Cosmetics as endocrine disruptors: are they a health risk?


Exposure to chemicals from different sources in everyday life is widespread; one such source is the wide range of products listed under the title “cosmetics”, including the different types of popular and widely-advertised sunscreens. Women are encouraged through advertising to buy into the myth of everlasting youth, and one of the most alarming consequences is in utero exposure to chemicals. The main route of exposure is the skin, but the main endpoint of exposure is endocrine disruption. This is due to many substances in cosmetics and sunscreens that have endocrine active properties which affect reproductive health but which also have other endpoints, such as cancer. Reducing the exposure to endocrine disruptors is framed not only in the context of the reduction of health risks, but is also significant against the background and rise of ethical consumerism, and the responsibility of the cosmetics industry in this respect. Although some plants show endocrine-disrupting activity, the use of well-selected natural products might reduce the use of synthetic chemicals. Instruments dealing with this problem include life-cycle analysis, eco-design, and green labels; in combination with the committed use of environmental management systems, they contribute to “corporate social responsibility”.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Accessed 27 Sep 2015.

  2. 2.

    Steinemann AC. Fragranced consumer products and undisclosed ingredients. Environ Impact Assess. 2009;29:32–8.

    Article  Google Scholar 

  3. 3.

    Caliman FA, Gavrilescu M. Pharmaceuticals, personal care products and endocrine disrupting agents in the environment – a review. Clean-Soil Air Water. 2009;37:277–303.

    CAS  Article  Google Scholar 

  4. 4.

    Boberg J, Taxvig C, Christiansen S, Hass U. Possible endocrine disrupting effects of parabens and their metabolites. Reprod Toxicol. 2010;30:301–12.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Jurewicz J, Hanke W. Exposure to phthalates: reproductive outcome and children health. A review of epidemiological studies. Int J Occup Med Env. 2011;24:115–41.

    Google Scholar 

  6. 6.

    Maipas S, Nicolopoulou-Stamati P. Sun lotion chemicals as endocrine disruptors. Hormones. 2015;14:32–46.

    PubMed  Google Scholar 

  7. 7.

    Kortenkamp A. Ten years of mixing cocktails: a review of combination effects of endocrine-disrupting chemicals. Environ Health Perspect. 2007;115:98–105.

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Harvey PW, Everett DJ. Regulation of endocrine-disrupting chemicals: critical overview and deficiencies in toxicology and risk assessment for human health. Best Pract Res Cl En. 2006;20:145–65.

    CAS  Article  Google Scholar 

  9. 9.

    Vandenberg LN. Colborn T, Hayes TB, heindel JJ, Jacobs Jr, DR, Lee DH, shioda T, Soto AM, vom saal FS, welshons WV, zoeller RT, Myers, JP. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev. 2012;33:378–455.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Nicolopoulou-Stamati P, Hens L, Howard CV. Editors. Endocrine disrupters. Environmental health and policies. Environmental science and technology library, Vol. 18. Dordrecht, The Netherlands: Kluwer Academic Publishers; 2001.

    Google Scholar 

  11. 11.

    Nicolopoulou-Stamati P, Pitsos MA. The impact of endocrine disrupters on the female reproductive system. Hum Reprod Update. 2001;7:323–30.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Prins GS. Endocrine disruptors and prostate cancer risk. Endocr Relat Cancer. 2008;15:649–56.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Wuttke W, Jarry H, Seidlova-Wuttke D. Definition, classification and mechanism of action of endocrine disrupting chemicals. Hormones. 2010;9:9–15.

    PubMed  Article  Google Scholar 

  14. 14.

    Schug TT, Janesick A, Blumberg B, Heindel JJ. Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem. 2011;127:204–15.

    CAS  Article  Google Scholar 

  15. 15.

    Bergman Å, Heindel JJ, Joblings S, Kidd KA, Zoeller RT, editors. State of the Science of Endocrine Disrupting Chemicals – 2012. United Nations Environment Programme and the World Health Organization; 2013. Accessed 21 Sep 2015.

  16. 16.

    Błędzka D, Gromadzińska J, Wąsowicz W. Parabens. From environmental studies to human health. Environ Int. 2014;67:27–42.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Konduracka E, Krzemieniecki K, Gajos G. Relationship between everyday use cosmetics and female breast cancer. Polskie Archiwum Medycyny Wewnętrznej. 2014;124:264–9.

    PubMed  Google Scholar 

  18. 18.

    Kabir ER, Rahman MS, Rahman I. A review on endocrine disruptors and their possible impacts on human health. Environ Toxicol Phar. 2015;40:241–58.

    CAS  Article  Google Scholar 

  19. 19.

    Hannon P. Flaws JA. Front Endocrinol: The Effects of Phthalates on the Ovary; 2015. doi:10.3389/fendo.2015.00008.

    Google Scholar 

  20. 20.

    Anderson LM, Diwan BA, Fear NT, Roman E. Critical windows of exposure for children's health: cancer in human epidemiological studies and neoplasms in experimental animal models. Environ Health Persp. 2000;108:573–94.

    Article  Google Scholar 

  21. 21.

    Selevan SG, Kimmel CA, Mendola P. Identifying critical windows of exposure for children's health. Environ Health Persp. 2000;108:451–5.

    Article  Google Scholar 

  22. 22.

    Fenton SE, Reed C, Newbold RR. Perinatal environmental exposures affect mammary development, function, and cancer risk in adulthood. Annu Rev Pharmacol. 2012;52:455–79.

    CAS  Article  Google Scholar 

  23. 23.

    Delfosse V, Grimaldi M, Cavailles V, Balaguer P, Bourguet W. Structural and functional profiling of environmental ligands for estrogen receptors. Environ Health Persp. 2014;122:1306–13.

    CAS  Google Scholar 

  24. 24.

    Delfosse V, le Maire A, Balaguer P, Bourguet W. A structural perspective on nuclear receptors as targets of environmental compounds. Acta Pharmacol Sin. 2014;36:88–101.

    PubMed Central  Article  Google Scholar 

  25. 25.

    Loprieno N Guidelines for safety evalation of cosmetics ingredients in the EC countries. Food Chem Toxicol. 1992;30:809–15.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Archer CB. Functions of the skin. In: Burns T, Breathnach S, Cox N, Griffiths C, editors. Rook’s textbook of dermatology. Singapore: Blackwell Publishing Ltd; 2010. p. 4.1–11.

    Google Scholar 

  27. 27.

    McGrath JA, Uitto J. Anatomy and organization of human skin. In: Burns T, Breathnach S, Cox N, Griffiths C, editors. Rook’s textbook of dermatology. Singapore: Blackwell Publishing Ltd; 2010. p. 3.1–53.

    Google Scholar 

  28. 28.

    Loretz LJ, Api AM, Barraj LM, Burdick J, Dressler WE, Gettings SD, Han Hsu H, Pan YHL, Re TA, Renskers KJ, Rothenstein A, Scrafford CG, Sewall C. Exposure data for cosmetic products: lipstick, body lotion, and face cream. Food Chem Toxicol. 2005;43:279–91.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Mortazavi SA, Aboofazeli R. An investigation into the effect of various penetration enhancers on percutaneous absorption of piroxicam. Iran J Pharm Res. 2003;135-40.

  30. 30.

    Lundov MD, Moesby L, Zachariae C, Johansen JD. Contamination versus preservation of cosmetics: a review on legislation, usage, infections, and contact allergy. Contact Dermatitis. 2009;60:70–8.

    PubMed  Article  Google Scholar 

  31. 31.

    Khullar R, Saini S, Seth N, Rana AC. Emulgels: a surrogate approach for topically used hydrophobic drugs. Int J Pharm Bio Sci. 2011;1:117–28.

    CAS  Google Scholar 

  32. 32.

    Hougeir FG, Kircik L. A review of delivery systems in cosmetics. Dermatol Therapy. 2012;25:234–7.

    Article  Google Scholar 

  33. 33.

    Afonso S, Horita K. Sousa e Silva JS, Almeida IF, amaral MH, lobão PA, costa PC, Miranda MS, esteves da Silva JCG, Sousa lobo JM. Photodegradation of avobenzone: stabilization effect of antioxidants. J Photoch Photobiol B. 2014;140:36–40.

    CAS  Article  Google Scholar 

  34. 34.

    Melo LP, Queiroz MEC. Simultaneous analysis of parabens in cosmetic products by stir bar sorptive extraction and liquid chromatography. J Sep Sci. 2010;33:1849–55.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Danish Environmental Protection Agency. Survey of parabens, Part of the LOUS-review, Environmental Project No. 1474. 2013. Accessed 10 Sep 2015.

  36. 36.

    Ma WL, Wang L, Guo Y, Liu LY, Qi H, Zhu NZ, Gao CJ, Li YF, Kannan K. Urinary concentrations of parabens in Chinese young adults: implications for human exposure. Arch Environ Con Tox. 2013;65:611–8.

    CAS  Article  Google Scholar 

  37. 37.

    Royal Society of Chemistry. ChemSpider (Chemical structure database) Accessed 19 Sep 2015.

  38. 38.

    Crinnion WJ. Toxic effects of the easily avoidable phthalates and parabens. Altern Med Rev. 2010;15:190–6.

    PubMed  Google Scholar 

  39. 39.

    Park CJ, Nah WH, Lee JE, Oh YS, Gye MC. Butyl paraben-induced changes in DNA methylation in rat epididymal spermatozoa. Andrologia. 2012;44:187–93.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Darbre PD, Harvey PW. Paraben esters: review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks. J Appl Toxicol. 2008;28:561–78.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Tavares RS, Martins FC, Oliveira PJ, Ramalho-Santos J, Peixoto FP. Parabens in male infertility-is there a mitochondrial connection? Reprod Toxicol. 2009;27:1–7.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Darbre PD, Aljarrah A, Miller WR, Coldham NG, Sauer MJ, Pope GS. Concentrations of parabens in human breast tumours. J Appl Toxicol. 2004;24:5–13.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Charles AK, Darbre PD. Combinations of parabens at concentrations measured in human breast tissue can increase proliferation of MCF-7 human breast cancer cells. J Appl Toxicol. 2013;33:390–8.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Darbre PD, Harvey PW. Parabens can enable hallmarks and characteristics of cancer in human breast epithelial cells: a review of the literature with reference to new exposure data and regulatory status. J Appl Toxicol. 2014;34:925–38.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Schettler T Human exposure to phthalates via consumer products. Int J Androl. 2006;29:134–9.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Huang PC, Liou SH, Ho IK, Chiang HC, Huang HI, Wang SL. Phthalates exposure and endocrinal effects: an epidemiological review. J Food Drug Anal. 2012;20:719–33.

    CAS  Google Scholar 

  47. 47.

    Braun JM, Sathyanarayana S, Hauser R. Phthalate exposure and children’s health. Curr Opin Pediatr. 2013;25:247–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Gimeno P, Maggio AF, Bousquet C, Quoirez A, Civade C, Bonnet PA. Analytical method for the identification and assay of 12 phthalates in cosmetic products: application of the ISO 12787 international standard “cosmetics-analytical methods-validation criteria for analytical results using chromatographic techniques”. J Chromatogr A. 2012;1253:144–53.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Rastogi SK, Kesavachandran C, Mahdi F, Pandey A. Phthalate exposure and health outcomes. Indian J Occup Environ Med. 2006;10:111–5.

    Article  Google Scholar 

  50. 50.

    Martino-Andrade AJ, Chahoud I. Reproductive toxicity of phthalate esters. Mol Nutr Food Res. 2010;54:148–57.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Pak VM, McCauley LA, Pinto-Martin J. Phthalate exposures and human health concerns: a review and implications for practice. Aaohn j. 2011;59:228–33.

    PubMed  Article  Google Scholar 

  52. 52.

    Aly HA, Hassan MH, El-Beshbishy HA, Alahdal AM, Osman AMM. Dibutyl phthalate induces oxidative stress and impairs spermatogenesis in adult rat. Toxicol Ind Health. 2015. doi:10.1177/0748233714566877.

    Google Scholar 

  53. 53.

    Kim SM, Yoo JA, Baek JM, Cho KH. Diethyl phthalate exposure is associated with embryonic toxicity, fatty liver changes, and hypolipidemia via impairment of lipoprotein functions. Toxicol in Vitro. 2015. doi:10.1016/j.tiv.2015.09.026.

    Google Scholar 

  54. 54.

    Main KM, Mortensen GK, Kaleva MM, Boisen KA, Damgaard IN, Chellakooty M, Schmidt IM, Suomi AM, Virtanen HE, Petersen DV, Andersson AM, Toppari J, Skakkebaek NE. Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Persp. 2006;114:270–6.

    CAS  Article  Google Scholar 

  55. 55.

    Kim Y, Ha EH, Kim EJ, Park H, Ha M, Kim JH, Hong YC, Chang N, Kim BN. Prenatal exposure to phthalates and infant development at 6 months: prospective mothers and children's environmental health (MOCEH) study. Environ Health Persp. 2011;119:1495–500.

    CAS  Article  Google Scholar 

  56. 56.

    Ejaredar M, Nyanza EC, Ten Eycke K, Dewey D. Phthalate exposure and children’s neurodevelopment: a systematic review. Environ Res. 2015;142:51–60.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Su PH, Chen JY, Lin CY, Chen HY, Liao PC, Ying TH, Wang SL. Sex steroid hormone levels and reproductive development of eight-year-old children following in utero and environmental exposure to phthalates. PLoS ONE. 2014. doi:10.1371/journal.pone.0102788.

    Google Scholar 

  58. 58.

    Duty SM, Silva MJ, Barr DB, Brock JW, Ryan L, Chen Z, Herrick RF, Christiani DC, Hauser R. Phthalate exposure and human semen parameters. Epidemiology. 2003;14:269–77.

    PubMed  Google Scholar 

  59. 59.

    López-Carrillo L, Hernández-Ramírez RU, Calafat AM, Torres-Sánchez L, Galván-Portillo M, Needham LL, Ruiz-Ramos R, Cebrián ME. Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Persp. 2010;118:539–44.

    Article  CAS  Google Scholar 

  60. 60.

    Shiue I Arsenic, heavy metals, phthalates, pesticides, hydrocarbons and polyfluorinated compounds but not parabens or phenols are associated with adult remembering condition: US NHANES, 2011–2012. Environ Sci Pollut R. 2015;22:6381–6.

    CAS  Article  Google Scholar 

  61. 61.

    Yurdakok DB, Alpay M, Kismali G, Filazi A, Kuzukiran O, Sireli UT. In vitro effects of phthalate mixtures on colorectal adenocarcinoma cell lines. J Environ Pathol Toxicol Oncol. 2015;34:115–23.

    Article  Google Scholar 

  62. 62.

    Grandjean P, Clapp R. Perfluorinated alkyl substances: emerging insights into health risks. New Solut. 2015;25:147–63.

    PubMed  Article  Google Scholar 

  63. 63.

    Webster G. Potential human health effects of perfluorinated chemicals (PFCs). 2010. Accessed 16 Sep 2015.

  64. 64.

    Kjeldsen LS, Bonefeld-Jørgensen EC. Perfluorinated compounds affect the function of sex hormone receptors. Environ Sci Pollut R. 2013;20:8031–44.

    CAS  Article  Google Scholar 

  65. 65.

    Coperchini F, Pignatti P, Lacerenza S, Negri S, Sideri R, Testoni C, de Martinis L, Cottica D, Magri F, Imbriani M, Rotondi M, Chiovato L. Exposure to perfluorinated compounds: in vitro study on thyroid cells. Environ Sci Pollut R. 2015;22:2287–94.

    CAS  Article  Google Scholar 

  66. 66.

    Washino N, Saijo Y, Sasaki S, Kato S, Ban S, Konishi K, Ito R, Nakata A, Iwasaki Y, Saito K, Nakazawa H, Kishi R. Correlations between prenatal exposure to perfluorinated chemicals and reduced fetal growth. Environ Health Persp. 2009;117:660–7.

    CAS  Article  Google Scholar 

  67. 67.

    Fei C, McLaughlin JK, Lipworth L, Olsen J. Maternal levels of perfluorinated chemicals and subfecundity. Hum Reprod. 2009;24:1200–5.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Lin CY, Wen LL, Lin LY, Wen TW, Lien GW, Hsu SH, Chien KL, Liao CC, Sung FC, Chen PC, Su TC. The associations between serum perfluorinated chemicals and thyroid function in adolescents and young adults. J Hazard Mater. 2013;244:637–44.

    PubMed  Article  CAS  Google Scholar 

  69. 69.

    Wen LL, Lin LY, Su TC, Chen PC, Lin CY. Association between serum perfluorinated chemicals and thyroid function in US adults: the national health and nutrition examination survey 2007–2010. J Clin Endocr Metab. 2013;98:E1456–64.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Barry V, Winquist A, Steenland K. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ Health Persp. 2013;121:1313–8.

    Google Scholar 

  71. 71.

    Darbre PD. Aluminium, antiperspirants and breast cancer. J Inorg Chem. 2005;99:1912–9.

    CAS  Google Scholar 

  72. 72.

    Darbre PD. Environmental oestrogens, cosmetics and breast cancer. Best Pract Res Cl En. 2006;20:121–43.

    CAS  Article  Google Scholar 

  73. 73.

    Darbre PD, Pugazhendi D, Mannello F. Alumium and human breast diseases. J Inorg Biochem. 2011;105:1484–8.

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Darbre PD, Mannello F, Exley C. Aluminium and breast cancer: sources of exposure, tissue measurements and mechanisms of toxicological actions on breast biology. J Inorg Biochem. 2013;128:257–61.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Barabasz W, Albińska D, Jaśkowska M, Lipiec J. Ecotoxicology of aluminium. Pol J Environ Stud. 2002;11:199–204.

    CAS  Google Scholar 

  76. 76.

    Tomljenovic L Aluminum and Alzheimer's disease: after a century of controversy, is there a plausible link? J Alzheimers Dis. 2011;23:567–98.

    CAS  PubMed  Google Scholar 

  77. 77.

    Pohanka M Copper, aluminum, iron and calcium inhibit human acetylcholinesterase in vitro. Environ Toxicol Phar. 2014;37:455–9.

    CAS  Article  Google Scholar 

  78. 78.

    Walton JR. Chronic aluminum intake causes Alzheimer's disease: applying sir Austin Bradford hill's causality criteria. J Alzheimers Dis. 2013;40:765–838.

    Google Scholar 

  79. 79.

    Virk SA, Eslick GD. Brief report: meta-analysis of antacid use and Alzheimer’s disease: implications for the aluminum hypothesis. Epidemiology. 2015;26:769–73.

    PubMed  Article  Google Scholar 

  80. 80.

    Guillard O, Fauconneau B, Olichon D, Dedieu G, Deloncle R. Hyperaluminemia in a woman using an aluminium-containing antiperspirant for 4 years. Am J Med. 2004;117:956–9.

    PubMed  Article  Google Scholar 

  81. 81.

    House E, Polwart A, Darbre P, Barr L, Metaxas G, Exley C. The aluminium content of breast tissue taken from women with breast cancer. J Trace Elem Med Bio. 2013;27:257–66.

    Article  CAS  Google Scholar 

  82. 82.

    Rodrigues-Peres RM, Cadore S, Febraio S, Heinrich JK, Serra KP, Derchain SFM, Vassallo J, Sarian LO. Aluminium concentrations in central and peripheral areas of malignant breast lesions do not differ from those in normal breast tissues. BMC Cancer. 2013. doi:10.1186/1471-2407-13-104.

    PubMed  PubMed Central  Google Scholar 

  83. 83.

    Wolff MS, Teitelbaum SL, McGovern K, Pinney SM, Windham GC, Galvez M, Pajak A, Rybak M, Calafat AM, Kushi LH, Biro FM. Breast cancer and environment research program. Environmental phenols and pubertal development in girls. Environ Int. 2015;84:174–80.

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Environmental Working Group. EWG’s Guide to Triclosan. 2008. Accessed 14 Sep 2015.

  85. 85.

    Canosa P, Rodriguez I, Rubí E, Cela R. Determination of parabens and triclosan in indoor dust using matrix solid-phase dispersion and gas chromatography with tandem mass spectrometry. Anal Chem. 2007;79:1675–81.

    CAS  PubMed  Article  Google Scholar 

  86. 86.

    Allmyr M, Adolfsson-Erici M, McLachlan MS, Sandborgh-Englund G. Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci Total Environ. 2006;372:87–93.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Veldhoen N, Skirrow RC, Osachoff H, Wigmore H, Clapson DJ, Gunderson MP, Van Aggelen G, Helbing CC. The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquat Toxicol. 2006;80:217–27.

    CAS  PubMed  Article  Google Scholar 

  88. 88.

    Raut SA, Angus RA. Triclosan has endocrine-disrupting effects in male western mosquitofish, Gambusia affinis. Environ Toxicol Chem. 2010;29:1287–91.

    CAS  PubMed  Google Scholar 

  89. 89.

    Gee RH, Charles A, Taylor N, Darbre PD. Oestrogenic and androgenic activity of triclosan in breast cancer cells. J Appl Toxicol. 2008;28:78–91.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Zorrilla LM, Gibson EK, Jeffay SC, Crofton KM, Setzer WR, Cooper RL, Stoker TE. The effects of triclosan on puberty and thyroid hormones in male wistar rats. Toxicol Sci. 2009;107:56–64.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Sanchez-Prado L, Llompart M, Lores M, García-Jares C, Bayona JM, Cela R. Monitoring the photochemical degradation of triclosan in wastewater by UV light and sunlight using solid-phase microextraction. Chemosphere. 2006;65:1338–47.

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Aranami K, Readman JW. Photolytic degradation of triclosan in freshwater and seawater. Chemosphere. 2007;66:1052–6.

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Maffini MV, Rubin BS, Sonnenschein C, Soto AM. Endocrine disruptors and reproductive health: The case of bisphenol-A. Mol Cell Endocrinol. 2006;254:179–86.

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Rubin BS. Bisphenol a: An endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem. 2011; 127:27–34.

  95. 95.

    Huang YQ, Wong CKC, Zheng JS, Bouwman H, Barra R, Wahlström B, Neretin L, Wong MH. Bisphenol a (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int. 2012;42:91–9.

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol a (BPA). Reprod Toxicol. 2007;24:139–77.

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Özdal T, Yeşilçubuk NŞ. Toxicity of bisphenol-a: effects on health and regulations. Int J of Biol, Biomol, Agric, Food and Biotechnol Eng. 2014;8:553–7.

    Google Scholar 

  98. 98.

    Commission Directive of 28 January 2011 amending Directive 2002/72/EC as regards the restriction of use of Bisphenol A in plastic infant feeding bottles (2011/8/EU). Accessed 27 Sep 2015.

  99. 99.

    Jenkins S, Raghuraman N, Eltoum I, Carpenter M, Russo J, Lamartiniere CA. Oral exposure to bisphenol a increases dimethylbenzanthracene-induced mammary cancer in rats. Environ Health Persp. 2009;117:910–5.

    CAS  Article  Google Scholar 

  100. 100.

    Meeker JD, Ehrlich S, Toth TL, Wright DL, Calafat AM, Trisini AT, Ye X, Hauser R. Semen quality and sperm DNA damage in relation to urinary bisphenol A among men from an infertility clinic. Reprod Toxicol. 2010;30:532–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Peretz J, Vrooman L, Ricke WA, Hunt PA, Ehrlich S, Hauser R, Padmanabhan V, Taylor HS, Swan SH, VandeVoort CA, Flaws JA. Bisphenol a and reproductive health: update of experimental and human evidence, 2007–2013. Environ Health Persp. 2014;122:775–86.

    Google Scholar 

  102. 102.

    Braun JM, Kalkbrenner AE, Calafat AM, Yolton K, Ye X, Dietrich KN, Lanphear BP. Impact of early-life bisphenol a exposure on behavior and executive function in children. Pediatrics. 2011;128:873–82.

    PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Murphy GM. Sunblocks: mechanism of action. Photodermatol Photo. 1999;15:34–6.

    CAS  Article  Google Scholar 

  104. 104.

    Wolf R, Wolf D, Morganti P, Ruocco V. Sunscreens. Clin Dermatol. 2001;19:452–9.

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Manová E, von Goetz N, Hauri U, Bogdal C, Hungerbühler K. Organic UV filters in personal care products in Switzerland: a survey of occurrence and concentrations. Int J Hyg Envir Heal. 2013;216:508–14.

    Article  CAS  Google Scholar 

  106. 106.

    Krause M, Klit A, Blomberg Jensen M, Søeborg T, Frederiksen H, Schlumpf M, Lichtensteiger W, Skakkebaek NE, Drzewiecki KT. Sunscreens: are they beneficial for health? An overview of endocrine disrupting properties of UV-filters. Int J Androl. 2012;35:424–36.

    CAS  PubMed  Article  Google Scholar 

  107. 107.

    Kunz PY, Fent K. Multiple hormonal activities of UV filters and comparison of in vivo and in vitro estrogenic activity of ethyl-4-aminobenzoate in fish. Aquat Toxicol. 2006;79:305–24.

    CAS  PubMed  Article  Google Scholar 

  108. 108.

    Hany J, Nagel R. Detection of sunscreen agents in human breast milk (in German). Deut Lebensm-Rundsch. 1995;91:341–5.

    CAS  Google Scholar 

  109. 109.

    Wolff MS, Engel SM, Berkowitz GS, Ye X, Silva MJ, Zhu C, Wetmur J, Calafat AM. Prenatal phenol and phthalate exposures and birth outcomes. Environ Health Persp. 2008;116:1092–7.

    CAS  Article  Google Scholar 

  110. 110.

    Blüthgen N, Zucchi S, Fent K. Effects of the UV filter benzophenone-3 (oxybenzone) at low concentrations in zebrafish (Danio rerio). Toxicol Appl Pharm. 2012;263:184–94.

    Article  CAS  Google Scholar 

  111. 111.

    Coronado M, De Haro H, Deng X, Rempel MA, Lavado R, Schlenk D. Estrogenic activity and reproductive effects of the UV-filter oxybenzone (2-hydroxy-4-methoxyphenyl-methanone) in fish. Aquat Toxicol. 2008;90:182–7.

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Schlumpf M, Cotton B, Conscience M, Haller V, Steinmann B, Lichtensteiger W. In vitro and in vivo estrogenicity of UV screens. Environ Health Persp. 2001;109:239–44.

    CAS  Article  Google Scholar 

  113. 113.

    Chapin R, Gulati D, Mounce R. 2-hydroxy-4-methoxybenzophenone. Environ Health Persp. 1997;105:313–4.

    Article  Google Scholar 

  114. 114.

    Klammer H, Schlecht C, Wuttke W, Schmutzler C, Gotthardt I, Köhrle J, Jarry H. Effects of a 5-day treatment with the UV-filter octyl-methoxycinnamate (OMC) on the function of the hypothalamo-pituitary-thyroid function in rats. Toxicology. 2007;238:192–9.

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Schneider S, Deckardt K, Hellwig J, Küttler K, Mellert W, Schulte S, van Ravenzwaay B. Octyl methoxycinnamate: two generation reproduction toxicity in wistar rats by dietary administration. Food Chem Toxicol. 2005;43:1083–92.

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Axelstad M, Boberg J, Hougaard KS, Christiansen S, Jacobsen PR, Mandrup KR, Nellemann C, Lund SP, Hass U. Effects of pre- and postnatal exposure to the UV-filter octyl methoxycinnamate (OMC) on the reproductive, auditory and neurological development of rat offspring. Toxicol Appl Pharm. 2011;250:278–90.

    CAS  Article  Google Scholar 

  117. 117.

    Inui M, Adachi T, Takenaka S, Inui H, Nakazawa M, Ueda M, Watanabe H, Mori C, Iguchi T, Miyatake K. Effect of UV screens and preservatives on vitellogenin and choriogenin production in male medaka (Oryzias latipes). Toxicology. 2003;194:43–50.

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Schlumpf M, Schmid P, Durrer S, Conscience M, Maerkel K, Henseler M, Gruetter M, Herzog I, Reolon S. Ceccatelli, faass O, Stutz E, jarry H, wuttke W, lichtensteiger W. Endocrine activity and developmental toxicity of cosmetic UV filters – an update. Toxicology. 2004;205:113–22.

    CAS  PubMed  Article  Google Scholar 

  119. 119.

    Schmitt C, Oetken M, Dittberner O, Wagner M, Oehlmann J. Endocrine modulation and toxic effects of two commonly used UV screens on the aquatic invertebrates Potamopyrgus antipodarum and lumbriculus variegates. Environ Pollut. 2008;152:322–9.

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Ozáez I, Martínez-Guitarte JL, Morcillo G. Effects of in vivo exposure to UV filters (4-MBC, OMC, BP-3, 4-HB, OC, OD-PABA) on endocrine signaling genes in the insect Chironomus riparius. Sci Total Environ. 2013;456-457:120–6.

    PubMed  Article  CAS  Google Scholar 

  121. 121.

    Schlumpf M, Kypke K, Vökt CC, Birchler M, Durrer S, Faass O, Ehnes C, Fuetsch M, Gaille C, Henseler M, Hofkamp L, Maerkel K, Reolon S, Zenker A, Timms B, Tresguerrres JAF, Lichtensteiger W. Endocrine active UV filters: developmental toxicity and exposure through breast milk. Chimia. 2008;62:345–51.

    CAS  Article  Google Scholar 

  122. 122.

    Kunz PY, Galicia HF, Fent K. Comparison of in vitro and in vivo estrogenic activity of UV filters in fish. Toxicol Sci. 2006;90:349–61.

    CAS  PubMed  Article  Google Scholar 

  123. 123.

    Fent K, Kunz PY, Gomez E. UV filters in the aquatic environment induce hormonal effects and affect fertility and reproduction in fish. Chimia. 2008;62:368–75.

    CAS  Article  Google Scholar 

  124. 124.

    Stroeva OG, Popov VB. Effect of para-aminobenzoic acid on the development of rat embryos when applied to pregnant females (in Russian). Ontogenez. 1998;29:444–9.

    CAS  PubMed  Google Scholar 

  125. 125.

    Newman MD, Stotland M, Ellis JI. The safety of nanosized particles in titanium dioxide- and zinc oxide-based sunscreens. J Am Acad Dermatol. 2009;61:685–92.

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Sharma V, Singh P, Pandey AK, Dhawan A. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat Res. 2012;745:84–91.

    CAS  PubMed  Article  Google Scholar 

  127. 127.

    Kulvietis V, Zalgeviciene V, Didziapetriene J, Rotomskis R. Transport of nanoparticles through the placental barrier. Tohoku J Exp Med. 2011;225:225–34.

    CAS  PubMed  Article  Google Scholar 

  128. 128.

    Henkler F, Tralau T, Tentschert J, Kneuer C, Haase A, Platzek T, Luch A, Götz ME. Risk assessment of nanomaterials in cosmetics: a European Union perspective. Arch Toxicol. 2012;86:1641–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Zhu X, Wang J, Zhang X, Chang Y, Chen Y. The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology. 2009. doi:10.1088/0957-4484/20/19/195103.

    Google Scholar 

  130. 130.

    Hao L, Chen L, Hao J, Zhong N. Bioaccumulation and sub-acute toxicity of zinc oxide nanoparticles in juvenile carp (Cyprinus carpio): a comparative study with its bulk counterparts. Ecotox Environ Safe. 2013;91:52–60.

    CAS  Article  Google Scholar 

  131. 131.

    Guo LL, Liu XH, Qin DX, Gao L, Zhang HM, Liu JY, Cui YG. Effects of nanosized titanium dioxide on the reproductive system of male mice (in Chinese). Zhonghua Nak Ke Xue. 2009;15:517–22.

    CAS  Google Scholar 

  132. 132.

    Wang J, Zhu X, Zhang X, Zhao Z, Liu H, George R, Wilson-Rawls J, Chang Y, Chen Y. Disruption of zebrafish (Danio rerio) reproduction upon chronic exposure to TiO2 nanoparticles. Chemosphere. 2011;83:461–7.

    CAS  PubMed  Article  Google Scholar 

  133. 133.

    Takeda K, Suzuki K, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M, Oshio S, Nihei Y, Ihara T, Sugamata M. Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J Health Sci. 2009;55:95–102.

    CAS  Article  Google Scholar 

  134. 134.

    Tsoucaris G, Martinetto P, Walter P, Lévȇque JL. Chemistry of cosmetics in antiquity. Ann Pharm Fr. 2001;59:415–22.

    CAS  PubMed  Google Scholar 

  135. 135.

    Olson K Cosmetics in roman antiquity: substance, remedy, poison. Classical World. 2009;102:291–310.

    Article  Google Scholar 

  136. 136.

    Frye CA, Bo E, Calamandrei G, Calzà L, Dessì-Fulgheri F, Fernández M, Fusani L, Kah O, Kajta M, Le Page Y, Patisaul HB, Venerosi A, Wojtowicz AK, Panzica GC. Endocrine disrupters: a review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. J Neuroendocrinol. 2012;24:144–59.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  137. 137.

    Annamalai J, Namasivayam V. Endocrine disrupting chemicals in the atmosphere: their effects on humans and wildlife. Environ Int. 2015;76:78–97.

    CAS  PubMed  Article  Google Scholar 

  138. 138.

    Lenters V, Portengen L, Smit LA, Jönsson BA, Giwercman A, Rylander L, Lindh CH, Spanò M, Pedersen HS, Ludwicki JK, Chumak L, Piersma AH, Toft G, Bonde JP, Heederik D, Vermeulen R. Phthalates, perfluoroalkyl acids, metals and organochlorines and reproductive function: a multipollutant assessment in Greenlandic, Polish and Ukrainian men. Occup Environ Med. 2015;72:385–93.

    PubMed  Article  Google Scholar 

  139. 139.

    Taxvig C, Rosenmai AK, Vinggaard AM. Polyfluorinated alkyl phosphate ester surfactants - current knowledge and knowledge gaps. Basic Clin Pharmacol. 2014;115:41–4.

    CAS  Article  Google Scholar 

  140. 140.

    Bergman Å, Heindel JJ, Kasten T, Kidd KA, Jobling S, Neira M, Zoeller RT, Becher G, Bjerregaard P, Bornman R, Brandt I, Kortenkamp A, Muir D, Brune Drisse MN, Ochieng R, Skakkebaek NE, Sundén Byléhn A, Iguchi T, Toppari J, Woodruff TJ. The impact of endocrine disruption: a consensus statement on the state of the science. Environ Health Persp. 2013;121:a104–6.

    Article  Google Scholar 

  141. 141.

    Skakkebaek NE, Rajpert-De Meyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects: opinion. Hum Reprod. 2001;16:972–8.

    CAS  PubMed  Article  Google Scholar 

  142. 142.

    Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC. Endocrine-disrupting chemicals: an endocrine society scientific statement. Endocr Rev. 2009;30:293–342.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. 143.

    Toppari J, Virtanen HE, Main KM, Skakkebaek NE. Cryptorchidism and hypospadias as a sign of testicular dysgenesis syndrome (TDS): environmental connection. Birth Defects Res A. 2010;88:910–9.

    CAS  Article  Google Scholar 

  144. 144.

    Kandaraki E, Chatzigeorgiou A, Livadas S, Palioura E, Economou F, Koutsilieris M, Palimery S, Panidis D, Diamanti-Kandarakis E. Endocrine disruptors and polycystic ovary syndrome (PCOS): elevated serum levels of bisphenol a in women with PCOS. J Clin Endocr Metab. 2010;96:E480–4.

    PubMed  Article  CAS  Google Scholar 

  145. 145.

    Giokas DL, Salvador A, Chisvert A. UV filters: from sunscreens to human body and the environment. TrAC-Trend Anal Chem. 2007;26:360–74.

    CAS  Article  Google Scholar 

  146. 146.

    Thomaidis NS, Asimakopoulos AG, Bletsou AA. Emerging contaminants: a tutorial mini review. Global Nest J. 2012;14:72–9.

    Google Scholar 

  147. 147.

    Feng M, He Q, Meng L, Zhang X, Sun P, Wang Z. Evaluation of single and joint toxicity of perfluorooctane sulfonate, perfluorooctanoic acid, and copper to Carassius auratus using oxidative stress biomarkers. Aquat Toxicol. 2015;161:108–16.

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Gavrilescu M, Demnerová K, Aamand J, Agathos S, Fava F. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol. 2015;32:147–56.

    CAS  Article  Google Scholar 

  149. 149.

    Munn S, Goumenou M. Thresholds for endocrine disrupters and related uncertainties. Report of the endocrine disrupters, expert advisory group. European commission, joint research Centre, institute for health and consumer protection. Luxembourg: Publications Office of the European Union. 2013. Accessed 29 Sep. 2015.

  150. 150.

    Vandenberg LN. Non-monotonic dose responses in studies of endocrine disrupting chemicals: bisphenol a as a case study. Dose-Response. 2014;12:259–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. 151.

    Haman C, Dauchy X, Rosin C, Munoz JF. Occurrence, fate and behavior of parabens in aquatic environments: a review. Water Res. 2015;68:1–11.

    CAS  PubMed  Article  Google Scholar 

  152. 152.

    Picot Groz P, Martinez Bueno MJ, Rosain D, Fenet H, Casellas C, Pereira C, Maria V, Bebianno MJ, Gomez E. Detection of emerging contaminants (UV filters, UV stabilizers and musks) in marine mussels from Portuguese coast by QuEChERS extraction and GC–MS/MS. Sci Total Environ. 2014;493:162–9.

    CAS  PubMed  Article  Google Scholar 

  153. 153.

    Danovaro R, Bongiorni L, Corinaldesi C, Giovannelli D, Damiani E, Astolfi P, Greci L, Pusceddu A. Sunscreens cause coral bleaching by promoting viral infections. Environ Health Persp. 2008;116:441–7.

    CAS  Google Scholar 

  154. 154.

    Trasande L, Zoeller RT, Hass U, Kortenkamp A, Grandjean P, Myers JP, DiGangi J, Bellanger M, Hauser R, Legler J, Skakkebaek NE, Heindel JJ. Estimating burden and disease costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocr Metab. 2015;100:1245–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  155. 155.

    Dweck AC. Isoflavones. Phytohormones and Phytosterols J Appl Cosmetol. 2006;24:17–33.

    CAS  Google Scholar 

  156. 156.

    Antignac E, Nohynek GJ, Re T, Clouzeau J, Toutain H. Safety of botanical ingredients in personal care products/cosmetics. Food Chem Toxicol. 2011;49:324–41.

    CAS  PubMed  Article  Google Scholar 

  157. 157.

    Poluzzi E, Piccinni C, Raschi E, Rampa A, Recanatini M, De Ponti F. Phytoestrogens in postmenopause: the state of the art from a chemical, pharmacological and regulatory perspective. Curr Med Chem. 2014;21:417–36.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. 158.

    Ainger K, editor. A Toxic Affair: How the chemical lobby blocked action on hormone disrupting chemicals. Paris/Brussels: Stéphane Horel and Corporate Europe Observatory. 2015. Accessed 1 Oct 2015.

  159. 159.

    Sahota A, editor. Sustainability: how the cosmetics industry is greening up. Chichester, UK: John Wiley & Sons; 2014.

    Google Scholar 

  160. 160.

    White RH, Cote I, Zeise L, Fox M, Dominici F, Burke TA, White PD, Hattis DB, Samet JM. State-of-the-science workshop report: issues and approaches in low-dose–response extrapolation for environmental health risk assessment. Environ Health Persp. 2009;117:283–7.

    Article  Google Scholar 

  161. 161.

    European Chemicals Agency (ECHA). Guidance on information requirements and chemical safety assessment. Chapter R.8: Characterisation of dose [concentration]-response for human health. Version 2.1. 2012. Accessed 1/10/2015.

  162. 162.

    Weisburger JH. The 37 year history of the Delaney clause. Exp Toxicol Pathol. 1996;48:183–8.

    CAS  PubMed  Article  Google Scholar 

  163. 163.

    Scientific Committee on Consumer Products (SCCP). The SCCP’S Notes of Guidance for the Testing of Cosmetic Ingredients and their Safety Evaluation. 6th Rev. 2006. Accessed 21 Sep 2015.

  164. 164.

    Scientific Committee on Consumer Safety (SCCS). Memorandum on Endocrine Disruptors (SCCS/1544/14). Accessed 19 Sep 2015.

  165. 165.

    Larsson K, Björklund KL, Palm B, Wennberg M, Kaj L, Lindh CH, Jönsson BA, Berglund M. Exposure determinants of phthalates, parabens, bisphenol a and triclosan in Swedish mothers and their children. Environ Int. 2014;73:323–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  166. 166.

    Philippat C, Bennett D, Calafat AM, Picciotto IH. Exposure to select phthalates and phenols through use of personal care products among Californian adults and their children. Environ Res. 2015;140:369–76.

    CAS  PubMed  Article  Google Scholar 

  167. 167.

    Faunce T, Murray K, Nasu H, Bowman D. Sunscreen safety: the precautionary principle, the Australian therapeutic goods administration and nanoparticles in sunscreens. NanoEthics. 2008;2:231–40.

    Article  Google Scholar 

Download references


We wish to thank Sotirios Maipas for his help in the editing and careful reading of the text, Bart Hens for his advice, and Craig Morrison for his contribution to the final editing of the manuscript.

Author information



Corresponding author

Correspondence to Polyxeni Nicolopoulou-Stamati.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The manuscript was not supported by any grant or sponsorship.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nicolopoulou-Stamati, P., Hens, L. & Sasco, A.J. Cosmetics as endocrine disruptors: are they a health risk?. Rev Endocr Metab Disord 16, 373–383 (2015).

Download citation


  • Endocrine active substances
  • Endocrine disruptors
  • Cosmetics
  • Sunscreens