Skip to main content

Polycystic ovary syndrome (PCOS) and endocrine disrupting chemicals (EDCs)

Abstract

Polycystic ovary syndrome (PCOS) is a heterogeneous disorder of unclear etiopathogenesis that is likely to involve genetic and environmental components synergistically contributing to its phenotypic expression. Endocrine disrupting chemicals (EDCs) and in particular Bisphenol A (BPA) represent a group of widespread pollutants intensively investigated as possible environmental contributors to PCOS pathogenesis. Substantial evidence from in vitro and animal studies incriminates endocrine disruptors in the induction of reproductive and metabolic aberrations resembling PCOS characteristics. In humans, elevated BPA concentrations are observed in adolescents and adult PCOS women compared to reproductively healthy ones and are positively correlated with hyperandrogenemia, implying a potential role of the chemical in PCOS pathophysiology, although a causal interference cannot yet be established. It is plausible that developmental exposure to specific EDCs could permanently alter neuroendocrine, reproductive and metabolic regulation favoring PCOS development in genetically predisposed individuals or it could accelerate and/or exacerbate the natural course of the syndrome throughout life cycle exposure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33(6):981–1030.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Diamanti-Kandarakis E, Kouli CR, Bergiele AT, Filandra FA, Tsianateli TC, Spina GG, et al. A survey of the polycystic ovary syndrome in the Greek island of Lesbos: hormonal and metabolic profile. J Clin Endocrinol Metab. 1999;84:4006–11.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Asunción M, Calvo RM, San Millán JL, Sancho J, Avila S, Escobar-Morreale HF. A prospective study of the prevalence of the polycystic ovary syndrome in unselected Caucasian women from Spain. J Clin Endocrinol Metab. 2000;85:2434–8.

    PubMed  Google Scholar 

  4. 4.

    Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab. 2004;89:2745–9.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Diamanti-Kandarakis E. Polycystic ovarian syndrome: pathophysiology, molecular aspects and clinical implications. Expert Rev Mol Med. 2008;10:e3.

    Article  PubMed  Google Scholar 

  6. 6.

    Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr Rev. 2015;36:487–525.

    Article  PubMed  Google Scholar 

  7. 7.

    Diamanti-Kandarakis E, Piperi C. Genetics of polycystic ovary syndrome: searching for the way out of the labyrinth. Hum Reprod Update. 2005;11(6):631–43.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Diamanti-Kandarakis E, Piperi C, Spina J, Argyrakopoulou G, Papanastasiou L, Bergiele A, et al. Polycystic ovary syndrome: the influence of environmental and genetic factors. Hormones (Athens). 2006;5(1):17–34.

    Article  Google Scholar 

  9. 9.

    Franks S, McCarthy MI, Hardy K. Development of polycystic ovary syndrome: involvement of genetic and environmental factors. Int J Androl. 2006;29:278–85.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Moran LJ, Pasquali R, Teede HJ, Hoeger KM, Norman RJ. Treatment of obesity in polycystic ovary syndrome: a position statement of the Androgen Excess and Polycystic Ovary Syndrome Society. Fertil Steril. 2009;92:1966–82.

    Article  PubMed  Google Scholar 

  11. 11.

    Abbott DH, Dumesic DA, Franks S. Developmental origin of polycystic ovary syndrome - a hypothesis. J Endocrinol. 2002;174:1–5.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30:293–342.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    U.S. EPAOffice of Research and Development. Special report on environmental endocrine disruption: an effects assessment and analysis. Washington D.C.: Office of Research and Development, 1997, EPA/630-R96/012; 1997.

    Google Scholar 

  14. 14.

    Abbott DH, Barnett DK, Bruns CM, Dumesic DA. Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome? Hum Reprod Update. 2005;11:357–74.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Dumesic DA, Abbott DH, Padmanabhan V. Polycystic ovary syndrome and its developmental origins. Rev Endocr Metab Disord. 2007;8:127–41.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA). Reprod Toxicol. 2007;24:139–77.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Costa EM, Spritzer PM, Hohl A, Bachega TA. Effects of endocrine disruptors in the development of the female reproductive tract. Arq Bras Endocrinol Metabol. 2014;58:153–61.

    Article  PubMed  Google Scholar 

  18. 18.

    Uzumcu M, Rob Zachow R. Developmental exposure to environmental endocrine disruptors: consequences within the ovary and on female reproductive function. Reprod Toxicol. 2007;23:337–52.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Craig ZR, Wang W, Flaws JA. Endocrine-disrupting chemicals in ovarian function: effects on steroidogenesis, metabolism and nuclear receptor signaling. Reproduction. 2011;142:633–46.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Mlynarcikova A, Fickova M, Scsukova S. Impact of endocrine disruptors on ovarian steroidogenesis. Endocr Regul. 2014;48:201–24.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Zhou W, Liu J, Liao L, Han S, Liu J. Effect of bisphenol A on steroid hormone production in rat ovarian theca-interstitial and granulosa cells. Mol Cell Endocrinol. 2008;283(1–2):12–18.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Stillman RJ. In utero exposure to diethylstilbestrol: adverse effects on the reproductive tract and reproductive performance and male and female offspring. Am J Obstet Gynecol. 1982;142:905–21.

    CAS  PubMed  Google Scholar 

  23. 23.

    Özen S, Darcan Ş. Effects of environmental endocrine disruptors on pubertal development. J Clin Res Pediatr Endocrinol. 2011;3:1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Rollerova E, Jurcovicova J, Mlynarcikova A, Sadlonova I, Bilanicova D, Wsolova L, et al. Delayed adverse effects of neonatal exposure to polymeric nanoparticle poly(ethylene glycol)-block-polylactide methyl ether on hypothalamic-pituitary-ovarian axis development and function in Wistar rats. Reprod Toxicol. 2015;57:165–75.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Mlynarcíková A, Nagyová E, Ficková M, Scsuková S. Effects of selected endocrine disruptors on meiotic maturation, cumulus expansion, synthesis of hyaluronan and progesterone by porcine oocyte-cumulus complexes. Toxicol In Vitro. 2009;23:371–7.

    Article  PubMed  Google Scholar 

  26. 26.

    Newbold R. Cellular and molecular effects of developmental exposure to diethylstilbestrol: implications for other environmental estrogens. Environ Health Perspect. 1995;103 Suppl 7:83–7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Fernández M, Bourguignon N, Lux-Lantos V, Libertun C. Neonatal exposure to bisphenol a and reproductive and endocrine alterations resembling the polycystic ovarian syndrome in adult rats. Environ Health Perspect. 2010;118:1217–22.

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Biles JE, McNeal TP, Begley TH, Hollifield HC. Determination of Bisphenol-A in reusable polycarbonate food-contact plastics and migration to food simulating liquids. J Agric Food Chem. 1997;45:3541–4.

    CAS  Article  Google Scholar 

  29. 29.

    Noda M, Komatsu H, Sano H. HPLC analysis of dental resin composites component. J Biomed Mater Res. 1999;47:374–8.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Howdeshell KL, Hotchkiss AK, Thayer KA, Vandenbergh JG, vom Saal FS. Exposure to bisphenol A advances puberty. Nature. 1999;401:763–4.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Nikaido Y, Yoshizawa K, Danbara N, Tsujita-Kyutoku M, Yuri T, Uehara N, et al. Effects of maternal xenoestrogen exposure on development of the reproductive tract and mammary gland in female CD-1 mouse offspring. Reprod Toxicol. 2004;18:803–11.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Collet SH, Picard-Hagen N, Viguié C, Lacroix MZ, Toutain PL, Gayrard V. Estrogenicity of bisphenol A: a concentration-effect relationship on luteinizing hormone secretion in a sensitive model of prepubertal lamb. Toxicol Sci. 2010;117:54–62.

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Kurian JR, Keen KL, Kenealy BP, Garcia JP, Hedman CJ, Terasawa E. Acute influences of Bisphenol A exposure on hypothalamic release of gonadotropin-releasing hormone and kisspeptin in female Rhesus monkeys. Endocrinology. 2015;156:2563–70.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Peretz J, Vrooman L, Ricke WA, Hunt PA, Ehrlich S, Hauser R, et al. Bisphenol a and reproductive health: update of experimental and human evidence, 2007–2013. Environ Health Perspect. 2014;122:775–86.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Hunt PA, Koehler KE, Susiarjo M, Hodges CA, Ilagan A, Voigt RC, et al. Bisphenol a exposure causes meiotic aneuploidy in the female mouse. Curr Biol. 2003;13:546–53.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Susiarjo M, Hassold TJ, Freeman E, Hunt PA. Bisphenol A exposure in utero disrupts early oogenesis in the mouse. PLoS Genet. 2007;3:e5.

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Eichenlaub-Ritter U, Vogt E, Cukurcam S, Sun F, Pacchierotti F, Parry J. Exposure of mouse oocytes to bisphenol A causes meiotic arrest but not aneuploidy. Mutat Res. 2008;651:82–92.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Rivera OE, Varayoud J, Rodríguez HA, Muñoz-de-Toro M, Luque EH. Neonatal exposure to bisphenol A or diethylstilbestrol alters the ovarian follicular dynamics in the lamb. Reprod Toxicol. 2011;32:304–12.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Li Y, Zhang W, Liu J, Wang W, Li H, Zhu J, et al. Prepubertal bisphenol A exposure interferes with ovarian follicle development and its relevant gene expression. Reprod Toxicol. 2014;44:33–40.

    Article  PubMed  Google Scholar 

  40. 40.

    Grasselli F, Baratta L, Baioni L, Bussolati S, Ramoni R, Grolli S, et al. Bisphenol A disrupts granulosa cell function. Domest Anim Endocrinol. 2010;39:34–9.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Nelson VL, Qin KN, Rosenfield RL, Wood JR, Penning TM, Legro RS, et al. The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2001;86:5925–33.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Teede H, Deeks A, Moran L. Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010;8:41.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Moran LJ, Norman RJ, Teede HJ. Metabolic risk in PCOS: phenotype and adiposity impact. Trends Endocrinol Metab. 2015;26:136–43.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Baptiste CG, Battista MC, Trottier A, Baillargeon JP. Insulin and hyperandrogenism in women with polycystic ovary syndrome. J Steroid Biochem Mol Biol. 2010;122:42–52.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Baillie-Hamilton PF. Chemical toxins: a hypothesis to explain the global obesity epidemic. J Altern Complement Med. 2002;8:185–92.

    Article  PubMed  Google Scholar 

  46. 46.

    Burgio E, Lopomo A, Migliore L. Obesity and diabetes: from genetics to epigenetics. Mol Biol Rep. 2015;42:799–818.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Grün F, Watanabe H, Zamanian Z, Maeda L, Arima K, Cubacha R, et al. Endocrine-disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Mol Endocrinol. 2006;20:2141–55.

    Article  PubMed  Google Scholar 

  48. 48.

    Tabb MM, Blumberg B. New modes of action for endocrine-disrupting chemicals. Mol Endocrinol. 2006;20:475–82.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Chevalier N, Fénichel P. Endocrine disruptors: new players in the pathophysiology of type 2 diabetes? Diabetes Metab. 2015;41:107–15.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, et al. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA. 2008;300:1303–10.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Rubin BS, Murray MK, Damassa DA, King JC, Soto AM. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels. Environ Health Perspect. 2001;109:675–80.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Somm E, Schwitzgebel VM, Toulotte A, Cederroth CR, Combescure C, Nef S, et al. Perinatal exposure to bisphenol A alters early adipogenesis in the rat. Environ Health Perspect. 2009;117:1549–55.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Ohlstein JF, Strong AL, McLachlan JA, Gimble JM, Burow ME, Bunnell BA. Bisphenol A enhances adipogenic differentiation of human adipose stromal/stem cells. J Mol Endocrinol. 2014;53:345–53.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Wada K, Sakamoto H, Nishikawa K, Sakuma S, Nakajima A, Fujimoto Y, et al. Life style-related diseases of the digestive system: endocrine disruptors stimulate lipid accumulation in target cells related to metabolic syndrome. J Pharmacol Sci. 2007;105:133–7.

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Masuno H, Iwanami J, Kidani T, Sakayama K, Honda K. Bisphenol a accelerates terminal differentiation of 3T3-L1 cells into adipocytes through the phosphatidylinositol 3-kinase pathway. Toxicol Sci. 2005;84:319–27.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Ben-Jonathan N, Hugo ER, Brandebourg TD. Effects of bisphenol A on adipokine release from human adipose tissue: Implications for the metabolic syndrome. Mol Cell Endocrinol. 2009;304:49–54.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Hugo ER, Brandebourg TD, Woo JG, Loftus J, Alexander JW, Ben-Jonathan N. Bisphenol A at environmentally relevant doses inhibits adiponectin release from human adipose tissue explants and adipocytes. Environ Health Perspect. 2008;116:1642–7.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Alonso-Magdalena P, Morimoto S, Ripoll C, Fuentes E, Nadal A. The estrogenic effect of Bisphenol -A disrupts pancreatic β-cell function in vivo and induces insulin resistance. Environ Health Perspect. 2006;114:106–12.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Alonso-Magdalena P, Laribi O, Ropero AB, Fuentes E, Ripoll C, Soria B, et al. Low doses of bisphenol A and diethylstilbestrol impair Ca2+ signals in pancreatic alpha-cells through a nonclassical membrane estrogen receptor within intact islets of Langerhans. Environ Health Perspect. 2005;113:969–77.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Wei J, Lin Y, Li Y, Ying C, Chen J, Song L, et al. Perinatal exposure to bisphenol A at reference dose predisposes offspring to metabolic syndrome in adult rats on a high-fat diet. Endocrinology. 2011;152:3049–61.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    García-Arevalo M, Alonso-Magdalena P, Rebelo Dos Santos J, Quesada I, Carneiro EM, Nadal A. Exposure to bisphenol-A during pregnancy partially mimics the effects of a high-fat diet altering glucose homeostasis and gene expression in adult male mice. PLoS One. 2014;9:e100214.

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Jiang Y, Xia W, Zhu Y, Li X, Wang D, Liu J, et al. Mitochondrial dysfunction in early life resulted from perinatal bisphenol A exposure contributes to hepatic steatosis in rat offspring. Toxicol Lett. 2014;228:85–92.

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Strakovsky RS, Wang H, Engeseth NJ, Flaws JA, Helferich WG, Pan YX, et al. Developmental bisphenol A (BPA) exposure leads to sex-specific modification of hepatic gene expression and epigenome at birth that may exacerbate high-fat diet-induced hepatic steatosis. Toxicol Appl Pharmacol. 2015;284:101–12.

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Karoli R, Fatima J, Chandra A, Gupta U, Islam FU, Singh G. Prevalence of hepatic steatosis in women with polycystic ovary syndrome. J Hum Reprod Sci. 2013;6:9–14.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Takeuchi Τ, Tsutsumi Ο. Serum Bisphenol A concentrations showed gender differences, possibly linked to androgen levels. Bioch Bioph Res Com. 2002;291:76–8.

    CAS  Article  Google Scholar 

  66. 66.

    Takeuchi T, Tsutsumi O, Ikezuki Y, Takai Y, Taketani Y. Positive relationship between androgen and the endocrine disruptor, bisphenol A, in normal women and women with ovarian dysfunction. Endocr J. 2004;51:165–9.

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Kandaraki E, Chatzigeorgiou A, Livadas S, Palioura E, Economou F, Koutsilieris M, et al. Endocrine disruptors and polycystic ovary syndrome (PCOS): elevated serum levels of bisphenol A in women with PCOS. J Clin Endocrinol Metab. 2011;96:480–4.

    Article  Google Scholar 

  68. 68.

    Tarantino G, Valentino R, Di Somma C, D’Esposito V, Passaretti F, Pizza G, et al. Bisphenol A in polycystic ovary syndrome and its association with liver-spleen axis. Clin Endocrinol (Oxf). 2013;78:447–53.

    CAS  Article  Google Scholar 

  69. 69.

    Miao M, Yuan W, Yang F, Liang H, Zhou Z, Li R, et al. Associations between Bisphenol A exposure and reproductive hormones among female workers. Int J Environ Res Public Health. 2015;12:13240–50.

    Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Akın L, Kendirci M, Narin F, Kurtoglu S, Saraymen R, Kondolot M, et al. The endocrine disruptor bisphenol A may play a role in the aetiopathogenesis of polycystic ovary syndrome in adolescent girls. Acta Paediatr. 2015;104:171–7.

    Article  Google Scholar 

  71. 71.

    Déchaud H, Ravard C, Claustrat F, de la Perrière AB, Pugeat M. Xenoestrogen interaction with human sex hormone-binding globulin (hSHBG). Steroids. 1999;64:328–34.

    Article  PubMed  Google Scholar 

  72. 72.

    Hanioka N, Jinno H, Nishimura T, Ando M. Suppression of male-specific cytochrome P450 isoforms by bisphenol A in rat liver. Arch Toxicol. 1998;72:387–94.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Yokota H, Iwano H, Endo M, Kobayashi T, Inoue H, Ikushiro S. Glucuronidation of the environmental estrogen bisphenol A by an isoform of UDP-glucuronosyltransferase, UGT2B1, in the rat liver. Biochem J. 1999;340:405–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Rehan M, Ahmad E, Sheikh IA, Abuzenadah AM, Damanhouri GA, Bajouh OS, et al. Androgen and progesterone receptors are targets for Bisphenol A (BPA), 4-Methyl-2,4-bis-(P-Hydroxyphenyl)Pent-1-Ene--A Potent Metabolite of BPA, and 4-Tert-Octylphenol: a computational insight. PLoS One. 2015;10:e0138438.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Evanthia Diamanti-Kandarakis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palioura, E., Diamanti-Kandarakis, E. Polycystic ovary syndrome (PCOS) and endocrine disrupting chemicals (EDCs). Rev Endocr Metab Disord 16, 365–371 (2015). https://doi.org/10.1007/s11154-016-9326-7

Download citation

Keywords

  • Endocrine disrupting chemicals
  • Bisphenol A
  • PCOS
  • Reproduction
  • Metabolism