2013;6:654–61.

    Article  CAS  Google Scholar 

  38. Suher M, Koc E, Ata N, Ensari C. Relation of thyroid disfunction, thyroid autoantibodies, and renal function. Ren Fail. 2005;6:739–42.

    Article  CAS  Google Scholar 

  39. Barlet C, Doucet A. Lack of stimulation of kidney Na-K-ATPase by thyroid hormones in long-term thyroidectomized rabbits. Pflugers Arch. 1986;4:428–31.

    Article  Google Scholar 

  40. Michael UF, Barenberg RL, Chavez R, Vaamonde CA, Papper S. Renal handling of sodium and water in the hypothyroid rat. Clearance and micropuncture studies. J Clin Invest. 1972;6:1405–12.

    Article  Google Scholar 

  41. Hanna FW, Scanlon MF. Hyponatraemia, hypothyroidism, and role of arginine-vasopressin. Lancet. 1997;9080:755–6.

    Article  Google Scholar 

  42. Schmitt R, Klussmann E, Kahl T, Ellison DH, Bachmann S. Renal expression of sodium transporters and aquaporin-2 in hypothyroid rats. Am J Physiol Ren Physiol. 2003;5:F1097–104.

    Article  Google Scholar 

  43. Marcos Morales M, Purchio Brucoli HC, Malnic G, Gil LA. Role of thyroid hormones in renal tubule acidification. Mol Cell Biochem. 1996;1:17–21.

    Google Scholar 

  44. Haro JM, Sabio JM, Vargas F. Renal beta-adrenoceptors in thyroxine-treated rats. J Endocrinol Investig. 1992;8:605–8.

    Article  Google Scholar 

  45. Michel B, Grima M, Coquard C, Welsch C, Barthelmebs M, Imbs JL. Effects of triiodothyronine and dexamethasone on plasma and tissue angiotensin converting enzyme in the rat. Fundam Clin Pharmacol. 1994;4:366–72.

    Article  Google Scholar 

  46. Rodriguez-Gomez I, Banegas I, Wangensteen R, Quesada A, Jimenez R, Gomez-Morales M, et al. Influence of thyroid state on cardiac and renal capillary density and glomerular morphology in rats. J Endocrinol. 2013;1:43–51.

    Article  CAS  Google Scholar 

  47. Kahaly GJ, Dillmann WH. Thyroid hormone action in the heart. Endocr Rev. 2005;5:704–28.

    Article  CAS  Google Scholar 

  48. Fazio S, Palmieri EA, Lombardi G and Biondi B. Effects of thyroid hormone on the cardiovascular system. Recent Prog Horm Res. 2004:31–50.

  49. Woeber KA. Thyrotoxicosis and the heart. N Engl J Med. 1992;2:94–8.

    Google Scholar 

  50. Prisant LM, Gujral JS, Mulloy AL. Hyperthyroidism: a secondary cause of isolated systolic hypertension. J Clin Hypertens (Greenwich). 2006;8:596–9.

    Article  Google Scholar 

  51. Iglesias P, Acosta M, Sanchez R, Fernandez-Reyes MJ, Mon C, Diez JJ. Ambulatory blood pressure monitoring in patients with hyperthyroidism before and after control of thyroid function. Clin Endocrinol. 2005;1:66–72.

    Article  Google Scholar 

  52. Asmah BJ, Wan Nazaimoon WM, Norazmi K, Tan TT, Khalid BA. Plasma renin and aldosterone in thyroid diseases. Horm Metab Res. 1997;11:580–3.

    Article  Google Scholar 

  53. Syme HM. Cardiovascular and renal manifestations of hyperthyroidism. Vet Clin North Am Small Anim Pract. 2007;4:723–43. vi.

    Article  Google Scholar 

  54. Conger JD, Falk SA, Gillum DM. The protective mechanism of thyroidectomy in a rat model of chronic renal failure. Am J Kidney Dis. 1989;3:217–25.

    Article  Google Scholar 

  55. Graves TK, Olivier NB, Nachreiner RF, Kruger JM, Walshaw R, Stickle RL. Changes in renal function associated with treatment of hyperthyroidism in cats. Am J Vet Res. 1994;12:1745–9.

    Google Scholar 

  56. Kimmel M, Braun N, Alscher MD. Influence of thyroid function on different kidney function tests. Kidney Blood Press Res. 2012;1:9–17.

    Article  CAS  Google Scholar 

  57. Wijkhuisen A, Djouadi F, Vilar J, Merlet-Benichou C, Bastin J. Thyroid hormones regulate development of energy metabolism enzymes in rat proximal convoluted tubule. Am J Physiol. 1995;4(Pt 2):F634–42.

    Google Scholar 

  58. Baum M, Dwarakanath V, Alpern RJ, Moe OW. Effects of thyroid hormone on the neonatal renal cortical Na+/H+ antiporter. Kidney Int. 1998;5:1254–8.

    Article  Google Scholar 

  59. Alcalde AI, Sarasa M, Raldua D, Aramayona J, Morales R, Biber J, et al. Role of thyroid hormone in regulation of renal phosphate transport in young and aged rats. Endocrinology. 1999;4:1544–51.

    Google Scholar 

  60. Wang W, Li C, Summer SN, Falk S, Schrier RW. Polyuria of thyrotoxicosis: downregulation of aquaporin water channels and increased solute excretion. Kidney Int. 2007;9:1088–94.

    Article  CAS  Google Scholar 

  61. Kumar V, Prasad R. Molecular basis of renal handling of calcium in response to thyroid hormone status of rat. Biochim Biophys Acta. 2002;3:331–43.

    Article  Google Scholar 

  62. Pothiwala P, Levine SN. Analytic review: thyrotoxic periodic paralysis: a review. J Intensive Care Med. 2010;2:71–7.

    Article  Google Scholar 

  63. Brohee D, Delespesse G, Debisschop MJ, Bonnyns M. Circulating immune complexes in various thyroid diseases. Clin Exp Immunol. 1979;3:379–83.

    Google Scholar 

  64. Yu F, Chen M, Gao Y, Wang SX, Zou WZ, Zhao MH, et al. Clinical and pathological features of renal involvement in propylthiouracil-associated ANCA-positive vasculitis. Am J Kidney Dis. 2007;5:607–14.

    Article  CAS  Google Scholar 

  65. Becker BA, Fenves AZ, Breslau NA. Membranous glomerulonephritis associated with Graves’ disease. Am J Kidney Dis. 1999;2:369–73.

    Article  Google Scholar 

  66. Weetman AP, Tomlinson K, Amos N, Lazarus JH, Hall R, McGregor AM. Proteinuria in autoimmune thyroid disease. Acta Endocrinol. 1985;3:341–7.

    Google Scholar 

  67. Berthe E, Henry-Amar M, Michels JJ, Rame JP, Berthet P, Babin E, et al. Risk of second primary cancer following differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2004;5:685–91.

    Article  Google Scholar 

  68. Brown AP, Chen J, Hitchcock YJ, Szabo A, Shrieve DC, Tward JD. The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab. 2008;2:504–15.

    Article  CAS  Google Scholar 

  69. Prinzi N, Sorrenti S, Baldini E, De Vito C, Tuccilli C, Catania A, et al. Association of thyroid diseases with primary extra-thyroidal malignancies in women: results of a cross-sectional study of 6,386 patients. PLoS One. 2015;3, e0122958.

    Article  CAS  Google Scholar 

  70. Smallridge RC, Castro MR, Morris JC, Young PR, Reynolds JC, Merino MJ, et al. Renal metastases from thyroid papillary carcinoma: study of sodium iodide symporter expression. Thyroid. 2001;8:795–804.

    Article  Google Scholar 

  71. Liou MJ, Lin JD, Chung MH, Liau CT, Hsueh C. Renal metastasis from papillary thyroid microcarcinoma. Acta Otolaryngol. 2005;4:438–42.

    Article  CAS  Google Scholar 

  72. von Falck C, Beer G, Gratz KF, Galanski M. Renal metastases from follicular thyroid cancer on SPECT/CT. Clin Nucl Med. 2007;9:751–2.

    Article  Google Scholar 

  73. Moudouni S, En-Nia I, Rioux-Leclerc N, Patard JJ, Guille F, Lobel B. Renal metastasis of thyroid carcinoma. Prog Urol. 2001;4:670–2.

    Google Scholar 

  74. Mello AM, Isaacs R, Petersen J, Kronenberger S, McDougall IR. Management of thyroid papillary carcinoma with radioiodine in a patient with end stage renal disease on hemodialysis. Clin Nucl Med. 1994;9:776–81.

    Article  Google Scholar 

  75. Daumerie C, Vynckier S, Caussin J, Jadoul M, Squifflet JP, de Patoul N, et al. Radioiodine treatment of thyroid carcinoma in patients on maintenance hemodialysis. Thyroid. 1996;4:301–4.

    Article  Google Scholar 

  76. Kaptein EM, Levenson H, Siegel ME, Gadallah M, Akmal M. Radioiodine dosimetry in patients with end-stage renal disease receiving continuous ambulatory peritoneal dialysis therapy. J Clin Endocrinol Metab. 2000;9:3058–64.

    Google Scholar 

  77. Guo QY, Zhu QJ, Liu YF, Zhang HJ, Ding Y, Zhai WS, et al. Steroids combined with levothyroxine to treat children with idiopathic nephrotic syndrome: a retrospective single-center study. Pediatr Nephrol. 2014;6:1033–8.

    Article  Google Scholar 

  78. Kaptein EM, Feinstein EI, Massry SG. Thyroid hormone metabolism in renal diseases. Contrib Nephrol. 1982:122–35.

  79. Liu H, Yan W, Xu G. Thyroid hormone replacement for nephrotic syndrome patients with euthyroid sick syndrome: a meta-analysis. Ren Fail. 2014;9:1360–5.

    Article  CAS  Google Scholar 

  80. Kaptein EM, Hoopes MT, Parise M, Massry SG. rT3 metabolism in patients with nephrotic syndrome and normal GFR compared with normal subjects. Am J Physiol. 1991;4(Pt 1):E641–50.

    Google Scholar 

  81. Chadha V, Alon US. Bilateral nephrectomy reverses hypothyroidism in congenital nephrotic syndrome. Pediatr Nephrol. 1999;3:209–11.

    Article  Google Scholar 

  82. Etling N, Lenoir G, Gehin-Fouque F. Thyroid function in a child with nephrotic syndrome evolving to renal failure. Arch Fr Pediatr. 1980;8:545–8.

  83. Vachvanichsanong P, Mitarnun W, Tungsinmunkong K, Dissaneewate P. Congenital and infantile nephrotic syndrome in Thai infants. Clin Pediatr. 2005;2:169–74.

    Article  Google Scholar 

  84. Muranjan MN, Kher AS, Nadkarni UB, Kamat JR. Congenital nephrotic syndrome with clinical hypothyroidism. Indian J Pediatr. 1995;2:233–5.

    Article  Google Scholar 

  85. Mattoo TK. Hypothyroidism in infants with nephrotic syndrome. Pediatr Nephrol. 1994;6:657–9.

    Article  Google Scholar 

  86. Holmberg C, Antikainen M, Ronnholm K, Ala Houhala M, Jalanko H. Management of congenital nephrotic syndrome of the Finnish type. Pediatr Nephrol. 1995;1:87–93.

    Article  Google Scholar 

  87. Gurkan S, Dikman S, Saland MJ. A case of autoimmune thyroiditis and membranoproliferative glomerulonephritis. Pediatr Nephrol. 2009;1:193–7.

    Article  Google Scholar 

  88. Valentin M, Bueno B, Gutierrez E, Martinez A, Gonzalez E, Espejo B. et al. Membranoproliferative glomerulonephritis associated with autoimmune thyroiditis. Nefrologia. 2004:43–8.

  89. Grcevska L, Polenakovic M, Petrusevska G. Membranous nephropathy associated with thyroid disorders. Nephron. 2000;4:534–5.

    Article  Google Scholar 

  90. Weetman AP, Pinching AJ, Pussel BA, Evans DJ, Sweny P, Rees AJ. Membranous glomerulonephritis and autoimmune thyroid disease. Clin Nephrol. 1981;1:50–1.

    Google Scholar 

  91. Enriquez R, Sirvent AE, Amoros F, Andrada E, Cabezuelo JB, Reyes A. IgA nephropathy and autoimmune thyroiditis. Clin Nephrol. 2002;5:406–7.

    Google Scholar 

  92. Illies F, Wingen AM, Bald M, Hoyer PF. Autoimmune thyroiditis in association with membranous nephropathy. J Pediatr Endocrinol Metab. 2004;1:99–104.

    Google Scholar 

  93. O’Regan S, Fong JS, Kaplan BS, Chadarevian JP, Lapointe N, Drummond KN. Thyroid antigen-antibody nephritis. Clin Immunol Immunopathol. 1976;3:341–6.

    Article  Google Scholar 

  94. Mizuno M, Hasegawa H, Fujishiro T, Murai S, Yanai T, Kojima K, et al. Chronic thyroiditis complicated by nephrotic syndrome and marked hydroureteronephrosis. Nihon Jinzo Gakkai Shi. 1987;5:561–9.

    Google Scholar 

  95. Akikusa B, Kondo Y, Iemoto Y, Iesato K, Wakashin M. Hashimoto’s thyroiditis and membranous nephropathy developed in progressive systemic sclerosis (PSS). Am J Clin Pathol. 1984;2:260–3.

    Article  Google Scholar 

  96. Iwaoka T, Umeda T, Nakayama M, Shimada T, Fujii Y, Miura F, et al. A case of membranous nephropathy associated with thyroid antigens. Jpn J Med. 1982;1:29–34.

    Article  Google Scholar 

  97. Horvath Jr F, Teague P, Gaffney EF, Mars DR, Fuller TJ. Thyroid antigen associated immune complex glomerulonephritis in Graves’ disease. Am J Med. 1979;5:901–4.

    Article  Google Scholar 

  98. Tanwani LK, Lohano V, Broadstone VL, Mokshagundam SP. Minimal change nephropathy and Graves’ disease: report of a case and review of the literature. Endocr Pract. 2002;1:40–3.

    Article  Google Scholar 

  99. Mahjoub S, Ben Dhia N, Achour A, Zebidi A, Frih A, Elmay M. Primary hypothyroidism and glomerular involvement. Ann Endocrinol. 1991;4:289–92.

    Google Scholar 

  100. Ikeda K, Maruyama Y, Yokoyama M, Kato N, Yamanoto H, Kaguchi Y, et al. Association of Graves’ disease with Evans’ syndrome in a patient with IgA nephropathy. Intern Med. 2001;10:1004–10.

    Article  Google Scholar 

  101. Dizdar O, Kahraman S, Genctoy G, Ertoy D, Arici M, Altun B, et al. Membranoproliferative glomerulonephritis associated with type 1 diabetes mellitus and Hashimoto’s thyroiditis. Nephrol Dial Transplant. 2004;4:988–9.

    Article  Google Scholar 

  102. Nishimoto A, Tomiyoshi Y, Sakemi T, Kanegae F, Nakamura M, Ikeda Y, et al. Simultaneous occurrence of minimal change glomerular disease, sarcoidosis and Hashimoto’s thyroiditis. Am J Nephrol. 2000;5:425–8.

    Article  Google Scholar 

  103. Kagiyama S, Tsuruta H, Tominaga M, Morishita K, Doi Y, Onoyama K. Minimal-change nephrotic syndrome and acute renal failure in a patient with aged onset insulin-dependent diabetes mellitus and autoimmune thyroiditis. Am J Nephrol. 1999;3:369–72.

    Article  Google Scholar 

  104. Calder EA, Penhale WJ, Barnes EW, Irvine WJ. Evidence for circulating immune complexes in thyroid disease. Br Med J. 1974;5909:30–1.

    Article  Google Scholar 

  105. Ebihara I, Hirayama K, Usui J, Seki M, Higuchi F, Oteki T, et al. Tubulointerstitial nephritis and uveitis syndrome associated with hyperthyroidism. Clin Exp Nephrol. 2006;3:216–21.

    Article  Google Scholar 

  106. Spronk PE, Weening JJ, Schut NH. Eosinophilic tubulo-interstitial nephritis associated with iridocyclitis and thyreoiditis. Neth J Med. 2001;1:35–8.

    Article  Google Scholar 

  107. Hudde T, Heinz C, Neudorf U, Hoeft S, Heiligenhaus A, Steuhl KP. Tubulointerstitial nephritis and uveitis (TINU syndrome)—comorbidity and complications in four patients. Klin Monatsbl Augenheilkd. 2002;7:528–32.

    Article  Google Scholar 

  108. Asproudis I, Zafeiropoulos P, Katsanos A, Skamantzoura E and Sionti I. Tubulointerstitial nephritis and uveitis syndrome with concomitant Hashimoto’s thyroiditis. J Pediatr Ophthalmol Strabismus. 2013:e1-3.

  109. Sasaki H, Joh K, Ohtsuka I, Ohta H, Ohhashi T, Hoashi S, et al. Interstitial nephritis associated with glomerulonephritis in a patient with Hashimoto’s disease and idiopathic portal hypertension. Intern Med. 1992;5:641–8.

    Article  Google Scholar 

  110. Wang F, Pan W, Wang H, Zhou Y, Wang S, Pan S. The impacts of thyroid function on the diagnostic accuracy of cystatin C to detect acute kidney injury in ICU patients: a prospective, observational study. Crit Care. 2014;1:R9.

    Article  Google Scholar 

  111. Iglesias P, Olea T, Vega-Cabrera C, Heras M, Bajo MA, del Peso G, et al. Thyroid function tests in acute kidney injury. J Nephrol. 2013;1:164–72.

    Article  CAS  Google Scholar 

  112. Kaptein EM, Quion-Verde H, Chooljian CJ, Tang WW, Friedman PE, Rodriquez HJ, et al. The thyroid in end-stage renal disease. Medicine (Baltimore). 1988;3:187–97.

    Article  Google Scholar 

  113. Kaptein EM, Levitan D, Feinstein EI, Nicoloff JT, Massry SG. Alterations of thyroid hormone indices in acute renal failure and in acute critical illness with and without acute renal failure. Am J Nephrol. 1981;3–4:138–43.

    Article  Google Scholar 

  114. Targher G, Chonchol M, Zoppini G, Salvagno G, Pichiri I, Franchini M, et al. Prevalence of thyroid autoimmunity and subclinical hypothyroidism in persons with chronic kidney disease not requiring chronic dialysis. Clin Chem Lab Med. 2009;11:1367–71.

    Google Scholar 

  115. Chonchol M, Lippi G, Salvagno G, Zoppini G, Muggeo M, Targher G. Prevalence of subclinical hypothyroidism in patients with chronic kidney disease. Clin J Am Soc Nephrol. 2008;5:1296–300.

    Article  Google Scholar 

  116. Bando Y, Ushiogi Y, Okafuji K, Toya D, Tanaka N, Miura S. Non-autoimmune primary hypothyroidism in diabetic and non-diabetic chronic renal dysfunction. Exp Clin Endocrinol Diabetes. 2002;8:408–15.

    Article  Google Scholar 

  117. Rhee CM, Kalantar-Zadeh K, Streja E, Carrero JJ, Ma JZ, Lu JL, et al. The relationship between thyroid function and estimated glomerular filtration rate in patients with chronic kidney disease. Nephrol Dial Transplant. 2015;2:282–7.

    Article  Google Scholar 

  118. Kaptein EM. Thyroid hormone metabolism and thyroid diseases in chronic renal failure. Endocr Rev. 1996;1:45–63.

    Article  Google Scholar 

  119. De Groot LJ. Dangerous dogmas in medicine: the nonthyroidal illness syndrome. J Clin Endocrinol Metab. 1999;1:151–64.

    Article  Google Scholar 

  120. Xu G, Yan W, Li J. An update for the controversies and hypotheses of regulating nonthyroidal illness syndrome in chronic kidney diseases. Clin Exp Nephrol. 2014;6:837–43.

    Article  CAS  Google Scholar 

  121. Zhang Y, Chang Y, Ryu S, Cho J, Lee WY, Rhee EJ, et al. Thyroid hormone levels and incident chronic kidney disease in euthyroid individuals: the Kangbuk Samsung Health Study. Int J Epidemiol. 2014;5:1624–32.

    Article  Google Scholar 

  122. Zoccali C, Mallamaci F, Tripepi G, Cutrupi S, Pizzini P. Low triiodothyronine and survival in end-stage renal disease. Kidney Int. 2006;3:523–8.

    Article  CAS  Google Scholar 

  123. Fan J, Yan P, Wang Y, Shen B, Ding F, Liu Y. Prevalence and clinical significance of low T3 syndrome in non-dialysis patients with chronic kidney disease. Med Sci Monit. 2016:1171–9.

  124. Afsar B, Yilmaz MI, Siriopol D, Unal HU, Saglam M, Karaman M. et al. Thyroid function and cardiovascular events in chronic kidney disease patients. J Nephrol. 2016.

  125. Ramirez G, O’Neill Jr W, Jubiz W, Bloomer HA. Thyroid dysfunction in uremia: evidence for thyroid and hypophyseal abnormalities. Ann Intern Med. 1976;6:672–6.

    Article  Google Scholar 

  126. Mohamedali M, Reddy Maddika S, Vyas A, Iyer V, Cheriyath P. Thyroid disorders and chronic kidney disease. Int J Nephrol. 2014:520281.

  127. Jusufovic S, Hodzic E. Functional thyroid disorders are more common in patients on chronic hemodialysis compared with the general population. Mater Sociomed. 2011;4:206–9.

    Article  Google Scholar 

  128. Kutlay S, Atli T, Koseogullari O, Nergizoglu G, Duman N, Gullu S. Thyroid disorders in hemodialysis patients in an iodine-deficient community. Artif Organs. 2005;4:329–32.

    Article  Google Scholar 

  129. Lin CC, Chen TW, Ng YY, Chou YH, Yang WC. Thyroid dysfunction and nodular goiter in hemodialysis and peritoneal dialysis patients. Perit Dial Int. 1998;5:516–21.

    Google Scholar 

  130. Shantha GP, Kumar AA, Bhise V, Khanna R, Sivagnanam K, Subramanian KK. Prevalence of subclinical hypothyroidism in patients with end-stage renal disease and the role of serum albumin: a cross-sectional study from south India. Cardiorenal Med. 2011;4:255–60.

    Article  CAS  Google Scholar 

  131. Da Costa AB, Pellizzari C, Carvalho GA, Sant’Anna BC, Montenegro RL, Zammar Filho RG, et al. High prevalence of subclinical hypothyroidism and nodular thyroid disease in patients on hemodialysis. Hemodial Int. 2016;1:31–7.

    Article  Google Scholar 

  132. Fragidis S, Sombolos K, Thodis E, Panagoutsos S, Mourvati E, Pikilidou M, et al. Low T3 syndrome and long-term mortality in chronic hemodialysis patients. World J Nephrol. 2015;3:415–22.

    Article  Google Scholar 

  133. Fernandez-Reyes MJ, Diez JJ, Collado A, Iglesias P, Bajo MA, Estrada P, et al. Are low concentrations of serum triiodothyronine a good marker for long-term mortality in hemodialysis patients? Clin Nephrol. 2010;3:238–40.

    Article  Google Scholar 

  134. Rhee CM, Kim S, Gillen DL, Oztan T, Wang J, Mehrotra R, et al. Association of thyroid functional disease with mortality in a national cohort of incident hemodialysis patients. J Clin Endocrinol Metab. 2015;4:1386–95.

    Article  CAS  Google Scholar 

  135. Rhee CM, Alexander EK, Bhan I, Brunelli SM. Hypothyroidism and mortality among dialysis patients. Clin J Am Soc Nephrol. 2013;4:593–601.

    Article  CAS  Google Scholar 

  136. Kang EW, Nam JY, Yoo TH, Shin SK, Kang SW, Han DS, et al. Clinical implications of subclinical hypothyroidism in continuous ambulatory peritoneal dialysis patients. Am J Nephrol. 2008;6:908–13.

    Article  CAS  Google Scholar 

  137. Pamanes Gonzalez J, Gamboa Ortiz FA, Torres Ceniceros LF. Frequency of altered levels of thyroid hormones in patients undergoing peritoneal dialysis. Gac Med Mex. 2014:222–7.

  138. Kerr DJ, Singh VK, Tsakiris D, McConnell KN, Junor BJ, Alexander WD. Serum and peritoneal dialysate thyroid hormone levels in patients on continuous ambulatory peritoneal dialysis. Nephron. 1986;3:164–8.

    Google Scholar 

  139. Lim VS. Thyroid function in patients with chronic renal failure. Am J Kidney Dis. 2001;4 Suppl 1:S80–4.

    Article  Google Scholar 

  140. Diez JJ, Iglesias P, Selgas R. Pituitary dysfunctions in uremic patients undergoing peritoneal dialysis: a cross sectional descriptive study. Adv Perit Dial. 1995:218–24.

  141. Semple CG, Beastall GH, Henderson IS, Thomson JA, Kennedy AC. Thyroid function and continuous ambulatory peritoneal dialysis. Nephron. 1982;3:249–52.

    Google Scholar 

  142. Robey C, Shreedhar K, Batuman V. Effects of chronic peritoneal dialysis on thyroid function tests. Am J Kidney Dis. 1989;2:99–103.

    Article  Google Scholar 

  143. Rhee CM. Low-T3 syndrome in peritoneal dialysis: metabolic adaptation, marker of illness, or mortality mediator? Clin J Am Soc Nephrol. 2015;6:917–9.

    Article  CAS  Google Scholar 

  144. Enia G, Panuccio V, Cutrupi S, Pizzini P, Tripepi G, Mallamaci F, et al. Subclinical hypothyroidism is linked to micro-inflammation and predicts death in continuous ambulatory peritoneal dialysis. Nephrol Dial Transplant. 2007;2:538–44.

    Google Scholar 

  145. Chang TI, Nam JY, Shin SK, Kang EW. Low triiodothyronine syndrome and long-term cardiovascular outcome in incident peritoneal dialysis patients. Clin J Am Soc Nephrol. 2015;6:975–82.

    Article  CAS  Google Scholar 

  146. Jung HY, Cho JH, Jang HM, Kim YS, Kang SW, Yang CW, et al. Free thyroxine level as an independent predictor of infection-related mortality in patients on peritoneal dialysis: a prospective multicenter cohort study. PLoS One. 2014;12, e112760.

    Article  CAS  Google Scholar 

  147. Perez SR, Diez JJ, Bajo MA, Iglesias P, Grande C, del Peso G, et al. Thyrotropin and free thyroxine concentrations do not affect cardiovascular disease and mortality in euthyroid peritoneal dialysis patients. Perit Dial Int. 2013;6:697–700.

    Article  Google Scholar 

  148. Canaris GJ, Manowitz NR, Mayor G, Ridgway EC. The Colorado thyroid disease prevalence study. Arch Intern Med. 2000;4:526–34.

    Article  Google Scholar 

  149. Junik R, Wlodarczyk Z, Masztalerz M, Odrowaz-Sypniewska G, Jendryczka E, Manitius J. Function, structure, and volume of thyroid gland following allogenic kidney transplantation. Transplant Proc. 2003;6:2224–6.

    Article  Google Scholar 

  150. Reinhardt W, Misch C, Jockenhovel F, Wu SY, Chopra I, Philipp T, et al. Triiodothyronine (T3) reflects renal graft function after renal transplantation. Clin Endocrinol. 1997;5:563–9.

    Article  Google Scholar 

  151. Song SH, Kwak IS, Lee DW, Kang YH, Seong EY, Park JS. The prevalence of low triiodothyronine according to the stage of chronic kidney disease in subjects with a normal thyroid-stimulating hormone. Nephrol Dial Transplant. 2009;5:1534–8.

    Article  CAS  Google Scholar 

  152. Acker CG, Flick R, Shapiro R, Scantlebury VP, Jordan ML, Vivas C, et al. Thyroid hormone in the treatment of post-transplant acute tubular necrosis (ATN). Am J Transplant. 2002;1:57–61.

    Article  Google Scholar 

  153. Lebkowska U, Malyszko J, Mysliwiec M. Thyroid function and morphology in kidney transplant recipients, hemodialyzed, and peritoneally dialyzed patients. Transplant Proc. 2003;8:2945–8.

    Article  CAS  Google Scholar 

  154. Papalia T, Greco R, Lofaro D, Mollica A, Bonofiglio R. Thyroid status and kidney transplantation outcomes. Transplant Proc. 2011;4:1042–4.

    Article  CAS  Google Scholar 

  155. Halilcevic A, Hodzic E, Mesic E, Trnacevic S. Incidence of subclinical hypothyroidism in renal transplant patients. Mater Sociomed. 2015;2:108–11.

    Article  Google Scholar 

  156. Engels EA, Pfeiffer RM, Fraumeni Jr JF, Kasiske BL, Israni AK, Snyder JJ, et al. Spectrum of cancer risk among US solid organ transplant recipients. JAMA. 2011;17:1891–901.

    Article  Google Scholar 

  157. Pond F, Serpell JW, Webster A. Thyroid cancer in the renal transplant population: epidemiological study. ANZ J Surg. 2005;3:106–9.

    Article  Google Scholar 

  158. Yanik EL, Clarke CA, Snyder JJ, Pfeiffer RM, Engels EA. Variation in cancer incidence among patients with ESRD during kidney function and nonfunction intervals. J Am Soc Nephrol. 2016;5:1495–504.

    Article  CAS  Google Scholar 

  159. Danzi S, Klein I. Amiodarone-induced thyroid dysfunction. J Intensive Care Med. 2015;4:179–85.

    Article  Google Scholar 

  160. Luciani R, Falcone C, Principe F, Punzo G, Mene P. Acute renal failure due to amiodarone-induced hypothyroidism. Clin Nephrol. 2009;1:79–80.

    Article  Google Scholar 

  161. El Ters M, Patel SM, Norby SM. Hypothyroidism and reversible kidney dysfunction: an essential relationship to recognize. Endocr Pract. 2014;5:490–9.

    Article  Google Scholar 

  162. Hamed SA. The effect of antiepileptic drugs on thyroid hormonal function: causes and implications. Expert Rev Clin Pharmacol. 2015;6:741–50.

    Article  CAS  Google Scholar 

  163. Kessing LV, Gerds TA, Feldt-Rasmussen B, Andersen PK, Licht RW. Use of lithium and anticonvulsants and the rate of chronic kidney disease: a nationwide population-based study. JAMA Psychiatry. 2015;12:1182–91.

    Article  Google Scholar 

  164. Fagiolini A, Kupfer DJ, Scott J, Swartz HA, Cook D, Novick DM, et al. Hypothyroidism in patients with bipolar I disorder treated primarily with lithium. Epidemiol Psichiatr Soc. 2006;2:123–7.

    Google Scholar 

  165. Tsui KY. The impact of Lithium on thyroid function in Chinese psychiatric population. Thyroid Res. 2015:14,015-0026-2. eCollection 2015.

  166. Weiner ID, Leader JP, Bedford JJ, Verlander JW, Ellis G, Kalita P. et al. Effects of chronic lithium administration on renal acid excretion in humans and rats. Physiol Rep. 2014;12. doi:10.14814/phy2.12242.

  167. Alsady M, Baumgarten R, Deen PM, de Groot T. Lithium in the Kidney: friend and foe?. J Am Soc Nephrol. J Am Soc Nephrol. 2016;27:1587–95. 

  168. Aprahamian I, Santos FS, dos Santos B, Talib L, Diniz BS, Radanovic M, et al. Long-term, low-dose lithium treatment does not impair renal function in the elderly: a 2-year randomized, placebo-controlled trial followed by single-blind extension. J Clin Psychiatry. 2014;7:e672–8.

    Article  CAS  Google Scholar 

  169. Paydas S, Balal M, Karayaylali I, Seyrek N. Severe acute renal failure due to tubulointerstitial nephritis, pancreatitis, and hyperthyroidism in a patient during rifampicin therapy. Adv Ther. 2005;3:241–3.

    Article  Google Scholar 

  170. Chen Y, Bao H, Liu Z, Zhang H, Zeng C, Liu Z, et al. Clinico-pathological features and outcomes of patients with propylthiouracil-associated ANCA vasculitis with renal involvement. J Nephrol. 2014;2:159–64.

    Article  CAS  Google Scholar 

  171. Zoccali C, Mallamaci F. Thyroid function and clinical outcomes in kidney failure. Clin J Am Soc Nephrol. 2012;1:12–4.

    Article  CAS  Google Scholar 

  172. Rhee CM, Brent GA, Kovesdy CP, Soldin OP, Nguyen D, Budoff MJ, et al. Thyroid functional disease: an under-recognized cardiovascular risk factor in kidney disease patients. Nephrol Dial Transplant. 2015;5:724–37.

    Article  Google Scholar 

  173. Ozen KP, Asci G, Gungor O, Carrero JJ, Kircelli F, Tatar E, et al. Nutritional state alters the association between free triiodothyronine levels and mortality in hemodialysis patients. Am J Nephrol. 2011;4:305–12.

    Article  CAS  Google Scholar 

  174. Meuwese CL, Dekkers OM, Stenvinkel P, Dekker FW, Carrero JJ. Nonthyroidal illness and the cardiorenal syndrome. Nat Rev Nephrol. 2013;10:599–609.

    Article  CAS  Google Scholar 

  175. Carrero JJ, Qureshi AR, Axelsson J, Yilmaz MI, Rehnmark S, Witt MR, et al. Clinical and biochemical implications of low thyroid hormone levels (total and free forms) in euthyroid patients with chronic kidney disease. J Intern Med. 2007;6:690–701.

    Article  CAS  Google Scholar 

  176. Meuwese CL, Dekker FW, Lindholm B, Qureshi AR, Heimburger O, Barany P, et al. Baseline levels and trimestral variation of triiodothyronine and thyroxine and their association with mortality in maintenance hemodialysis patients. Clin J Am Soc Nephrol. 2012;1:131–8.

    Article  CAS  Google Scholar 

  177. Koo HM, Kim CH, Doh FM, Lee MJ, Kim EJ, Han JH, et al. The impact of low triiodothyronine levels on mortality is mediated by malnutrition and cardiac dysfunction in incident hemodialysis patients. Eur J Endocrinol. 2013;4:409–19.

    Article  CAS  Google Scholar 

  178. Drechsler C, Schneider A, Gutjahr-Lengsfeld L, Kroiss M, Carrero JJ, Krane V, et al. Thyroid function, cardiovascular events, and mortality in diabetic hemodialysis patients. Am J Kidney Dis. 2014;6:988–96.

    Article  CAS  Google Scholar 

  179. Afsar B, Yilmaz MI, Siriopol D, Unal HU, Saglam M, Karaman M, et al. Thyroid function and cardiovascular events in chronic kidney disease patients. J Nephrol. 2016.

  180. Biondi B, Klein I. Hypothyroidism as a risk factor for cardiovascular disease. Endocrine. 2004;1:1–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Iglesias.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest related to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iglesias, P., Bajo, M.A., Selgas, R. et al. Thyroid dysfunction and kidney disease: An update. Rev Endocr Metab Disord 18, 131–144 (2017). https://doi.org/10.1007/s11154-016-9395-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-016-9395-7

Keywords

  • Thyroid
  • Kidney
  • Dialysis
  • Hypothyroidism
  • Hyperthyroidism
  • Thyroid cancer
  • Cardiovascular disease
  • Mortality