Skip to main content

Advertisement

Log in

GLP-1R activation for the treatment of stroke: Updating and future perspectives

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Stroke is the leading cause of adult disability in Westernized societies with increased incidence along ageing and it represents a major health and economical threat. Inactive lifestyle, smoking, hypertension, atherosclerosis, obesity and diabetes all dramatically increase the risk of stroke. While preventive strategies based on lifestyle changes and risk factor management can delay or decrease the likelihood of having a stroke, post stroke pharmacological strategies aimed at minimizing stroke-induced brain damage are highly needed. Unfortunately, several candidate drugs that have shown significant preclinical neuroprotective efficacy, have failed in clinical trials and no treatment for stroke based on neuroprotection is available today. Glucagon-like peptide 1 (GLP-1) is a peptide originating in the enteroendocrine L-cells of the intestine and secreted upon nutrient ingestion. The activation of the GLP-1R by GLP-1 enhances glucose-dependent insulin secretion, suppresses glucagon secretion and exerts multifarious extrapancreatic effects. Stable GLP-1 analogues and inhibitors of the proteolytic enzyme dipeptidyl peptidase 4 (DPP-4) (which counteract endogenous GLP-1 degradation) have been developed clinically for the treatment of type 2 diabetes. Besides their antidiabetic properties, experimental evidence has shown neurotrophic and neuroprotective effects of GLP-1R agonists and DPP-4 inhibitors in animal models of neurological disorders. Herein, we review recent experimental data on the neuroprotective effects mediated by GLP-1R activation in stroke. Due to the good safety profile of the drugs targeting the GLP-1R, we also discuss the high potential of GLP-1R stimulation in view of developing a safe clinical treatment against stroke based on neuroprotection in both diabetic and non-diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Go AS et al. Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6–e245.

    PubMed  Google Scholar 

  2. Taqi MA et al. Past, present, and future of endovascular stroke therapies. Neurology. 2012;79(13 Suppl 1):S213–20.

    CAS  PubMed  Google Scholar 

  3. Diener HC et al. Treatment of acute ischaemic stroke with thrombolysis or thrombectomy in patients receiving anti-thrombotic treatment. Lancet Neurol. 2013;12(7):677–88.

    CAS  PubMed  Google Scholar 

  4. Herlitz J et al. Early identification and delay to treatment in myocardial infarction and stroke: differences and similarities. Scand J Trauma Resusc Emerg Med. 2010;18:48.

    PubMed Central  PubMed  Google Scholar 

  5. Crimmins DS et al. Acute stroke and transient ischaemic attack management–time to act fast. Intern Med J. 2009;39(5):325–31.

    CAS  PubMed  Google Scholar 

  6. Kurz MW, Kurz KD, Farbu E. Acute ischemic stroke–from symptom recognition to thrombolysis. Acta Neurol Scand Suppl. 2013;196:57–64.

    PubMed  Google Scholar 

  7. Whiteley WN et al. Risk factors for intracranial hemorrhage in acute ischemic stroke patients treated with recombinant tissue plasminogen activator: a systematic review and meta-analysis of 55 studies. Stroke. 2012;43(11):2904–9.

    CAS  PubMed  Google Scholar 

  8. Lansberg MG, Albers GW, Wijman CA. Symptomatic intracerebral hemorrhage following thrombolytic therapy for acute ischemic stroke: a review of the risk factors. Cerebrovasc Dis. 2007;24(1):1–10.

    PubMed  Google Scholar 

  9. Eltzschig HK, Eckle T. Ischemia and reperfusion–from mechanism to translation. Nat Med. 2011;17(11):1391–401.

    CAS  PubMed  Google Scholar 

  10. Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994;36(4):557–65.

    CAS  PubMed  Google Scholar 

  11. Macdonald RL, Stoodley M. Pathophysiology of cerebral ischemia. Neurol Med Chir (Tokyo). 1998;38(1):1–11.

    CAS  Google Scholar 

  12. Ferrer I, Planas AM. Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol. 2003;62(4):329–39.

    PubMed  Google Scholar 

  13. Liu R et al. Neuroprotection targeting ischemic penumbra and beyond for the treatment of ischemic stroke. Neurol Res. 2012;34(4):331–7.

    CAS  PubMed  Google Scholar 

  14. Heiss WD. The ischemic penumbra: How does tissue injury evolve? Ann N Y Acad Sci. 2012;1268:26–34.

    PubMed  Google Scholar 

  15. Sacco RL et al. Experimental treatments for acute ischaemic stroke. Lancet. 2007;369(9558):331–41.

    CAS  PubMed  Google Scholar 

  16. O'Collins VE et al. 1,026 experimental treatments in acute stroke. Ann Neurol. 2006;59(3):467–77.

    PubMed  Google Scholar 

  17. Cheng YD, Al-Khoury L, Zivin JA. Neuroprotection for ischemic stroke: two decades of success and failure. NeuroRx. 2004;1(1):36–45.

    PubMed Central  PubMed  Google Scholar 

  18. Endres M et al. Improving outcome after stroke: overcoming the translational roadblock. Cerebrovasc Dis. 2008;25(3):268–78.

    PubMed  Google Scholar 

  19. Gladstone DJ et al. Toward wisdom from failure: lessons from neuroprotective stroke trials and new therapeutic directions. Stroke. 2002;33(8):2123–36.

    PubMed  Google Scholar 

  20. Sena E et al. How can we improve the pre-clinical development of drugs for stroke? Trends Neurosci. 2007;30(9):433–9.

    CAS  PubMed  Google Scholar 

  21. Li Y et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci U S A. 2009;106(4):1285–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Teramoto, S., et al., Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia. J Cereb Blood Flow Metab, 2011.

  23. Yang D et al. Alogliptin, a dipeptidylpeptidase-4 inhibitor, for patients with diabetes mellitus type 2, induces tolerance to focal cerebral ischemia in non-diabetic, normal mice. Brain Res. 2013;1517:104–13.

    CAS  PubMed  Google Scholar 

  24. Lee CH et al. Ischemia-Induced Changes in Glucagon-Like Peptide-1 Receptor and Neuroprotective Effect of Its Agonist, Exendin-4, in Experimental Transient Cerebral Ischemia. Journal of Neuroscience Research. 2011;89(7):1103–13.

    CAS  PubMed  Google Scholar 

  25. Briyal S, Gulati K, Gulati A. Repeated administration of exendin-4 reduces focal cerebral ischemia-induced infarction in rats. Brain Res. 2012;1427:23–34.

    CAS  PubMed  Google Scholar 

  26. Darsalia V et al. Glucagon-like peptide-1 receptor activation reduces ischaemic brain damage following stroke in Type 2 diabetic rats. Clin Sci (Lond). 2012;122(10):473–83.

    CAS  Google Scholar 

  27. Darsalia V et al. The DPP-4 inhibitor linagliptin counteracts stroke in the normal and diabetic mouse brain: a comparison with glimepiride. Diabetes. 2013;62(4):1289–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Gupta, V., Pleiotropic effects of incretins. Indian J Endocrinol Metab, 2012. 16 (Suppl1): p. S47-56.

  29. Ban K et al. Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation. 2008;117(18):2340–50.

    CAS  PubMed  Google Scholar 

  30. Drucker DJ. The role of gut hormones in glucose homeostasis. J Clin Invest. 2007;117(1):24–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Meier JJ, Nauck MA. Glucagon-like peptide 1 (GLP-1) in biology and pathology. Diabetes Metab Res Rev. 2005;21(2):91–117.

    CAS  PubMed  Google Scholar 

  32. Vilsboll T, Holst JJ. Incretins, insulin secretion and Type 2 diabetes mellitus. Diabetologia. 2004;47:357–66.

    CAS  PubMed  Google Scholar 

  33. Mannucci E et al. Glucagon-like peptide (GLP)-1 and leptin concentrations in obese patients with Type 2 diabetes mellitus. Diabet Med. 2000;17(10):713–9.

    CAS  PubMed  Google Scholar 

  34. Vilsboll T et al. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes. 2001;50(3):609–13.

    CAS  PubMed  Google Scholar 

  35. Lugari R et al. Evidence for early impairment of glucagon-like peptide 1-induced insulin secretion in human type 2 (non insulin-dependent) diabetes. Horm Metab Res. 2002;34(3):150–4.

    CAS  PubMed  Google Scholar 

  36. Jin T. Why diabetes patients are more prone to the development of colon cancer? Med Hypotheses. 2008;71(2):241–4.

    CAS  PubMed  Google Scholar 

  37. Yi F et al. Cross talk between the insulin and Wnt signaling pathways: evidence from intestinal endocrine L cells. Endocrinology. 2008;149(5):2341–51.

    CAS  PubMed  Google Scholar 

  38. Ahren B, Carr RD, Deacon CF. Incretin hormone secretion over the day. Vitam Horm. 2010;84:203–20.

    CAS  PubMed  Google Scholar 

  39. Toft-Nielsen MB et al. Determinants of the impaired secretion of glucagon-like peptide-1 in type 2 diabetic patients. J Clin Endocrinol Metab. 2001;86(8):3717–23.

    CAS  PubMed  Google Scholar 

  40. Nathanson D et al. Reduced plasma levels of glucagon-like peptide-1 in elderly men are associated with impaired glucose tolerance but not with coronary heart disease. Diabetologia. 2010;53(2):277–80.

    CAS  PubMed  Google Scholar 

  41. Muscelli E et al. Separate impact of obesity and glucose tolerance on the incretin effect in normal subjects and type 2 diabetic patients. Diabetes. 2008;57(5):1340–8.

    CAS  PubMed  Google Scholar 

  42. Rask E et al. Impaired incretin response after a mixed meal is associated with insulin resistance in nondiabetic men. Diabetes Care. 2001;24(9):1640–5.

    CAS  PubMed  Google Scholar 

  43. Vilsboll T et al. Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab. 2003;88(6):2706–13.

    CAS  PubMed  Google Scholar 

  44. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87(4):1409–39.

    CAS  PubMed  Google Scholar 

  45. Balks HJ et al. Rapid oscillations in plasma glucagon-like peptide-1 (GLP-1) in humans: cholinergic control of GLP-1 secretion via muscarinic receptors. J Clin Endocrinol Metab. 1997;82(3):786–90.

    CAS  PubMed  Google Scholar 

  46. Thorens B. Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci U S A. 1992;89(18):8641–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Stoffel M et al. Human glucagon-like peptide-1 receptor gene. Localization to chromosome band 6p21 by fluorescence in situ hybridization and linkage of a highly polymorphic simple tandem repeat DNA polymorphism to other markers on chromosome 6. Diabetes. 1993;42(8):1215–8.

    CAS  PubMed  Google Scholar 

  48. Goke R et al. Exendin-4 is a high potency agonist and truncated exendin-(9–39)-amide an antagonist at the glucagon-like peptide 1-(7–36)-amide receptor of insulin-secreting beta-cells. J Biol Chem. 1993;268(26):19650–5.

    CAS  PubMed  Google Scholar 

  49. Thorens B et al. Cloning and functional expression of the human islet GLP-1 receptor. Demonstration that exendin-4 is an agonist and exendin-(9–39) an antagonist of the receptor. Diabetes. 1993;42(11):1678–82.

    CAS  PubMed  Google Scholar 

  50. Kieffer TJ, Habener JF. The glucagon-like peptides. Endocr Rev. 1999;20(6):876–913.

    CAS  PubMed  Google Scholar 

  51. Orskov C et al. Glucagon-like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide I. Diabetes. 1996;45(6):832–5.

    CAS  PubMed  Google Scholar 

  52. Barragan JM et al. Neural contribution to the effect of glucagon-like peptide-1-(7–36) amide on arterial blood pressure in rats. Am J Physiol. 1999;277(5 Pt 1):E784–91.

    CAS  PubMed  Google Scholar 

  53. Yamamoto H et al. Glucagon-like peptide-1 receptor stimulation increases blood pressure and heart rate and activates autonomic regulatory neurons. J Clin Invest. 2002;110(1):43–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Pyke C, Knudsen LB. The glucagon-like peptide-1 receptor–or not? Endocrinology. 2013;154(1):4–8.

    CAS  PubMed  Google Scholar 

  55. Panjwani N et al. GLP-1 receptor activation indirectly reduces hepatic lipid accumulation but does not attenuate development of atherosclerosis in diabetic male ApoE (−/−) mice. Endocrinology. 2013;154(1):127–39.

    CAS  PubMed  Google Scholar 

  56. Fehmann HC et al. Ligand-specificity of the rat GLP-I receptor recombinantly expressed in Chinese hamster ovary (CHO-) cells. Z Gastroenterol. 1994;32(4):203–7.

    CAS  PubMed  Google Scholar 

  57. Holz, G.G.t., W.M. Kuhtreiber, and J.F. Habener, Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1 (7–37). Nature, 1993;361:(6410): p. 362–5.

  58. Gromada J, Holst JJ, Rorsman P. Cellular regulation of islet hormone secretion by the incretin hormone glucagon-like peptide 1. Pflugers Arch. 1998;435(5):583–94.

    CAS  PubMed  Google Scholar 

  59. Lu M et al. The role of the free cytosolic calcium level in beta-cell signal transduction by gastric inhibitory polypeptide and glucagon-like peptide I (7–37). Endocrinology. 1993;132(1):94–100.

    CAS  PubMed  Google Scholar 

  60. Xu G et al. Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes. 1999;48(12):2270–6.

    CAS  PubMed  Google Scholar 

  61. Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17(6):819–37.

    CAS  PubMed  Google Scholar 

  62. Erdogdu O et al. Exendin-4 protects endothelial cells from lipoapoptosis by PKA, PI3K, eNOS, p38 MAPK, and JNK pathways. J Mol Endocrinol. 2013;50(2):229–41.

    CAS  PubMed  Google Scholar 

  63. Erdogdu O et al. Exendin-4 stimulates proliferation of human coronary artery endothelial cells through eNOS-, PKA- and PI3K/Akt-dependent pathways and requires GLP-1 receptor. Mol Cell Endocrinol. 2010;325(1–2):26–35.

    CAS  PubMed  Google Scholar 

  64. Parthsarathy V, Holscher C. Chronic treatment with the GLP1 analogue liraglutide increases cell proliferation and differentiation into neurons in an AD mouse model. PLoS One. 2013;8(3):e58784.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Baraboi ED et al. Brain activation following peripheral administration of the GLP-1 receptor agonist exendin-4. Am J Physiol Regul Integr Comp Physiol. 2011;301(4):R1011–24.

    CAS  PubMed  Google Scholar 

  66. Knauf C et al. Role of central nervous system glucagon-like Peptide-1 receptors in enteric glucose sensing. Diabetes. 2008;57(10):2603–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Holscher C. Potential role of glucagon-like peptide-1 (GLP-1) in neuroprotection. CNS Drugs. 2012;26(10):871–82.

    CAS  PubMed  Google Scholar 

  68. Monami M, Marchionni N, Mannucci E. Glucagon-like peptide-1 receptor agonists in type 2 diabetes: a meta-analysis of randomized clinical trials. Eur J Endocrinol. 2009;160(6):909–17.

    CAS  PubMed  Google Scholar 

  69. Raufman JP et al. Actions of Gila monster venom on dispersed acini from guinea pig pancreas. Am J Physiol. 1982;242(5):G470–4.

    CAS  PubMed  Google Scholar 

  70. Kolterman OG et al. Pharmacokinetics, pharmacodynamics, and safety of exenatide in patients with type 2 diabetes mellitus. Am J Health Syst Pharm. 2005;62(2):173–81.

    CAS  PubMed  Google Scholar 

  71. AMYLIN PHARMACEUTICALS, I.B.e.i.p.i.A.P., Inc. San Diego (CA) USA . 2005.

  72. Buse JB et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care. 2004;27(11):2628–35.

    CAS  PubMed  Google Scholar 

  73. DeFronzo RA et al. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care. 2005;28(5):1092–100.

    CAS  PubMed  Google Scholar 

  74. Kendall DM et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care. 2005;28(5):1083–91.

    CAS  PubMed  Google Scholar 

  75. Blevins T et al. DURATION-5: exenatide once weekly resulted in greater improvements in glycemic control compared with exenatide twice daily in patients with type 2 diabetes. J Clin Endocrinol Metab. 2011;96(5):1301–10.

    CAS  PubMed  Google Scholar 

  76. Diamant M et al. Once weekly exenatide compared with insulin glargine titrated to target in patients with type 2 diabetes (DURATION-3): an open-label randomised trial. Lancet. 2010;375(9733):2234–43.

    CAS  PubMed  Google Scholar 

  77. Drucker DJ et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet. 2008;372(9645):1240–50.

    CAS  PubMed  Google Scholar 

  78. Byetta: exenatide injection [package insert]. San Diego, C., Amylin Pharmaceuticals, 2005. Available from http://pi.lilly.com/us/byetta-pi.pdf., Assessed 27 September 2010.

  79. Moretto TJ et al. Efficacy and tolerability of exenatide monotherapy over 24 weeks in antidiabetic drug-naive patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel-group study. Clin Ther. 2008;30(8):1448–60.

    CAS  PubMed  Google Scholar 

  80. Best JH et al. Risk of cardiovascular disease events in patients with type 2 diabetes prescribed the glucagon-like peptide 1 (GLP-1) receptor agonist exenatide twice daily or other glucose-lowering therapies: a retrospective analysis of the LifeLink database. Diabetes Care. 2011;34(1):90–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Agerso H et al. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia. 2002;45(2):195–202.

    CAS  PubMed  Google Scholar 

  82. Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet. 2006;368(9548):1696–705.

    CAS  PubMed  Google Scholar 

  83. Buse JB et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet. 2009;374(9683):39–47.

    CAS  PubMed  Google Scholar 

  84. Garber A et al. Liraglutide versus glimepiride monotherapy for type 2 diabetes (LEAD-3 Mono): a randomised, 52-week, phase III, double-blind, parallel-treatment trial. Lancet. 2009;373(9662):473–81.

    CAS  PubMed  Google Scholar 

  85. Russell-Jones D et al. Liraglutide vs insulin glargine and placebo in combination with metformin and sulfonylurea therapy in type 2 diabetes mellitus (LEAD-5 met + SU): a randomised controlled trial. Diabetologia. 2009;52(10):2046–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Zinman B et al. Efficacy and safety of the human glucagon-like peptide-1 analog liraglutide in combination with metformin and thiazolidinedione in patients with type 2 diabetes (LEAD-4 Met + TZD). Diabetes Care. 2009;32(7):1224–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Montanya E, Sesti G. A review of efficacy and safety data regarding the use of liraglutide, a once-daily human glucagon-like peptide 1 analogue, in the treatment of type 2 diabetes mellitus. Clin Ther. 2009;31(11):2472–88.

    CAS  PubMed  Google Scholar 

  88. Victoza: liraglutide (rDNA origin) injection [package insert]. Princetown, N., Novo Nordisk, 2010. Available from http://www.victozapro.com/pdf/Victoza_ComboPI_5.24.pdf. Assessed 27 September 2010, 2010.

  89. Christensen M, Knop FK. Once-weekly GLP-1 agonists: How do they differ from exenatide and liraglutide? Curr Diab Rep. 2010;10(2):124–32.

    CAS  PubMed  Google Scholar 

  90. Werner U. Preclinical pharmacology of the new GLP-1 receptor agonist AVE0010. Ann Endocrinol (Paris). 2008;69(2):164–5.

    CAS  Google Scholar 

  91. Jimenez-Solem E et al. Dulaglutide, a long-acting GLP-1 analog fused with an Fc antibody fragment for the potential treatment of type 2 diabetes. Curr Opin Mol Ther. 2010;12(6):790–7.

    CAS  PubMed  Google Scholar 

  92. St Onge, E.L. and S.A. Miller, Albiglutide: a new GLP-1 analog for the treatment of type 2 diabetes. Expert Opin Biol Ther, 2010;10:(5): p. 801–6.

  93. Barnett A. DPP-4 inhibitors and their potential role in the management of type 2 diabetes. Int J Clin Pract. 2006;60(11):1454–70.

    CAS  PubMed  Google Scholar 

  94. Drucker DJ. Dipeptidyl peptidase-4 inhibition and the treatment of type 2 diabetes: preclinical biology and mechanisms of action. Diabetes Care. 2007;30(6):1335–43.

    CAS  PubMed  Google Scholar 

  95. Fadini GP, Avogaro A. Cardiovascular effects of DPP-4 inhibition: beyond GLP-1. Vascul Pharmacol. 2011;55(1–3):10–6.

    CAS  PubMed  Google Scholar 

  96. Lambeir AM et al. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci. 2003;40(3):209–94.

    CAS  PubMed  Google Scholar 

  97. Waget A et al. Physiological and pharmacological mechanisms through which the DPP-4 inhibitor sitagliptin regulates glycemia in mice. Endocrinology. 2011;152(8):3018–29.

    PubMed  Google Scholar 

  98. Goke R et al. Distribution of GLP-1 binding sites in the rat brain: evidence that exendin-4 is a ligand of brain GLP-1 binding sites. Eur J Neurosci. 1995;7(11):2294–300.

    CAS  PubMed  Google Scholar 

  99. Merchenthaler I, Lane M, Shughrue P. Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol. 1999;403(2):261–80.

    CAS  PubMed  Google Scholar 

  100. Hamilton, A. and C. Holscher, Receptors for the incretin glucagon-like peptide-1 are expressed on neurons in the central nervous system. Neuroreport, 2009.

  101. Bertilsson G et al. Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson's disease. J Neurosci Res. 2008;86(2):326–38.

    CAS  PubMed  Google Scholar 

  102. Iwai T et al. Glucagon-like peptide-1 inhibits LPS-induced IL-1beta production in cultured rat astrocytes. Neurosci Res. 2006;55(4):352–60.

    CAS  PubMed  Google Scholar 

  103. Chowen JA et al. Increased glucagon-like peptide-1 receptor expression in glia after mechanical lesion of the rat brain. Neuropeptides. 1999;33(3):212–5.

    CAS  PubMed  Google Scholar 

  104. Holscher, C., Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases. J Endocrinol, 2013.

  105. Harkavyi A, Whitton PS. Glucagon-like peptide 1 receptor stimulation as a means of neuroprotection. Br J Pharmacol. 2010;159(3):495–501.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Salcedo I et al. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders. British Journal of Pharmacology. 2012;166(5):1586–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Holst JJ, Burcelin R, Nathanson E. Neuroprotective properties of GLP-1: theoretical and practical applications. Curr Med Res Opin. 2011;27(3):547–58.

    CAS  PubMed  Google Scholar 

  108. Kastin AJ, Akerstrom V. Entry of exendin-4 into brain is rapid but may be limited at high doses. Int J Obes Relat Metab Disord. 2003;27(3):313–8.

    CAS  PubMed  Google Scholar 

  109. Sato K et al. Neuroprotective effects of liraglutide for stroke model of rats. Int J Mol Sci. 2013;14(11):21513–24.

    PubMed Central  PubMed  Google Scholar 

  110. Daly SC et al. Exenatide in acute ischemic stroke. Int J Stroke. 2013;8(7):E44.

    PubMed  Google Scholar 

  111. McIntyre RS et al. The neuroprotective effects of GLP-1: possible treatments for cognitive deficits in individuals with mood disorders. Behav Brain Res. 2013;237:164–71.

    CAS  PubMed  Google Scholar 

  112. Luciani P et al. Differentiating effects of the glucagon-like peptide-1 analogue exendin-4 in a human neuronal cell model. Cell Mol Life Sci. 2010;67(21):3711–23.

    CAS  PubMed  Google Scholar 

  113. Perry T et al. A novel neurotrophic property of glucagon-like peptide 1: a promoter of nerve growth factor-mediated differentiation in PC12 cells. J Pharmacol Exp Ther. 2002;300(3):958–66.

    CAS  PubMed  Google Scholar 

  114. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72.

    CAS  PubMed  Google Scholar 

  115. Ussher JR, Drucker DJ. Cardiovascular biology of the incretin system. Endocr Rev. 2012;33(2):187–215.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Jose T, Inzucchi SE. Cardiovascular effects of the DPP-4 inhibitors. Diab Vasc Dis Res. 2012;9(2):109–16.

    PubMed  Google Scholar 

  117. Abbott CA et al. Genomic organization, exact localization, and tissue expression of the human CD26 (dipeptidyl peptidase IV) gene. Immunogenetics. 1994;40(5):331–8.

    CAS  PubMed  Google Scholar 

  118. Mentzel S et al. Organ distribution of aminopeptidase A and dipeptidyl peptidase IV in normal mice. J Histochem Cytochem. 1996;44(5):445–61.

    CAS  PubMed  Google Scholar 

  119. Takasawa W et al. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines. Biochem Biophys Res Commun. 2010;401(1):7–12.

    CAS  PubMed  Google Scholar 

  120. Kroller-Schon S et al. Glucose-independent improvement of vascular dysfunction in experimental sepsis by dipeptidyl-peptidase 4 inhibition. Cardiovasc Res. 2012;96(1):140–9.

    PubMed  Google Scholar 

  121. Rohnert P et al. Dipeptidyl peptidase IV, aminopeptidase N and DPIV/APN-like proteases in cerebral ischemia. J Neuroinflammation. 2012;9:44.

    PubMed Central  PubMed  Google Scholar 

  122. Pipatpiboon N et al. DPP4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption. Eur J Neurosci. 2013;37(5):839–49.

    PubMed  Google Scholar 

  123. Pintana, H., et al., DPP-4 inhibitors improve cognition and brain mitochondrial function of insulin resistant rats. J Endocrinol, 2013.

  124. Johansen OE et al. Cardiovascular safety with linagliptin in patients with type 2 diabetes mellitus: A pre-specified, prospective, and adjudicated meta-analysis of a Phase 3 programme. Cardiovasc Diabetol. 2012;11(1):3.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Monami M et al. Safety of dipeptidyl peptidase-4 inhibitors: a meta-analysis of randomized clinical trials. Curr Med Res Opin. 2011;27 Suppl 3:57–64.

    CAS  PubMed  Google Scholar 

  126. Gallwitz B et al. 2-year efficacy and safety of linagliptin compared with glimepiride in patients with type 2 diabetes inadequately controlled on metformin: a randomised, double-blind, non-inferiority trial. Lancet. 2012;380(9840):475–83.

    CAS  PubMed  Google Scholar 

  127. Scirica, B.M., et al., Saxagliptin and Cardiovascular Outcomes in Patients with Type 2 Diabetes Mellitus. N Engl J Med, 2013.

  128. White, W.B., et al., Alogliptin after Acute Coronary Syndrome in Patients with Type 2 Diabetes. N Engl J Med, 2013.

  129. Nauck MA et al. Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. Am J Physiol. 1997;273(5 Pt 1):E981–8.

    CAS  PubMed  Google Scholar 

  130. Tolessa T et al. Glucagon-like peptide-1 retards gastric emptying and small bowel transit in the rat: effect mediated through central or enteric nervous mechanisms. Dig Dis Sci. 1998;43(10):2284–90.

    CAS  PubMed  Google Scholar 

  131. Wettergren A et al. The inhibitory effect of glucagon-like peptide-1 (GLP-1) 7–36 amide on gastric acid secretion in humans depends on an intact vagal innervation. Gut. 1997;40(5):597–601.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Wishart JM et al. Relation between gastric emptying of glucose and plasma concentrations of glucagon-like peptide-1. Peptides. 1998;19(6):1049–53.

    CAS  PubMed  Google Scholar 

  133. Burcelin R. The gut-brain axis: a major glucoregulatory player. Diabetes Metab. 2010;36 Suppl 3:S54–8.

    CAS  PubMed  Google Scholar 

  134. Plamboeck A et al. The effect of exogenous GLP-1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty. Am J Physiol Gastrointest Liver Physiol. 2013;304(12):G1117–27.

    CAS  PubMed  Google Scholar 

  135. Cheyuo C et al. The parasympathetic nervous system in the quest for stroke therapeutics. J Cereb Blood Flow Metab. 2011;31(5):1187–95.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Work in our laboratories is supported by grants from the Novo Nordisk foundation, the European Foundation for the Study of Diabetes (EFSD)/Lillly, Diabetesfonden, the Swedish Heart and Lung Foundation, AFA Insurance, Konung Gustaf V:s och Drottning Victorias Frimurarestiftelse, Diabetes Research & Wellness Foundation, Avtal om Läkarutbildning och Forskning (ALF) and by the foundations Magnus Bergvall, Fredrik and Ingrid Thuring, Axel and Signe Lagerman’s Donation, Loo and Hans Osterman, Stohne, Åhlén, STROKE Riksförbundet, Tornspiran, Gamla Tjänarinnor and Syskonen Svensson.

Conflict of interest

Work in CP’s laboratory is supported by Boehringer Ingelheim Pharma GmbH & Co. Thomas Klein is an employee of Boehringer Ingelheim Pharma GmbH & Co. ÅS has received research grants, consultancy fees, lecture honoraria, and fees for expert testimony from most companies involved in incretin-based therapy, and is on the national/Nordic/European/global advisory boards of Eli Lilly, Merck, Boehringer Ingelheim, AstraZeneca, Sanofiaventis, and Novartis. No other potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesare Patrone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darsalia, V., Nathanson, D., Nyström, T. et al. GLP-1R activation for the treatment of stroke: Updating and future perspectives. Rev Endocr Metab Disord 15, 233–242 (2014). https://doi.org/10.1007/s11154-014-9285-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-014-9285-9

Keywords

Navigation