The endothelial cell: An “early responder” in the development of insulin resistance

Article

Abstract

Vascular endothelium is an important insulin target and plays a pivotal role in the development of metabolic insulin resistance provoked by the Western lifestyle. It acts as a “first-responder” to environmental stimuli such as nutrients, cytokines, chemokines and physical activity and regulates insulin delivery to muscle and adipose tissue and thereby affecting insulin-mediated glucose disposal by these tissues. In addition, it also regulates the delivery of insulin and other appetite regulating signals from peripheral tissues to the central nervous system thus influencing the activity of nuclei that regulate hepatic glucose production, adipose tissue lipolysis and lipogenesis, as well as food consumption. Resistance to insulin’s vascular actions therefore broadly impacts tissue function and contribute to metabolic dysregulation. Moreover, vascular insulin resistance negatively impacts vascular health by affecting blood pressure regulation, vessel wall inflammation and atherogenesis thereby contributing to the burden of vascular disease seen with diabetes and metabolic syndrome. In the current review, we examined the evidence that supports the general concept of vascular endothelium as a target of insulin action and discussed the biochemical and physiological consequences of vascular insulin resistance.

Keywords

Insulin transport Caveolae Micro-vasculature Inflammation Appetite regulation 

References

  1. 1.
    Corkey BE. Banting lecture 2011: Hyperinsulinemia: Cause or consequence? Diabetes. 2012;61:4–13.PubMedCrossRefGoogle Scholar
  2. 2.
    Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular Actions of Insulin. Endocr Rev 2007;28:463–91.Google Scholar
  3. 3.
    Gill JM, Al-Mamari A, Ferrell WR, Cleland SJ, Packard CJ, Sattar N, Petrie JR, Caslake MJ. Effects of prior moderate exercise on postprandial metabolism and vascular function in lean and centrally obese men. J Am Coll Cardiol. 2004;44:2375–82.PubMedCrossRefGoogle Scholar
  4. 4.
    Vincent MA, Clerk LH, Lindner JR, Price WJ, Jahn LA, Leong-Poi H, Barrett EJ. Mixed meal and light exercise each recruit muscle capillaries in healthy humans. Am J Physiol Endocrinol Metab. 2006;290:E1191–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Weiss EP, Arif H, Villareal DT, Marzetti E, Holloszy JO. Endothelial function after high-sugar-food ingestion improves with endurance exercise performed on the previous day. Am J Clin Nutr. 2008;88:51–7.PubMedGoogle Scholar
  6. 6.
    Steinberg HO, Tarshoby M, Monestel R, Hook G, Cronin J, Johnson A, Bayazeed B, Baron AD. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest. 1997;100:1230–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Steinberg HO, Paradisi G, Hook G, Crowder K, Cronin J, Baron AD. Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes. 2000;49:1231–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Tripathy D, Mohanty P, Dhindsa S, Syed T, Ghanim H, Aljada A, Dandona P. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes. 2003;52:2882–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation. 2000;102:2165–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Kim F, Gallis B, Corson MA. TNF-alpha inhibits flow and insulin signaling leading to NO production in aortic endothelial cells. Am J Physiol Cell Physiol. 2001;280:C1057–65.PubMedGoogle Scholar
  11. 11.
    Kim F, Pham M, Maloney E, Rizzo NO, Morton GJ, Wisse BE, Kirk EA, Chait A, Schwartz MW. Vascular inflammation, insulin resistance, and reduced nitric oxide production precede the onset of peripheral insulin resistance. Arterioscler Thromb Vasc Biol. 2008;28:1982–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Rattigan S, Clark MG, Barrett EJ. Acute insulin resistance in rat skeletal muscle in vivo induced by vasoconstriction. Diabetes. 1999;48:564–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Barrett EJ, Eggleston EM, Inyard AC, Wang H, Li G, Chai W, Liu Z. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia. 2009;52:752–64.PubMedCrossRefGoogle Scholar
  14. 14.
    Liu J, Jahn LA, Fowler DE, Barrett EJ, Cao W, Liu Z. Free fatty acids induce insulin resistance in both cardiac and skeletal muscle microvasculature in humans. J Clin Endocrinol Metab. 2011;96:438–46.PubMedCrossRefGoogle Scholar
  15. 15.
    Barrett EJ, Wang H, Upchurch CT, Liu Z. Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature. Am J Physiol Endocrinol Metab. 2011;301:E252–63.PubMedCrossRefGoogle Scholar
  16. 16.
    Porte Jr D, Baskin DG, Schwartz MW. Insulin signaling in the central nervous system: A critical role in metabolic homeostasis and disease from C. elegans to humans. Diabetes. 2005;54:1264–76.PubMedCrossRefGoogle Scholar
  17. 17.
    Banks WA, DiPalma CR, Farrell CL. Impaired transport of leptin across the blood–brain barrier in obesity. Peptides. 1999;20:1341–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Pocai A, Obici S, Schwartz GJ, Rossetti L. A brain-liver circuit regulates glucose homeostasis. Cell Metab. 2005;1:53–61.PubMedCrossRefGoogle Scholar
  19. 19.
    Scherer T, O’Hare J, Diggs-Andrews K, Schweiger M, Cheng B, Lindtner C, Zielinski E, Vempati P, Su K, Dighe S, Milsom T, Puchowicz M, Scheja L, Zechner R, Fisher SJ, Previs SF, Buettner C. Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 2011;13:183–94.PubMedCrossRefGoogle Scholar
  20. 20.
    Myers Jr MG, Olson DP. Central nervous system control of metabolism. Nature. 2012;491:357–63.PubMedCrossRefGoogle Scholar
  21. 21.
    Tsuchiya K, Tanaka J, Shuiqing Y, Welch CL, DePinho RA, Tabas I, Tall AR, Goldberg IJ, Accili D. FoxOs integrate pleiotropic actions of insulin in vascular endothelium to protect mice from atherosclerosis. Cell Metab. 2012;15:372–81.PubMedCrossRefGoogle Scholar
  22. 22.
    Rask-Madsen C, Li Q, Freund B, Feather D, Abramov R, Wu IH, Chen K, Yamamoto-Hiraoka J, Goldenbogen J, Sotiropoulos KB, Clermont A, Geraldes P, Dall’Osso C, Wagers AJ, Huang PL, Rekhter M, Scalia R, Kahn CR, King GL. Loss of insulin signaling in vascular endothelial cells accelerates atherosclerosis in apolipoprotein E null mice. Cell Metab. 2010;11:379–89.PubMedCrossRefGoogle Scholar
  23. 23.
    Jialal I, King GL, Buchwald S, Kahn CR, Crettaz M. Processing of insulin by bovine endothelial cells in culture. Internalization without degradation. Diabetes. 1984;33:794–800.PubMedCrossRefGoogle Scholar
  24. 24.
    Dernovsek KD, Bar RS, Ginsberg BH, Lioubin MN. Rapid transport of biologically intact insulin through cultured endothelial cells. J Clin Endocrinol Metab. 1984;58:761–3.PubMedCrossRefGoogle Scholar
  25. 25.
    Zeng G, Quon MJ. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest. 1996;98:894–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999;399:597–601.PubMedCrossRefGoogle Scholar
  27. 27.
    Chen YL, Messina EJ. Dilation of isolated skeletal muscle arterioles by insulin is endothelium dependent and nitric oxide mediated. Am J Physiol. 1996;270:H2120–4.PubMedGoogle Scholar
  28. 28.
    Oliver FJ, de la Rubia G, Feener EP, Lee ME, Loeken MR, Shiba T, Quertermous T, King GL. Stimulation of endothelin-1 gene expression by insulin in endothelial cells. J Biol Chem. 1991;266:23251–6.PubMedGoogle Scholar
  29. 29.
    Cardillo C, Nambi SS, Kilcoyne CM, Choucair WK, Katz A, Quon MJ, Panza JA. Insulin stimulates both endothelin and nitric oxide activity in the human forearm. Circulation. 1999;100:820–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Jiang ZY, Lin YW, Clemont A, Feener EP, Hein KD, Igarashi M, Yamauchi T, White MF, King GL. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest. 1999;104:447–57.PubMedCrossRefGoogle Scholar
  31. 31.
    Chisalita SI, Arnqvist HJ. Insulin-like growth factor I receptors are more abundant than insulin receptors in human micro- and macrovascular endothelial cells. Am J Physiol Endocrinol Metab. 2004;286:E896–901.PubMedCrossRefGoogle Scholar
  32. 32.
    Johansson GS, Chisalita SI, Arnqvist HJ. Human microvascular endothelial cells are sensitive to IGF-I but resistant to insulin at the receptor level. Mol Cell Endocrinol. 2008;296:58–63.PubMedCrossRefGoogle Scholar
  33. 33.
    Li G, Barrett EJ, Wang H, Chai W, Liu Z. Insulin at physiological concentrations selectively activates insulin but not insulin-like growth factor I (IGF-I) or insulin/IGF-I hybrid receptors in endothelial cells. Endocrinology. 2005;146:4690–6.PubMedCrossRefGoogle Scholar
  34. 34.
    Chi JT, Chang HY, Haraldsen G, Jahnsen FL, Troyanskaya OG, Chang DS, Wang Z, Rockson SG, van de Rijn M, Botstein D, Brown PO. Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci U S A. 2003;100:10623–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T, Inoue M, Itoh S, Takamoto I, Sasako T, Kumagai K, Kawai T, Hashimoto S, Kobayashi T, Sato M, Tokuyama K, Nishimura S, Tsunoda M, Ide T, Murakami K, Yamazaki T, Ezaki O, Kawamura K, Masuda H, Moroi M, Sugi K, Oike Y, Shimokawa H, Yanagihara N, Tsutsui M, Terauchi Y, Tobe K, Nagai R, Kamata K, Inoue K, Kodama T, Ueki K, Kadowaki T. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab. 2011;13:294–307.PubMedCrossRefGoogle Scholar
  36. 36.
    Zeng G, Nystrom FH, Ravichandran LV, Cong LN, Kirby M, Mostowski H, Quon MJ. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation. 2000;101:1539–45.PubMedCrossRefGoogle Scholar
  37. 37.
    Mount PF, Kemp BE, Power DA. Regulation of endothelial and myocardial NO synthesis by multi-site eNOS phosphorylation. J Mol Cell Cardiol. 2007;42:271–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Baron A. Hemodynamic actions of insulin. Am J Physiol. 1994;267:E187–202.PubMedGoogle Scholar
  39. 39.
    Shemyakin A, Salehzadeh F, Bohm F, Al-Khalili L, Gonon A, Wagner H, Efendic S, Krook A, Pernow J. Regulation of glucose uptake by endothelin-1 in human skeletal muscle in vivo and in vitro. J Clin Endocrinol Metab. 2010;95:2359–66.PubMedCrossRefGoogle Scholar
  40. 40.
    Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414:813–20.PubMedCrossRefGoogle Scholar
  41. 41.
    Du XL, Edelstein D, Dimmeler S, Ju Q, Sui C, Brownlee M. Hyperglycemia inhibits endothelial nitric oxide synthase activity by posttranslational modification at the Akt site. J Clin Invest. 2001;108:1341–8.PubMedGoogle Scholar
  42. 42.
    Ceriello A, Taboga C, Tonutti L, Quagliaro L, Piconi L, Bais B, Da Ros R, Motz E. Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: Effects of short- and long-term simvastatin treatment. Circulation. 2002;106:1211–18.PubMedCrossRefGoogle Scholar
  43. 43.
    Du X, Edelstein D, Obici S, Higham N, Zou MH, Brownlee M. Insulin resistance reduces arterial prostacyclin synthase and eNOS activities by increasing endothelial fatty acid oxidation. J Clin Invest. 2006;116:1071–80.PubMedCrossRefGoogle Scholar
  44. 44.
    Ghanim H, Abuaysheh S, Sia CL, Korzeniewski K, Chaudhuri A, Fernandez-Real JM, Dandona P. Increase in plasma endotoxin concentrations and the expression of Toll-like receptors and suppressor of cytokine signaling-3 in mononuclear cells after a high-fat, high-carbohydrate meal: Implications for insulin resistance. Diabetes Care. 2009;32:2281–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Hachiya HL, Takayama S, White MF, King GL. Regulation of insulin receptor internalization in vascular endothelial cells by insulin and phorbol ester. J Biol Chem. 1987;262:6417–24.PubMedGoogle Scholar
  46. 46.
    Dernovsek KD, Bar RS. Processing of cell-bound insulin by capillary and macrovascular endothelial cells in culture. Am J Physiol. 1985;248:E244–51.PubMedGoogle Scholar
  47. 47.
    Bar RS, Boes M, Sandra A. Vascular transport of insulin to rat cardiac muscle. Central role of the capillary endothelium. J Clin Invest. 1988;81:1225–33.PubMedCrossRefGoogle Scholar
  48. 48.
    King GL, Johnson SM. Receptor-mediated transport of insulin across endothelial cells. Science. 1985;227:1583–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Majumdar S, Genders A, Inyard A, Frison V, Barrett E. Insulin entry into muscle involves a saturable process in the vascular endothelium. Diabetologia. 2012;55:450–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Kaiyala KJ, Prigeon RL, Kahn SE, Woods SC, Schwartz MW. Obesity induced by a high-fat diet is associated with reduced brain insulin transport in dogs. Diabetes. 2000;49:1525–33.PubMedCrossRefGoogle Scholar
  51. 51.
    Minshall RD, Sessa WC, Stan RV, Anderson RG, Malik AB. Caveolin regulation of endothelial function. Am J Physiol Lung Cell Mol Physiol. 2003;285:L1179–83.PubMedGoogle Scholar
  52. 52.
    Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006;86:279–367.PubMedCrossRefGoogle Scholar
  53. 53.
    Wang H, Wang AX, Barrett EJ. Caveolin-1 is required for vascular endothelial insulin uptake. Am J Physiol Endocrinol Metab. 2011;300:E134–44.PubMedCrossRefGoogle Scholar
  54. 54.
    Wang H, Liu Z, Li G, Barrett EJ. The vascular endothelial cell mediates insulin transport into skeletal muscle. Am J Physiol Endocrinol Metab. 2006;291:E323–32.PubMedCrossRefGoogle Scholar
  55. 55.
    Wang H, Wang AX, Liu Z, Chai W, Barrett EJ. The trafficking/interaction of eNOS and caveolin-1 induced by insulin modulates endothelial nitric oxide production. Mol Endocrinol. 2009;23:1613–23.PubMedCrossRefGoogle Scholar
  56. 56.
    Wang H, Wang AX, Barrett EJ. Insulin-induced endothelial cell cortical actin filament remodeling: A requirement for trans-endothelial insulin transport. Mol Endocrinol. 2012;26:1327–38.PubMedCrossRefGoogle Scholar
  57. 57.
    Wang J, Obici S, Morgan K, Barzilai N, Feng Z, Rossetti L. Overfeeding rapidly induces leptin and insulin resistance. Diabetes. 2001;50:2786–91.PubMedCrossRefGoogle Scholar
  58. 58.
    Steinberg HO, Brechtel G, Johnson A, Fineberg F, Baron AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent: A novel action of insulin to increase nitric oxide release. J Clin Invest. 1994;94:1172–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Zhang L, Vincent MA, Richards SM, Clerk LH, Rattigan S, Clark MG, Barrett EJ. Insulin sensitivity of muscle capillary recruitment in vivo. Diabetes. 2004;53:447–53.PubMedCrossRefGoogle Scholar
  60. 60.
    Vincent MA, Dawson D, Clark AD, Lindner JR, Rattigan S, Clark MG, Barrett EJ. Skeletal muscle microvascular recruitment by physiological hyperinsulinemia precedes increases in total blood flow. Diabetes. 2002;51:42–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Sjøberg KA, Rattigan S, Hiscock N, Richter EA, Kiens B. A new method to study changes in microvascular blood volume in muscle and adipose tissue: Real-time imaging in humans and rat. Am J Physiol Heart Circ Physiol. 2011;301:H450–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Sherwin RS, Kramer KJ, Tobin JD, Insel PA, Liljenquist JE, Berman M, Andres R. A model of the kinetics of insulin in man. J Clin Invest. 1974;53:1481–92.PubMedCrossRefGoogle Scholar
  63. 63.
    Castillo C, Bogardus C, Bergman R, Thuillez P, Lillioja S. Interstitial insulin concentrations determine glucose uptake rates but not insulin resistance in lean and obese men. J Clin Invest. 1994;93:10–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Yang YJ, Hope I, Ader M, Poulin RA, Bergman RN. Dose–response relationship between lymph insulin and glucose uptake reveals enhanced insulin sensitivity of peripheral tissues. Diabetes. 1992;41:241–53.PubMedCrossRefGoogle Scholar
  65. 65.
    Jansson PA, Fowelin JP, von Schenck HP, Smith UP, Lonnroth PN. Measurement by microdialysis of the insulin concentration in subcutaneous interstitial fluid. Importance of the endothelial barrier for insulin. Diabetes. 1993;42:1469–73.PubMedCrossRefGoogle Scholar
  66. 66.
    Sjostrand M, Holmang A, Lonnroth P. Measurement of interstitial insulin in human muscle. Am J Physiol. 1999;276:E151–4.PubMedGoogle Scholar
  67. 67.
    Sjostrand M, Gudbjornsdottir S, Holmang A, Lonn L, Strindberg L, Lonnroth P. Delayed transcapillary transport of insulin to muscle interstitial fluid in obese subjects. Diabetes. 2002;51:2742–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, Cline GW, Befroy D, Zemany L, Kahn BB, Papademetris X, Rothman DL, Shulman GI. The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A. 2007;104:12587–94.PubMedCrossRefGoogle Scholar
  69. 69.
    Pardridge WM. Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab. 2012;32:1959–72.PubMedCrossRefGoogle Scholar
  70. 70.
    Obici S, Zhang BB, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nat Med. 2002;8:1376–82.PubMedCrossRefGoogle Scholar
  71. 71.
    Edgerton DS, Lautz M, Scott M, Everett CA, Stettler KM, Neal DW, Chu CA, Cherrington AD. Insulin’s direct effects on the liver dominate the control of hepatic glucose production. J Clin Invest. 2006;116:521–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Bruning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Muller-Wieland D, Kahn CR. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000;289:2122–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Barrett EJ, Eringa EC. The vascular contribution to insulin resistance: Promise, proof, and pitfalls. Diabetes. 2012;61:3063–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Endocrinology and Metabolism, Department of MedicineUniversity of Virginia School of MedicineCharlottesvilleUSA
  2. 2.University of Virginia Health SystemCharlottesvilleUSA

Personalised recommendations