Skip to main content

Recent advances in the modification of taste and food preferences following bariatric surgery

Abstract

There is a large body of evidence indicating that bariatric surgery provides durable weight loss and health benefits to patients who are obese and have comorbidities such as type 2 diabetes (T2D). However, there are still many questions related to mechanisms of metabolic improvement, predictors of success/failure, and long term consequences, which need to be answered. More recently, there has been a particular interest in the modulation of taste and food preferences that occurs after bariatric surgery and how this affects weight loss in different individuals. Animal models as well as human studies have shed some light on the role of taste in changing food preferences and how these changes may affect weight loss after surgery. The goal of this review is to discuss the physiological and behavioral consequences of bariatric surgery as a treatment for obesity and T2D, with particular emphasis on recent studies describing bariatric surgery-induced modifications in taste perception and food preferences.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011-2012. J Am Med Assoc. 2014;311(8):806–14.

    Article  CAS  Google Scholar 

  2. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, et al. National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet. 2011;377(9765):557–67.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stevens GA, Singh GM, Lu Y, Danaei G, Lin JK, Finucane MM, et al. National, regional, and global trends in adult overweight and obesity prevalences. Popul Health Metrics. 2012;10(1):22.

    Article  Google Scholar 

  4. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9(88). doi:10.1186/1471-2458-9-88.

  5. Khaodhiar L, McCowen KC, Blackburn GL. Obesity and its comorbid conditions. Clin Cornerstone. 1999;2(3):17–31.

    Article  CAS  PubMed  Google Scholar 

  6. Martin-Rodriguez E, Guillen-Grima F, Martí A, Brugos-Larumbe A. Comorbidity associated with obesity in a large population: the APNA study. Obes Res Clin Pract. 2015;9(5):435–47.

    Article  PubMed  Google Scholar 

  7. Pi-Sunyer FX. Comorbidities of overweight and obesity: current evidence and research issues. Med Sci Sports Exerc. 1999;31(11 Suppl):S602–8.

    Article  CAS  PubMed  Google Scholar 

  8. Ribaric G, Buchwald JN, McGlennon TW. Diabetes and weight in comparative studies of bariatric surgery vs conventional medical therapy: a systematic review and meta-analysis. Obes Surg. 2014;24(3):437–55.

    Article  CAS  PubMed  Google Scholar 

  9. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14.

    Article  CAS  PubMed  Google Scholar 

  10. Bray GA, Wadden TA. Improving long-term weight loss maintenance: can we do it? Obesity. 2015;23(1):2–3.

    Article  PubMed  Google Scholar 

  11. MacLean PS, Wing RR, Davidson T, Epstein L, Goodpaster B, Hall KD, et al. NIH working group report: innovative research to improve maintenance of weight loss. Obesity. 2015;23(1):7–15.

    Article  PubMed  Google Scholar 

  12. Dombrowski SU, Knittle K, Avenell A, Araújo-Soares V, Sniehotta FF. Long term maintenance of weight loss with non-surgical interventions in obese adults: systematic review and meta-analyses of randomised controlled trials. BMJ. 2014;348:g2646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Loveman E, Frampton GK, Shepherd J, Picot J, Cooper K, Bryant J, et al. The clinical effectiveness and cost-effectiveness of long-term weight management schemes for adults: a systematic review. Health Technol Assess. 2011;15(2):1–182.

    Article  CAS  Google Scholar 

  14. Johnson EE, Simpson AN, Harvey JB, Simpson KN. Bariatric surgery implementation trends in the USA from 2002 to 2012. Implementation science: IS. 2016;11:21.

    Article  PubMed  PubMed Central  Google Scholar 

  15. NIH conference. Gastrointestinal surgery for severe obesity. Consensus development conference panel. Ann Intern Med 1991;115(12):956–961.

  16. Burguera B, Agusti A, Arner P, Baltasar A, Barbe F, Barcelo A, et al. Critical assessment of the current guidelines for the management and treatment of morbidly obese patients. J Endocrinol Investig. 2007;30(10):844–52.

    Article  CAS  Google Scholar 

  17. Buchwald H, Consensus CP. Bariatric surgery for morbid obesity: health implications for patients, health professionals, and third-party payers. J Am Coll Surg. 2005;200(4):593–604.

    Article  PubMed  Google Scholar 

  18. Mechanick JI, Youdim A, Jones DB, Timothy Garvey W, Hurley DL, Molly McMahon M, et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient–2013 update: cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & bariatric surgery. Surg Obes Relat Dis. 2013;9(2):159–91.

    Article  PubMed  Google Scholar 

  19. Dixon JB, O'Brien PE, Playfair J, Chapman L, Schachter LM, Skinner S, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. J Am Med Assoc. 2008;299(3):316–23.

    Article  CAS  Google Scholar 

  20. Ikramuddin S, Korner J, Lee WJ, Connett JE, Inabnet WB, Billington CJ, et al. Roux-en-Y gastric bypass vs intensive medical management for the control of type 2 diabetes, hypertension, and hyperlipidemia: the diabetes surgery study randomized clinical trial. J Am Med Assoc. 2013;309(21):2240–9.

    Article  CAS  Google Scholar 

  21. Liang Z, Wu Q, Chen B, Yu P, Zhao H, Ouyang X. Effect of laparoscopic roux-en-Y gastric bypass surgery on type 2 diabetes mellitus with hypertension: a randomized controlled trial. Diabetes Res Clin Pract. 2013;101(1):50–6.

    Article  PubMed  Google Scholar 

  22. Buchwald H, Oien DM. Metabolic/bariatric surgery worldwide 2011. Obes Surg. 2013;23(4):427–36.

    Article  PubMed  Google Scholar 

  23. O'Brien PE, Brown WA, Smith A, McMurrick PJ, Stephens M. Prospective study of a laparoscopically placed, adjustable gastric band in the treatment of morbid obesity. Br J Surg. 1999;86(1):113–8.

    Article  PubMed  Google Scholar 

  24. Almogy G, Crookes PF, Anthone GJ. Longitudinal gastrectomy as a treatment for the high-risk super-obese patient. Obes Surg. 2004;14(4):492–7.

    Article  PubMed  Google Scholar 

  25. Elder KA, Wolfe BM. Bariatric surgery: a review of procedures and outcomes. Gastroenterology. 2007;132(6):2253–71.

    Article  PubMed  Google Scholar 

  26. Samuel I, Mason EE, Renquist KE, Huang YH, Zimmerman MB, Jamal M. Bariatric surgery trends: an 18-year report from the international bariatric surgery registry. Am J Surg. 2006;192(5):657–62.

    Article  PubMed  Google Scholar 

  27. Menke A, Casagrande S, Geiss L, Cowie CC. Prevalence of and trends in diabetes among adults in the United States, 1988-2012. J Am Med Assoc. 2015;314(10):1021–9.

    Article  CAS  Google Scholar 

  28. Sjostrom L, Peltonen M, Jacobson P, Ahlin S, Andersson-Assarsson J, Anveden A, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. J Am Med Assoc. 2014;311(22):2297–304.

    Article  CAS  Google Scholar 

  29. Puzziferri N, Roshek 3rd TB, Mayo HG, Gallagher R, Belle SH, Livingston EH. Long-term follow-up after bariatric surgery: a systematic review. J Am Med Assoc. 2014;312(9):934–42.

    Article  CAS  Google Scholar 

  30. Malkani S. An update on the role of bariatric surgery in diabetes management. Curr Opin Endocrinol Diabetes Obes. 2015;22(2):98–105.

    Article  PubMed  Google Scholar 

  31. Courcoulas AP, Goodpaster BH, Eagleton JK, Belle SH, Kalarchian MA, Lang W, et al. Surgical vs medical treatments for type 2 diabetes mellitus: a randomized clinical trial. JAMA Surg. 2014;149(7):707–15.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ikramuddin S, Billington CJ, Lee WJ, Bantle JP, Thomas AJ, Connett JE, et al. Roux-en-Y gastric bypass for diabetes (the diabetes surgery study): 2-year outcomes of a 5-year, randomised, controlled trial. Lancet Diabetes Endocrinol. 2015;3(6):413–22.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Nanni G, et al. Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-Centre, randomised controlled trial. Lancet. 2015;386(9997):964–73.

    Article  PubMed  Google Scholar 

  34. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Brethauer SA, Navaneethan SD, et al. Bariatric surgery versus intensive medical therapy for diabetes–3-year outcomes. N Engl J Med. 2014;370(21):2002–13.

    Article  PubMed  CAS  Google Scholar 

  35. Major P, Matlok M, Pedziwiatr M, Migaczewski M, Zub-Pokrowiecka A, Radkowiak D, et al. Changes in levels of selected incretins and appetite-controlling hormones following surgical treatment for morbid obesity. Wideochir Inne Tech Maloinwazyjne. 2015;10(3):458–65.

    PubMed  PubMed Central  Google Scholar 

  36. Nannipieri M, Baldi S, Mari A, Colligiani D, Guarino D, Camastra S, et al. Roux-en-Y gastric bypass and sleeve gastrectomy: mechanisms of diabetes remission and role of gut hormones. J Clin Endocrinol Metab. 2013;98(11):4391–9.

    Article  CAS  PubMed  Google Scholar 

  37. Goktas Z, Moustaid-Moussa N, Shen CL, Boylan M, Mo H, Wang S. Effects of bariatric surgery on adipokine-induced inflammation and insulin resistance. Front Endocrinol. 2013;4:69.

    Article  Google Scholar 

  38. Bays HE, Toth PP, Kris-Etherton PM, Abate N, Aronne LJ, Brown WV, et al. Obesity, adiposity, and dyslipidemia: a consensus statement from the National Lipid Association. J Clin Lipidol. 2013;7(4):304–83.

    Article  PubMed  Google Scholar 

  39. Otto M, Elrefai M, Krammer J, Weiß C, Kienle P. Hasenberg T. Sleeve gastrectomy and Roux-en-Y gastric bypass lead to comparable changes in body composition after adjustment for initial body mass index. Obes Surg. 2016;26(3):479–85. doi:10.1007/s11695-015-1792-6.

  40. Colquitt JL, Pickett K, Loveman E, Frampton GK. Surgery for weight loss in adults. Cochrane Database Syst Rev. 2014;8:CD003641.

    PubMed  Google Scholar 

  41. de Aquino LA, Pereira SE, de Souza SJ, Sobrinho CJ, Ramalho A. Bariatric surgery: impact on body composition after roux-en-Y gastric bypass. Obes Surg. 2012;22(2):195–200.

    Article  PubMed  Google Scholar 

  42. Schneider J, Peterli R, Gass M, Slawik M, Peters T, Wölnerhanssen BK. Laparoscopic sleeve gastrectomy and roux-en-Y gastric bypass lead to equal changes in body composition and energy metabolism 17 months postoperatively: a prospective randomized trial. Surg Obes Relat Dis. 2015;12(3):563–70.

    Article  PubMed  Google Scholar 

  43. Kokkinos A, Alexiadou K, Liaskos C, Argyrakopoulou G, Balla I, Tentolouris N, et al. Improvement in cardiovascular indices after roux-en-Y gastric bypass or sleeve gastrectomy for morbid obesity. Obes Surg. 2013;23(1):31–8.

    Article  PubMed  Google Scholar 

  44. Sala PC, Torrinhas RS, Giannella-Neto D, Waitzberg DL. Relationship between gut hormones and glucose homeostasis after bariatric surgery. Diabetol Metab Syndr. 2014;6(1):87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Torriani M, Oliveira AL, Azevedo DC, Bredella MA, Yu EW. Effects of roux-en-Y gastric bypass surgery on visceral and subcutaneous fat density by computed tomography. Obes Surg. 2015;25(2):381–5.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li FY, Cheng KK, Lam KS, Vanhoutte PM, Xu A. Cross-talk between adipose tissue and vasculature: role of adiponectin. Acta Physiol (Oxford). 2011;203(1):167–80.

    Article  CAS  Google Scholar 

  47. Després JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444(7121):881–7.

    Article  PubMed  CAS  Google Scholar 

  48. Balistreri CR, Caruso C, Candore G. The role of adipose tissue and adipokines in obesity-related inflammatory diseases. Mediat Inflamm. 2010;2010:802078.

    Article  CAS  Google Scholar 

  49. Lam YY, Mitchell AJ, Holmes AJ, Denyer GS, Gummesson A, Caterson ID, et al. Role of the gut in visceral fat inflammation and metabolic disorders. Obesity (Silver Spring). 2011;19(11):2113–20.

    Article  CAS  Google Scholar 

  50. Lindegaard KK, Jorgensen NB, Just R, Heegaard PM, Madsbad S. Effects of roux-en-Y gastric bypass on fasting and postprandial inflammation-related parameters in obese subjects with normal glucose tolerance and in obese subjects with type 2 diabetes. Diabetol Metab Syndr. 2015;7:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Swarbrick MM, Stanhope KL, Austrheim-Smith IT, Van Loan MD, Ali MR, Wolfe BM, et al. Longitudinal changes in pancreatic and adipocyte hormones following roux-en-Y gastric bypass surgery. Diabetologia. 2008;51(10):1901–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pardina E, Ferrer R, Baena-Fustegueras JA, Rivero J, Lecube A, Fort JM, et al. Only C-reactive protein, but not TNF-α or IL6, reflects the improvement in inflammation after bariatric surgery. Obes Surg. 2012;22(1):131–9.

    Article  PubMed  Google Scholar 

  53. Miller MR, Choban PS. Surgical management of obesity: current state of procedure evolution and strategies to optimize outcomes. Nutr Clin Pract. 2011;26(5):526–33.

    Article  PubMed  Google Scholar 

  54. Viana EC, Araujo-Dasilio KL, Miguel GP, Bressan J, Lemos EM, Moyses MR, et al. Gastric bypass and sleeve gastrectomy: the same impact on IL-6 and TNF-α. Prospective clinical trial. Obes Surg. 2013;23(8):1252–61.

    Article  PubMed  Google Scholar 

  55. Auguet T, Terra X, Hernández M, Sabench F, Porras JA, Orellana-Gavaldà JM, et al. Clinical and adipocytokine changes after bariatric surgery in morbidly obese women. Obesity. 2014;22(1):188–94.

    Article  CAS  PubMed  Google Scholar 

  56. Subak LL, King WC, Belle SH, Chen JY, Courcoulas AP, Ebel FE, et al. Urinary incontinence before and after bariatric surgery. JAMA Intern Med. 2015;175(8):1378–87.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Paepegaey AC, Dubern B, Karsenty A, Chantereau H, Aron-Wisnewsky J, Oderda L, et al. Bariatric surgery in obese adolescents: when and how should the transition from pediatric to adult medical management be made? Arch Pediatr. 2015;22(12):1233–9.

    Article  PubMed  Google Scholar 

  58. Lingvay I, Guth E, Islam A, Livingston E. Rapid improvement in diabetes after gastric bypass surgery: is it the diet or surgery? Diabetes Care. 2013;36(9):2741–7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Saliba J, Wattacheril J, Abumrad NN. Endocrine and metabolic response to gastric bypass. Curr Op Clin Nutr Metabol Care. 2009;12(5):515–21.

    Article  CAS  Google Scholar 

  60. Isbell JM, Tamboli RA, Hansen EN, Saliba J, Dunn JP, Phillips SE, et al. The importance of caloric restriction in the early improvements in insulin sensitivity after roux-en-Y gastric bypass surgery. Diabetes Care. 2010;33(7):1438–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bojsen-Moller KN, Dirksen C, Jorgensen NB, Jacobsen SH, Serup AK, Albers PH, et al. Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after roux-en-Y gastric bypass. Diabetes. 2014;63(5):1725–37.

    Article  PubMed  CAS  Google Scholar 

  62. Laferrere B, Teixeira J, McGinty J, Tran H, Egger JR, Colarusso A, et al. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93(7):2479–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab. 2004;89(6):2608–15.

    Article  CAS  PubMed  Google Scholar 

  64. Kamvissi V, Salerno A, Bornstein SR, Mingrone G, Rubino F. Incretins or anti-incretins? A new model for the "entero-pancreatic axis". Horm Metab Res. 2015;47(1):84–7.

    CAS  PubMed  Google Scholar 

  65. Rubino F, Forgione A, Cummings DE, Vix M, Gnuli D, Mingrone G, et al. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg. 2006;244(5):741–9.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Meek CL, Lewis HB, Reimann F, Gribble FM, Park AJ. The effect of bariatric surgery on gastrointestinal and pancreatic peptide hormones. Peptides. 2016;77:28–37.

    Article  CAS  PubMed  Google Scholar 

  67. Miras AD, le Roux CW. Mechanisms underlying weight loss after bariatric surgery. Nat Rev Gastroenterol Hepatol. 2013;10(10):575–84.

    Article  PubMed  Google Scholar 

  68. Münzberg H, Laque A, Yu S, Rezai-Zadeh K, Berthoud HR. Appetite and body weight regulation after bariatric surgery. Obes Rev. 2015;16(Suppl 1):77–90.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bryant EJ, King NA, Falkén Y, Hellström PM, Holst JJ, Blundell JE, et al. Relationships among tonic and episodic aspects of motivation to eat, gut peptides, and weight before and after bariatric surgery. Surg Obes Relat Dis. 2013;9(5):802–8.

    Article  PubMed  Google Scholar 

  70. Rieber N, Giel KE, Meile T, Enck P, Zipfel S, Teufel M. Psychological dimensions after laparoscopic sleeve gastrectomy: reduced mental burden, improved eating behavior, and ongoing need for cognitive eating control. Surg Obes Relat Dis. 2013;9(4):569–73.

    Article  PubMed  Google Scholar 

  71. Pepino MY, Stein RI, Eagon JC, Klein S. Bariatric surgery-induced weight loss causes remission of food addiction in extreme obesity. Obesity. 2014;22(8):1792–8.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pepino MY, Bradley D, Eagon JC, Sullivan S, Abumrad NA, Klein S. Changes in taste perception and eating behavior after bariatric surgery-induced weight loss in women. Obesity. 2014;22(5):E13–20.

    Article  PubMed  Google Scholar 

  73. le Roux CW, Bueter M. The physiology of altered eating behaviour after roux-en-Y gastric bypass. Exp Physiol. 2014;99(9):1128–32.

    Article  PubMed  Google Scholar 

  74. Sjöström L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B, et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med. 2004;351(26):2683–93.

    Article  PubMed  Google Scholar 

  75. Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Leccesi L, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85.

    Article  CAS  PubMed  Google Scholar 

  76. Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP, Pothier CE, et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N Engl J Med. 2012;366(17):1567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Scruggs DM, Buffington C, Cowan Jr GS. Taste acuity of the morbidly obese before and after gastric bypass surgery. Obes Surg. 1994;4(1):24–8.

    Article  PubMed  Google Scholar 

  78. Tichansky DS, Boughter Jr JD, Madan AK. Taste change after laparoscopic roux-en-Y gastric bypass and laparoscopic adjustable gastric banding. Surg Obes Relat Dis. 2006;2(4):440–4.

    Article  PubMed  Google Scholar 

  79. Wilson-Pérez HE, Chambers AP, Sandoval DA, Stefater MA, Woods SC, Benoit SC, et al. The effect of vertical sleeve gastrectomy on food choice in rats. Int J Obes. 2013;37(2):288–95.

    Article  CAS  Google Scholar 

  80. Zheng H, Shin AC, Lenard NR, Townsend RL, Patterson LM, Sigalet DL, et al. Meal patterns, satiety, and food choice in a rat model of roux-en-Y gastric bypass surgery. Am J Phys Regul Integr Comp Phys. 2009;297:R1273–R82.

    CAS  Google Scholar 

  81. Mathes CM, Bohnenkamp RA, le Roux CW, Spector AC. Reduced sweet and fatty fluid intake after roux-en-Y gastric bypass in rats is dependent on experience without change in stimulus motivational potency. Am J Phys Regul Integr Comp Phys. 2015;309(8):R864–74.

    CAS  Google Scholar 

  82. Miras AD, Jackson RN, Jackson SN, Goldstone AP, Olbers T, Hackenberg T, et al. Gastric bypass surgery for obesity decreases the reward value of a sweet-fat stimulus as assessed in a progressive ratio task. Am J Clin Nutr. 2012;96(3):467–73.

    Article  CAS  PubMed  Google Scholar 

  83. Seyfried F, Miras AD, Bueter M, Prechtl CG, Spector AC, le Roux CW. Effects of preoperative exposure to a high-fat versus a low-fat diet on ingestive behavior after gastric bypass surgery in rats. Surg Endosc. 2013;27(11):4192–201.

    Article  PubMed  PubMed Central  Google Scholar 

  84. le Roux CW, Bueter M, Theis N, Werling M, Ashrafian H, Löwenstein C, et al. Gastric bypass reduces fat intake and preference. Am J Phys Regul Integr Comp Phys. 2011;301(4):R1057–66.

    Google Scholar 

  85. Bueter M, Miras AD, Chichger H, Fenske W, Ghatei MA, Bloom SR, et al. Alterations of sucrose preference after roux-en-Y gastric bypass. Physiol Behav. 2011;104(5):709–21.

    Article  CAS  PubMed  Google Scholar 

  86. Berthoud HR, Zheng H. Modulation of taste responsiveness and food preference by obesity and weight loss. Physiol Behav. 2012;107(4):527–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Graham L, Murty G, Bowrey DJ. Taste, smell and appetite change after roux-en-Y gastric bypass surgery. Obes Surg. 2014;24(9):1463–8.

    Article  CAS  PubMed  Google Scholar 

  88. Borg CM, le Roux CW, Ghatei MA, Bloom SR, Patel AG, Aylwin SJ. Progressive rise in gut hormone levels after roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006;93(2):210–5.

    Article  CAS  PubMed  Google Scholar 

  89. Bueter M, Ashrafian H, le Roux CW. Mechanisms of weight loss after gastric bypass and gastric banding. Obes Facts. 2009;2(5):325–31.

    Article  PubMed  Google Scholar 

  90. Laurenius A, Larsson I, Bueter M, Melanson KJ, Bosaeus I, Forslund HB, et al. Changes in eating behaviour and meal pattern following roux-en-Y gastric bypass. Int J Obes. 2012;36(3):348–55.

    Article  CAS  Google Scholar 

  91. Nguyen KT, Korner J. The sum of many parts: potential mechanisms for improvement in glucose homeostasis after bariatric surgery. Curr Diab Rep. 2014;14(5):481.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Abumrad NA. CD36 may determine our desire for dietary fats. J Clin Invest. 2005;115(11):2965–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Halford JC, Blundell JE. The 5-HT1B receptor agonist CP-94,253 reduces food intake and preserves the behavioural satiety sequence. Physiol Behav. 1996;60(3):933–9.

    Article  CAS  PubMed  Google Scholar 

  94. Chen CSY, Bench EM, Allerton TD, Schreiber AL, Arceneaux KP, Primeaux SD. Preference for linoleic acid in obesity-prone and obesity-resistant rats is attenuated by the reduction of CD36 on the tongue. Am J Phys Regul Integr Comp Phys. 2013;305:R1346–R55.

    CAS  Google Scholar 

  95. Degrace-Passilly P, Besnard P. CD36 and taste of fat. CurrOpinClin NutrMetab Care. 2012;15:107–11.

    CAS  Google Scholar 

  96. Dramane G, Abdoul-Azize S, Hichami A, Vogtle T, Akpona S, Chouabe C, et al. STIM1 regulates calcium signaling in taste bud cells and preference for fat in mice. J Clin Invest. 2012;122(6):2267–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Duca FA, Yue JT. Fatty acid sensing in the gut and the hypothalamus: in vivo and in vitro perspectives. Mol Cell Endocrinol. 2014;397(1–2):23–33.

    Article  CAS  PubMed  Google Scholar 

  98. Glendinning JI, Gillman J, Zamer H, Margolskee RF, Sclafani A. The role of T1r3 and Trpm5 in carbohydrate-induced obesity in mice. Physiol Behav. 2012;107(1):50–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Martin C, Passilly-Degrace P, Chevrot M, Ancel D, Sparks SM, Drucker DJ, et al. Lipid-mediated release of GLP-1 by mosue taste buds from circumvallate papillae: putative involvement of GPR120 and impact on taste sensitivity. J Lipid Res. 2012;53:2256–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Martin C, Passilly-Degrace P, Merlin JF, Chevrot M, Besnard P. The lipid-sensor candidates CD36 and GPR120 are differentially regulated by dietary lipids in mouse taste buds: impact on spontaneous fat preference. PLoS ONE. 2011;6(8):e24014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mattes RD. Fat taste and lipid metabolism in humans. Physiol Behav. 2005;86:691–7.

    Article  CAS  PubMed  Google Scholar 

  102. Primeaux SD, Braymer HD, Bray GA. CD36 mRNA in the gastrointestinal tract is differentially regulated by dietary fat intake in obesity-prone and obesity-resistant rats. Dig Dis Sci. 2013;58(2):369–70.

    Article  Google Scholar 

  103. Shin AC, Townsend RL, Patterson LM, Berthoud HR. "liking" and "wanting" of sweet and oily food stimuli as affected by high-fat diet-induced oesity, weight loss, leptin and genetic predisposition. Am J Phys Regul Integr Comp Phys. 2011;301:R1267–R80.

    CAS  Google Scholar 

  104. Tucker RM, Mattes RD. Are free fatty acids effective taste stimuli in humans? J Food Sci. 2012;77(3):S148–S50.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang XJ, Zhou LH, Ban X, Liu DX, Jiang W, Liu XM. Decreased expression of CD36 in circumvallate taste buds of high-fat induced obese rats. Acta Histochem. 2011;113(6):663–7.

    Article  CAS  PubMed  Google Scholar 

  106. Zukerman S, Glendinning JI, Margolskee RF, Sclafani A. T1R3 taste receptor is critical for sucrose but not Polycose taste. Am J Phys Regul Integr Comp Phys. 2009;296(4):R866–76.

    CAS  Google Scholar 

  107. Depoortere I. Taste receptors of the gut: emerging roles in health and disease. Gut. 2014;63(1):179–90.

    Article  CAS  PubMed  Google Scholar 

  108. Gutierrez R, Simon SA. Chemosensory processing in the taste - reward pathway. Flavour Fragr J. 2011;26(4):231–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. El-Yassimi A, Hichami A, Besnard P, Khan NA. Linoleic acid induces calcium signaling, Src kinase phosphorylation and neurotransmitter release in mouse CD36-positive gustatory cells. J Biol Chem. 2008;283(19):12949–59.

    Article  CAS  PubMed  Google Scholar 

  110. Burger KS, Stice E. Elevated energy intake is correlated with hyperresponsivity in attentional, gustatory, and reward brain regions while anticipating palatable food receipt. Am J Clin Nutr. 2013;97(6):1188–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wasalathanthri S, Hettiarachchi P, Prathapan S. Sweet taste sensitivity in pre-diabetics, diabetics and normoglycemic controls: a comparative cross sectional study. BMC Endocr Disord. 2014;14:67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Yu JH, Shin MS, Kim DJ, Lee JR, Yoon SY, Kim SG, et al. Enhanced carbohydrate craving in patients with poorly controlled type 2 diabetes mellitus. Diabet Med. 2013;30(9):1080–6.

    Article  CAS  PubMed  Google Scholar 

  113. Hayes JE, Duffy VB. Oral sensory phenotype identifies level of sugar and fat required for maximal liking. Physiol Behav. 2008;95:77–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Keller KL. Genetic influences on oral fat perception and preference. J Food Sci. 2012;77(3):S143–S7.

    Article  CAS  PubMed  Google Scholar 

  115. Stewart JE, Feinle-Bisset C, Golding M, Delahunty C, Clifton PM, Keast RS. Oral sensitivity to fatty acids, food consumption and BMI in human subjects. Br J Nutr. 2010;104(1):145–52.

    Article  CAS  PubMed  Google Scholar 

  116. Mathes CM, Bohnenkamp RA, Blonde GD, Letourneau C, Corteville C, Bueter M, et al. Gastric bypass in rats does not decrease appetitive behavior towards sweet or fatty fluids despite blunting preferential intake of sugar and fat. Physiol Behav. 2015;142:179–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Mathes CM, Bueter M, Smith KR, Lutz TA, le Roux CW, Spector AC. Roux-en-Y gastric bypass in rats increases sucrose taste-related motivated behavior independent of pharmacological GLP-1-receptor modulation. Am J Phys Regul Integr Comp Phys. 2012;302(6):R751–67.

    CAS  Google Scholar 

  118. Tracy AL. Schurdak JD. Benoit SC. Aversion learning can reduce meal size without taste avoidance in rats. Obesity (Silver Spring). 2016;24(3):606–14. doi:10.1002/oby.21379.

  119. Hajnal A, Kovacs P, Ahmed T, Meirelles K, Lynch CJ, Cooney RN. Gastric bypass surgery alters behavioral and neural taste functions for sweet taste in obese rats. Am J Physiol Gastrointest Liver Physiol. 2010;299(4):G967–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Thanos PK, Michaelides M, Subrize M, Miller ML, Bellezza R, Cooney RN, et al. Roux-en-Y gastric bypass alters brain activity in regions that underlie reward and taste perception. PLoS ONE. 2015;10(6):e0125570.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Tichansky DS, Glatt AR, Madan AK, Harper J, Tokita K, Boughter JD. Decrease in sweet taste in rats after gastric bypass surgery. Surg Endosc. 2011;25(4):1176–81.

    Article  PubMed  Google Scholar 

  122. Chambers AP, Wilson-Perez HE, McGrath S, Grayson BE, Ryan KK, D'Alessio DA, et al. Effect of vertical sleeve gastrectomy on food selection and satiation in rats. Am J Physiol Endocrinol Metab. 2012;303(8):E1076–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Saeidi N, Nestoridi E, Kucharczyk J, Uygun MK, Yarmush ML, Stylopoulos N. Sleeve gastrectomy and roux-en-Y gastric bypass exhibit differential effects on food preferences, nutrient absorption and energy expenditure in obese rats. Int J Obes. 2012;36(11):1396–402.

    Article  CAS  Google Scholar 

  124. Behary P, Miras AD. Food preferences and underlying mechanisms after bariatric surgery. Proc Nutr Soc. 2015;74(4):419–25.

    Article  PubMed  Google Scholar 

  125. Burge JC, Schaumburg JZ, Choban PS, DiSilvestro RA, Flancbaum L. Changes in patients' taste acuity after roux-en-Y gastric bypass for clinically severe obesity. J Am Diet Assoc. 1995;95(6):666–70.

    Article  CAS  PubMed  Google Scholar 

  126. Manning S, Pucci A, Batterham RL. Roux-en-Y gastric bypass: effects on feeding behavior and underlying mechanisms. J Clin Invest. 2015;125(3):939–48.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Miras AD, le Roux CW. Bariatric surgery and taste: novel mechanisms of weight loss. Curr Opin Gastroenterol. 2010;26(2):140–5.

    Article  PubMed  Google Scholar 

  128. Olbers T, Björkman S, Lindroos A, Maleckas A, Lönn L, Sjöström L, et al. Body composition, dietary intake, and energy expenditure after laparoscopic roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty: a randomized clinical trial. Ann Surg. 2006;244(5):715–22.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Spector AC, le Roux CW, Munger SD, Travers SP, Sclafani A, Mennella JA. Proceedings of the 2015 a.S.P.E.N. Impact on Food Selection, Intake, and Health. JPEN J Parenter Enteral Nutr. 2015 Nov 23. pii: 0148607115617438.

  130. Primeaux SD, Tzeng TH, Allerton TD, Chiang MC, Cosentino G, Dubin RL, et al. Differences in short-term food preferences following vertical sleeve gastrectomy and roux-en-Y gastric bypass surgery. Obes Res Clin Pract. 2015;9(6):628–32.

    Article  PubMed  Google Scholar 

  131. Scholtz S, Miras AD, Chhina N, Prechtl CG, Sleeth ML, Daud NM, et al. Obese patients after gastric bypass surgery have lower brain-hedonic responses to food than after gastric banding. Gut. 2014;63(6):891–902.

    Article  PubMed  Google Scholar 

  132. Ammon BS, Bellanger DE, Geiselman PJ, Primeaux SD, Yu Y, Greenway FL. Short-term pilot study of the effect of sleeve gastrectomy on food preference. Obes Surg. 2015;25(6):1094–7.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Zerrweck C, Zurita L, Alvarez G. Maydon HG. Campos F, et al. Taste and Olfactory Changes Following Laparoscopic Gastric Bypass and Sleeve Gastrectomy. Obes Surg. 2016;26(6):1296–302. doi:10.1007/s11695-015-1944-8.

  134. Geiselman PJ, Anderson AM, Dowdy ML, West DB, Redmann SM, Smith SR. Reliability and validity of a macronutrient self-selection paradigm and a food preference questionnaire. Physiol Behav. 1998;63(5):919–28.

    Article  CAS  PubMed  Google Scholar 

  135. Wang JL, Yang Q, Hajnal A. Rogers AM. Surg Endosc: A pilot functional MRI study in Roux-en-Y gastric bypass patients to study alteration in taste functions after surgery. Surg Endosc. 2016;30(3):892–8. doi:10.1007/s00464-015-4288-5.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefany D. Primeaux.

Ethics declarations

Conflict of interest statement

The authors do not have any conflicts of interest to declare.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Primeaux, S.D., de Silva, T., Tzeng, T.H. et al. Recent advances in the modification of taste and food preferences following bariatric surgery. Rev Endocr Metab Disord 17, 195–207 (2016). https://doi.org/10.1007/s11154-016-9365-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-016-9365-0

Keywords