The vascular endothelium in diabetes and its potential as a therapeutic target

Article

Keywords

Endothelium Vasculature Insulin resistance Diabetes 

Notes

Acknowledgements

This work was supported by American Diabetes Association grants 7-07-CR-34, 9-09-NOVO-11 and 1-11-CR-30 and National Institutes of Health grant R01 HL-094722.

References

  1. 1.
    Jialal I, King GL, Buchwald S, Kahn CR, Crettaz M. Processing of insulin by bovine endothelial cells in culture: internalization without degradation. Diabetes. 1984;33:794–800.PubMedCrossRefGoogle Scholar
  2. 2.
    Li G, Barrett EJ, Wang H, Chai W, Liu Z. Insulin at physiological concentrations selectively activates insulin but not insulin-like growth factor I (IGF-I) or insulin/IGF-I hybrid receptors in endothelial cells. Endocrinology. 2005;146:4690–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Dekker Nitert M, Chisalita SI, Olsson K, Bornfeldt KE, Arnqvist HJ. IGF-I/insulin hybrid receptors in human endothelial cells. Mol Cell Endocrinol. 2005;229:31–7.CrossRefGoogle Scholar
  4. 4.
    Montagnani M, Chen H, Barr VA, Quon MJ. Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser1179. J Biol Chem. 2001;276:30392–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Zeng G, Nystrom FH, Ravichandran LV, Cong L-N, Kirby M, Mostowski H, et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation. 2000;101:1539–45.PubMedCrossRefGoogle Scholar
  6. 6.
    Oliver FJ, de la Rubia G, Feener EP, Lee ME, Loeken MR, Shiba T, et al. Stimulation of endothelin-1 gene expression by insulin in endothelial cells. J Biol Chem. 1991;266:23251–6.PubMedGoogle Scholar
  7. 7.
    Eringa EC, Stehouwer CDA, van Nieuw Amerongen GP, Ouwehand L, Westerhof N, Sipkema P. Vasoconstrictor effects of insulin in skeletal muscle arterioles are mediated by ERK1/2 activation in endothelium. Am J Physiol Heart Circ Physiol. 2004;287:H2043–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Eringa EC, Stehouwer CDA, Merlijn T, Westerhof N, Sipkema P. Physiological concentrations of insulin induce endothelin-mediated vasoconstriction during inhibition of NOS or PI3-kinase in skeletal muscle arterioles. Cardiovasc Res. 2002;56:464–71.PubMedCrossRefGoogle Scholar
  9. 9.
    Li G, Barrett EJ, Ko S-H, Cao W, Liu Z. Insulin and insulin-like growth factor-I receptors differentially mediate insulin-stimulated adhesion molecule production by endothelial cells. Endocrinology. 2009;150:3475–82.PubMedCrossRefGoogle Scholar
  10. 10.
    Jiang ZY, Lin YW, Clemont A, Feener EP, Hein KD, Igarashi M, et al. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest. 1999;104:447–57.PubMedCrossRefGoogle Scholar
  11. 11.
    Eringa EC, Stehouwer CDA, Roos MH, Westerhof N, Sipkema P. Selective resistance to vasoactive effects of insulin in muscle resistance arteries of obese Zucker (fa/fa) rats. Am J Physiol Endocrinol Metab. 2007;293:E1134–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular actions of insulin. Endocr Rev. 2007;28:463–91.PubMedCrossRefGoogle Scholar
  13. 13.
    Montagnani M, Golovchenko I, Kim I, Koh GY, Goalstone ML, Mundhekar AN, et al. Inhibition of phosphatidylinositol 3-kinase enhances mitogenic actions of insulin in endothelial cells. J Biol Chem. 2002;277:1794–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Potenza MA, Marasciulo FL, Chieppa DM, Brigiani GS, Formoso G, Quon MJ, et al. Insulin resistance in spontaneously hypertensive rats is associated with endothelial dysfunction characterized by imbalance between NO and ET-1 production. Am J Physiol Heart Circ Physiol. 2005;289:H813–22.PubMedCrossRefGoogle Scholar
  15. 15.
    Eringa EC, Stehouwer CDA, Walburg K, Clark AD, van Nieuw Amerongen GP, Westerhof N, et al. Physiological concentrations of insulin induce endothelin-dependent vasoconstriction of skeletal muscle resistance arteries in the presence of tumor necrosis factor-α dependence on c-jun N-terminal kinase. Arterioscler Thromb Vasc Biol. 2006;26:274–80.PubMedCrossRefGoogle Scholar
  16. 16.
    Castillo C, Bogardus C, Bergman R, Thuillez P, Lillioja S. Interstitial insulin concentrations determine glucose uptake rates but not insulin resistance in lean and obese men. J Clin Invest. 1994;93:10–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Barrett EJ, Wang H, Upchurch CT, Liu Z. Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature. Am J Physiol Endocrinol Metab. 2011;301:E252–63.PubMedCrossRefGoogle Scholar
  18. 18.
    Barrett E, Eggleston E, Inyard A, Wang H, Li G, Chai W, et al. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia. 2009;52:752–64.PubMedCrossRefGoogle Scholar
  19. 19.
    Vincent MA, Clerk LH, Lindner JR, Klibanov AL, Clark MG, Rattigan S, et al. Microvascular recruitment is an early insulin effect that regulates skeletal muscle glucose uptake in vivo. Diabetes. 2004;53:1418–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Vincent MA, Barrett EJ, Lindner JR, Clark MG, Rattigan S. Inhibiting NOS blocks microvascular recruitment and blunts muscle glucose uptake in response to insulin. Am J Physiol Endocrinol Metab. 2003;285:E123–9.PubMedGoogle Scholar
  21. 21.
    Clerk LH, Vincent MA, Jahn LA, Liu Z, Lindner JR, Barrett EJ. Obesity blunts insulin-mediated microvascular recruitment in human forearm muscle. Diabetes. 2006;55:1436–42.PubMedCrossRefGoogle Scholar
  22. 22.
    Clerk LH, Rattigan S, Clark MG. Lipid infusion impairs physiologic insulin-mediated capillary recruitment and muscle glucose uptake in vivo. Diabetes. 2002;51:1138–45.PubMedCrossRefGoogle Scholar
  23. 23.
    Liu Z, Liu J, Jahn LA, Fowler DE, Barrett EJ. Infusing lipid raises plasma free fatty acids and induces insulin resistance in muscle microvasculature. J Clin Endocrinol Metab. 2009;94:3543–9.PubMedCrossRefGoogle Scholar
  24. 24.
    UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.CrossRefGoogle Scholar
  25. 25.
    Inyard AC, Clerk LH, Vincent MA, Barrett EJ. Contraction stimulates nitric oxide independent microvascular recruitment and increases muscle insulin uptake. Diabetes. 2007;56:2194–200.PubMedCrossRefGoogle Scholar
  26. 26.
    Chai W, Wang W, Dong Z, Cao W, Liu Z. Angiotensin II receptors modulate muscle microvascular and metabolic responses to insulin in vivo. Diabetes. 2011;60:2939–46.PubMedCrossRefGoogle Scholar
  27. 27.
    Chai W, Dong Z, Wang N, Wang W, Tao L, Cao W, et al. Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide-dependent mechanism. Diabetes. 2012;61:888–96.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Endocrinology and Metabolism, Department of MedicineUniversity of Virginia Health SystemCharlottesvilleUSA

Personalised recommendations