Skip to main content

Advertisement

Log in

Toxic chemicals and thyroid function: hard facts and lateral thinking

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Increasing quantities of evidence-based data incriminate a large number of environmental pollutants for toxic effects on the thyroid. Among the many chemical contaminants, halogenated organochlorines and pesticides variably affect the hypothalamic-pituitary-thyroid axis and disrupt thyroid function. PCBs and their metabolites and PBDEs bind to thyroid transport proteins, such as transthyretin, displace thyroxine, and disrupt thyroid function. Meanwhile, at the molecular level, PCB congeners may activate phosphorylation of Akt, p-Akt, and forkhead box O3a (FoxO3a) protein resulting in inhibition of the natrium/iodide symporter. Given therefore the growing concern developing around these multiple toxic chemicals today invading numerous environments and their long-term deleterious effects not only on the thyroid but also on general health, we strongly advocate their strict regulation and, moreover, their gradual reduction. A good degree of “lateral thinking”, we feel, will lead to a use of chemicals that will enhance life while concurrently carefully protecting the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr Rev. 2009;30(4):293–342. doi:10.1210/er.2009-0002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Body Burden – The pollution in newborns, environmental working group, 2005.

  3. Skakkebaek NE, Toppari J, Söder O, Gordon CM, Divall S, Draznin M. The exposure of fetuses and children to endocrine disrupting chemicals: a european society for paediatric endocrinology (ESPE) and pediatric endocrine society (PES) call to action statement. J Clin Endocrinol Metab. 2011;96(10):3056–8. doi:10.1210/jc.2011-1269.

    Article  CAS  PubMed  Google Scholar 

  4. Fourth National Report on Human Exposure to Environmental Chemicals. U.S. CDC 2009.

  5. Menke A, Muntner P, Batuman V, Silbergeld EK, Guallar E. Blood lead below 0.48 micromol/L (10 microg/dL) and mortality among US adults. Circulation. 2006;114(13):1388–94.

    Article  CAS  PubMed  Google Scholar 

  6. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. Executive summary to EDC-2: the endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36:593–602. doi:10.1210/er.2015-1093.

    Article  CAS  PubMed  Google Scholar 

  7. Maqbool F, Mostafalou S, Bahadar H, Abdollahi M. Review of endocrine disorders associated with environmental toxicants and possible involved mechanisms. Life Sci. 2015. doi:10.1016/j.lfs.2015.10.022.

    PubMed  Google Scholar 

  8. Brucker-Davis F. Effects of environmental synthetic chemicals on thyroid function. Thyroid. 1998;8:827–55.

    Article  CAS  PubMed  Google Scholar 

  9. Zoeller TR. Environmental chemicals targeting thyroid. Hormones (Athens). 2010;9:28–40.

    Article  Google Scholar 

  10. Duntas LH. Chemical contamination and the thyroid. Endocrine. 2015;48:53–64. doi:10.1007/s12020-014-0442-4.

    Article  CAS  PubMed  Google Scholar 

  11. Beyer A, Biziuk M. Environmental fate and global distribution of polychlorinated biphenyls. Rev Environ Contam Toxicol. 2009;201:137–58. doi:10.1007/978-1-4419-0032-6_5.

    CAS  PubMed  Google Scholar 

  12. Brucker-Davis F, Hiéronimus S, Fénichel P. Thyroid and the environment. Presse Med. 2015. doi:10.1016/j.lpm.2015.06.015.

    Google Scholar 

  13. Grimm FA, Hu D, Kania-Korwel I, Lehmler HJ, Ludewig G, Hornbuckle KC, et al. Metabolism and metabolites of polychlorinated biphenyls (PCBs). Crit Rev Toxicol. 2015;45:245–72. doi:10.3109/10408444.2014.999365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Montaño M, Cocco E, Guignard C, Marsh G, Hoffmann L, Bergman A, et al. New approaches to assess the transthyretin binding capacity of bioactivated thyroid hormone disruptors. Toxicol Sci. 2012;130:94–105. doi:10.1093/toxsci/kfs228.

    Article  PubMed  Google Scholar 

  15. Grimm FA, Lehmler HJ, He X, Robertson LW, Duffel MW. Sulfated metabolites of polychlorinated biphenyls are high-affinity ligands for the thyroid hormone transport protein transthyretin. Environ Health Perspect. 2013;121:657–62. doi:10.1289/ehp.1206198.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang H, Chen H, Guo H, Li W, Tang J, Xu B, et al. Molecular mechanisms of 2, 3′, 4, 4′, 5-pentachlorobiphenyl-induced thyroid dysfunction in FRTL-5 cells. PLoS One. 2015;10:e0120133. doi:10.1371/journal.pone.0120133.eCollection2015.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Guo H, Yang H, Chen H, Li W, Tang J, Cheng P, et al. Molecular mechanisms of human thyrocyte dysfunction induced by low concentrations of polychlorinated biphenyl 118 through the Akt/FoxO3a/NIS pathway. J Appl Toxicol. 2015;35:992–8. doi:10.1002/jat.3032.

    Article  CAS  PubMed  Google Scholar 

  18. Xu B, Yang H, Sun M, Chen H, Jiang L, Zheng X, et al. 2,3′,4,4′,5-Pentachlorobiphenyl induces inflammatory responses in the thyroid through JNK and Aryl hydrocarbon receptor-mediated pathway. Toxicol Sci. 2015.

  19. Liu C, Li L, Ha M, Qi S, Duan P, Yang K. The PI3K/Akt and ERK pathways elevate thyroid hormone receptor β1 and TRH receptor to decrease thyroid hormones after exposure to PCB153 and p, p'-DDE. Chemosphere. 2015;118:229–38. doi:10.1016/j.chemosphere.2014.09.023.

    Article  CAS  PubMed  Google Scholar 

  20. Langer P. The impacts of organochlorines and other persistent pollutants on thyroid and metabolic health. Front Neuroendocrinol. 2010;31:497–518. doi:10.1016/j.yfrne.2010.08.001.

    Article  CAS  PubMed  Google Scholar 

  21. Rádiková Z, Tajtáková M, Kocan A, Trnovec T, Seböková E, Klimes I, et al. Possible effects of environmental nitrates and toxic organochlorines on human thyroid in highly polluted areas in Slovakia. Thyroid. 2008;18:353–62. doi:10.1089/thy.2007.0182.

    Article  PubMed  Google Scholar 

  22. Schug TT, Blawas AM, Gray K, Heindel JJ, Lawler CP. Elucidating the links between endocrine disruptors and neurodevelopment. Endocrinology. 2015;156:1941–51. doi:10.1210/en.2014-1734.

    Article  CAS  PubMed  Google Scholar 

  23. Brucker-Davis F, Ganier-Chauliac F, Gal J, Panaïa-Ferrari P, Pacini P, Fénichel P, et al. Neurotoxicant exposure during pregnancy is a confounder for assessment of iodine supplementation on neurodevelopment outcome. Neurotoxicol Teratol. 2015;51:45–51. doi:10.1016/j.ntt.2015.07.009.

    Article  CAS  PubMed  Google Scholar 

  24. Romano ME, Webster GM, Vuong AM, Thomas Zoeller R, Chen A, Hoofnagle AN, et al. Gestational urinary bisphenol A and maternal and newborn thyroid hormone concentrations: the HOME study. Environ Res. 2015;138:453–60. doi:10.1016/j.envres.2015.03.003.

    Article  CAS  PubMed  Google Scholar 

  25. Geens T, Dirtu AC, Dirinck E, Malarvannan G, Van Gaal L, Jorens PG, et al. Daily intake of bisphenol A and triclosan and their association with anthropometric data, thyroid hormones and weight loss in overweight and obese individuals. Environ Int. 2015;76:98–105. doi:10.1016/j.envint.2014.12.003.

    Article  CAS  PubMed  Google Scholar 

  26. Zota AR, Park JS, Wang Y, Petreas M, Zoeller RT, Woodruff TJ. Polybrominated diphenyl ethers, hydroxylated polybrominated diphenyl ethers, and measures of thyroid function in second trimester pregnant women in California. Environ Sci Technol. 2011;45:7896–905. doi:10.1021/es200422b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Roberts SC, Bianco AC, Stapleton HM. Disruption of type 2 iodothyronine deiodinase activity in cultured human glial cells by polybrominated diphenyl ethers. Chem Res Toxicol. 2015;28:1265–74. doi:10.1021/acs.chemrestox.5b00072.

    Article  CAS  PubMed  Google Scholar 

  28. Dong W, Macaulay LJ, Kwok KW, Hinton DE, Stapleton HM. Using whole mount in situ hybridization to examine thyroid hormone deiodinase expression in embryonic and larval zebrafish: a tool for examining OH-BDE toxicity to early life stages. Aquat Toxicol. 2013;132–133:190–9. doi:10.1016/j.aquatox.2013.02.008.

    Article  PubMed  Google Scholar 

  29. Bach CC, Bech BH, Brix N, Nohr EA, Bonde JP, Henriksen TB. Perfluoroalkyl and polyfluoroalkyl substances and human fetal growth: a systematic review. Crit Rev Toxicol. 2015;5:53–67. doi:10.3109/10408444.2014.952400.

    Article  Google Scholar 

  30. Webster GM, Rauch SA, Ste Marie N, Mattman A, Lanphear BP, Venners SA. Cross-sectional associations of serum perfluoroalkyl acids and thyroid hormones in U.S. adults: variation according to TPOAb and iodine status (NHANES 2007–2008). Environ Health Perspect. 2015.

  31. Berg V, Nøst TH, Hansen S, Elverland A, Veyhe AS, Jorde R, et al. Assessing the relationship between perfluoroalkyl substances, thyroid hormones and binding proteins in pregnant women; a longitudinal mixed effects approach. Environ Int. 2015;77:63–9. doi:10.1016/j.envint.2015.01.007.

    Article  CAS  PubMed  Google Scholar 

  32. Appleby AP, Müller F, Carpy S. Weed control. Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH; 2002. doi:10.1002/14356007.a28_165.

    Google Scholar 

  33. Goldner WS, Sandler DP, Yu F, Shostrom V, Hoppin JA, Kamel F, et al. Hypothyroidism and pesticide use among male private pesticide applicators in the agricultural health study. J Occup Environ Med. 2013;55(10):1171–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goldner WS, Sandler DP, Yu F, Hoppin JA, Kamel F, Levan TD. Pesticide use and thyroid disease among women in the agricultural health study. Am J Epidemiol. 2010;171(4):455–64.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wilson AG, Thake DC, Heydens WE, Brewster DW, Hotz KJ. Mode of action of thyroid tumor formation in the male long-Evans rat administered high doses of alachlor. Fundam Appl Toxicol. 1996;33(1):16–23.

    Article  CAS  PubMed  Google Scholar 

  36. Acquavella JF, Delzell E, Cheng H, Lynch CF, Johnson G. Mortality and cancer incidence among alachlor manufacturing workers 1968–99. Occup Environ Med. 2004;61(8):680–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yaglova NV, Yaglov VV. Mechanisms of disruptive action of Dichlorodiphenyltrichloroethane (DDT) on the function of thyroid follicular epitheliocytes. Bull Exp Biol Med. 2015;160(2):231–3. doi:10.1007/s10517-015-3136-x.

    Article  CAS  PubMed  Google Scholar 

  38. Li C, Cheng Y, Tang Q, Lin S, Li Y, Hu X, et al. The association between prenatal exposure to organochlorine pesticides and thyroid hormone levels in newborns in Yancheng, China. Environ Res. 2014;129:47–51.

    Article  CAS  PubMed  Google Scholar 

  39. Freire C, Koifman RJ, Sarcinelli PN, Simões Rosa AC, Clapauch R, Koifman S. Long-term exposure to organochlorine pesticides and thyroid status in adults in a heavily contaminated area in Brazil. Environ Res. 2013;127:7–15.

    Article  CAS  PubMed  Google Scholar 

  40. Bloom MS, Jansing RL, Kannan K, Rej R, Fitzgerald EF. Thyroid hormones are associated with exposure to persistent organic pollutants in aging residents of upper Hudson River communities. Int J Hyg Environ Health. 2014;217:473–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu C, Shi Y, Li H, Wang Y, Yang K. p, p ′ -DDE disturbs the homeostasis of thyroid hormones via thyroid hormone receptors, transthyretin, and hepatic enzymes. Horm Metab Res. 2011;43(6):391–6.

    Article  CAS  PubMed  Google Scholar 

  42. Herin F, Boutet-Robinet E, Levant A, Dulaurent S, Manika M, Galatry-Bouju F, et al. Thyroid function tests in persons with occupational exposure to Fipronil. Thyroid. 2011;21(7):701–6.

    Article  CAS  PubMed  Google Scholar 

  43. Hurley PM. Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents. Environ Health Perspect. 1998;106(8):437–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grimalt JO, Sunyer J, Moreno V, Amaral OC, Sala M, Rosell A, et al. Risk excess of soft-tissue sarcoma and thyroid cancer in a community exposed to airborne organochlorinated compound mixtures with a high hexachlorobenzene content. Int J Cancer. 1994;56(2):200–3.

    Article  CAS  PubMed  Google Scholar 

  45. Lope V, Pérez-Gómez B, Aragonés N, López-Abente G, Gustavsson P, Plato N, et al. Occupational exposure to chemicals and risk of thyroid cancer in Sweden. Int Arch Occup Environ Health. 2009;82:267–74.

    Article  CAS  PubMed  Google Scholar 

  46. Zaidi SS, Bhatnagar VK, Gandhi SJ, Shah MP, Kulkarni PK, Saiyed HN. Assessment of thyroid function in pesticide formulators. Hum Exp Toxicol. 2000;19(9):497–501.

    Article  CAS  PubMed  Google Scholar 

  47. Roques BB, Leghait J, Lacroix MZ, Lasserre F, Pineau T, Viguié C, et al. The nuclear receptors pregnane X receptor and constitutive androstane receptor contribute to the impact of fipronil on hepatic gene expression linked to thyroid hormone metabolism. Biochem Pharmacol. 2013;86(7):997–1039. doi:10.1016/j.bcp.2013.08.012.

    Article  CAS  PubMed  Google Scholar 

  48. Lu M, Du J, Zhou P, Chen H, Lu C, Zhang Q. Endocrine disrupting potential of fipronil and its metabolite in reporter gene assays. Chemosphere. 2015;120:246–51. doi:10.1016/j.chemosphere.2014.07.015.

    Article  CAS  PubMed  Google Scholar 

  49. Weber J, Halsall CJ, Muir D, Teixeira C, Small J, Solomon K, et al. Bidleman T Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic. Sci Total Environ. 2010;408(15):2966–84. doi:10.1016/j.scitotenv.2009.10.077.

    Article  CAS  PubMed  Google Scholar 

  50. Freire C, Koifman RJ, Sarcinelli P, Rosa AC, Clapauch R, Koifman S. Long term exposure to organochlorine pesticides and thyroid function in children from Cidade dos Meninos, Rio de Janeiro, Brazil. Environ Res. 2012;117:68–74.

    Article  CAS  PubMed  Google Scholar 

  51. Reuber MD. Carcinogenicity of heptachlor and heptachlor epoxide. J Environ Pathol Toxicol Oncol. 1987;7(3):85–114.

    CAS  PubMed  Google Scholar 

  52. Loomis D, Guyton K, Grosse Y, El Ghissasi F, Bouvard V, Benbrahim-Tallaa L, et al. Carcinogenicity of lindane, DDT, and 2,4-dichlorophenoxyacetic acid. Lancet Oncol. 2015;16(8):891–2.

    Article  CAS  PubMed  Google Scholar 

  53. Song M, Kim YJ, Park YK, Ryu JC. Changes in thyroid peroxidase activity in response to various chemicals. J Environ Monit. 2012;14(8):2121–6.

    Article  CAS  PubMed  Google Scholar 

  54. Juberg DR, Gehen SC, Coady KK, LeBaron MJ, Kramer VJ, Lu H, et al. Chlorpyrifos: wieght of evidence evaluation of patential interaction with estrogen, androgen or thyroid pathways. Regul Toxicol Pharmacol. 2013;66(3):249–63.

    Article  CAS  PubMed  Google Scholar 

  55. Slotkin TA, Cooper EM, Stapleton HM, Seidler FJ. Does thyroid disruption contribute to the developmental neurotoxicity of chlorpyrifos? Environ Toxicol Pharmacol. 2013;36(2):284–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. De Cock M, Maas YG, van de Bor M. Does perinatal exposure to endocrine disruptors induce autism spectrum and attention deficit hyperactivity disorders? Rev Acta Paediatr. 2012;101(8):811–8.

    Article  Google Scholar 

  57. Crews D, Gore AC, Hsu TS, Dangleben NL, Spinetta M, Schallert T, et al. Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci U S A. 2007;104:5942–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Walker DM, Gore AG. Transgenerational neuroendocrine disruption of reproduction. Nat Rev Endocrinol. 2011;7:197–207. doi:10.1038/nrendo.2010.215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonidas H. Duntas.

Ethics declarations

Disclosure

The authors have nothing to declare.

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duntas, L.H., Stathatos, N. Toxic chemicals and thyroid function: hard facts and lateral thinking. Rev Endocr Metab Disord 16, 311–318 (2015). https://doi.org/10.1007/s11154-016-9331-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-016-9331-x

Keywords

Navigation