Skip to main content

Advertisement

Log in

Inflammation, leukocytes and menstruation

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Menstruation has many of the features of an inflammatory process. The complexity and sequence of inflammatory-type events leading to the final tissue breakdown and bleeding are slowly being unravelled. Progesterone has anti-inflammatory properties, and its rapidly declining levels (along with those of estrogen) in the late secretory phase of each non-conception cycle, initiates a sequence of interdependent events of an inflammatory nature involving local inter-cellular interactions within the endometrium. Intracellular responses to loss of progesterone (in decidualized stromal, vascular and epithelial cells) lead to decreased prostaglandin metabolism and loss of protection from reactive oxygen species (ROS). Increased ROS results in release of NFκB from suppression with activation of target gene transcription and increased synthesis of pro-inflammatory prostaglandins, cytokines, chemokines and matrix metalloproteinases (MMP). The resultant leukocyte recruitment, with changing phenotypes and activation, provide further degradative enzymes and MMP activators, which together with a hypoxic environment induced by prostaglandin actions, lead to the tissue breakdown and bleeding characteristic of menstruation. In parallel, at sites where shedding is complete, microenvironmentally-induced changes in phenotypes of neutrophils and macrophages from pro- to anti-inflammatory, in addition to induction of growth factors, contribute to the very rapid re-epithelialization and restoration of tissue integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Finn CA. Implantation, menstruation and inflammation. Biol Rev Camb Philos Soc. 1986;61(4):313–28.

    Article  PubMed  CAS  Google Scholar 

  2. Henriet P, Gaide Chevronnay HP, Marbaix E. The endocrine and paracrine control of menstruation. Mol Cell Endocrinol. 2012;358(2):197–207.

    Article  PubMed  CAS  Google Scholar 

  3. Jabbour HN, Kelly RW, Fraser HM, Critchley HO. Endocrine regulation of menstruation. Endocr Rev. 2006;27(1):17–46.

    Article  PubMed  CAS  Google Scholar 

  4. Maybin JA, Critchley HO. Progesterone: a pivotal hormone at menstruation. Ann N Y Acad Sci. 2011;1221:88–97.

    Article  PubMed  CAS  Google Scholar 

  5. Salamonsen LA. Tissue injury and repair in the female human reproductive tract. Reproduction. 2003;125(3):301–11.

    Article  PubMed  CAS  Google Scholar 

  6. Salamonsen LA, Lathbury LJ. Endometrial leukocytes and menstruation. Hum Reprod Update. 2000;6(1):16–27.

    Article  PubMed  CAS  Google Scholar 

  7. Finn CA, Pope M. Vascular and cellular changes in the decidualized endometrium of the ovariectomized mouse following cessation of hormone treatment: a possible model for menstruation. J Endocrinol. 1984;100(3):295–300.

    Article  PubMed  CAS  Google Scholar 

  8. Brasted M, White CA, Kennedy TG, Salamonsen LA. Mimicking the events of menstruation in the murine uterus. Biol Reprod. 2003;69(4):1273–80.

    Article  PubMed  CAS  Google Scholar 

  9. Evans J, Kaitu’u-Lino T, Salamonsen LA. Extracellular matrix dynamics in scar-free endometrial repair: perspectives from mouse in vivo and human in vitro studies. Biol Reprod. 2011;85(3):511–23.

    Article  PubMed  CAS  Google Scholar 

  10. Kaitu’u TJ, Shen J, Zhang J, Morison NB, Salamonsen LA. Matrix metalloproteinases in endometrial breakdown and repair: functional significance in a mouse model. Biol Reprod. 2005;73(4):672–80.

    Article  PubMed  CAS  Google Scholar 

  11. Kaitu’u-Lino TJ, Morison NB, Salamonsen LA. Neutrophil depletion retards endometrial repair in a mouse model. Cell Tissue Res. 2007;328(1):197–206.

    Article  PubMed  Google Scholar 

  12. Kaitu’u-Lino TJ, Phillips DJ, Morison NB, Salamonsen LA. A new role for activin in endometrial repair after menses. Endocrinology. 2009;150(4):1904–11.

    Article  PubMed  CAS  Google Scholar 

  13. Cheng CW, Bielby H, Licence D, Smith SK, Print CG, Charnock-Jones DS. Quantitative cellular and molecular analysis of the effect of progesterone withdrawal in a murine model of decidualization. Biol Reprod. 2007;76(5):871–83.

    Article  PubMed  CAS  Google Scholar 

  14. Fan X, Ren P, Dhal S, Bejerano G, Goodman SB, Druzin ML, et al. Noninvasive monitoring of placenta-specific transgene expression by bioluminescence imaging. PLoS One. 2011;6(1):e16348.

    Article  PubMed  CAS  Google Scholar 

  15. Rudolph M, Docke WD, Muller A, Menning A, Rose L, Zollner TM, et al. Induction of overt menstruation in intact mice. PLoS One. 2012;7(3):e32922.

    Article  PubMed  CAS  Google Scholar 

  16. Maruyama T, Yoshimura Y. Molecular and cellular mechanisms for differentiation and regeneration of the uterine endometrium. Endocr J. 2008;55(5):795–810.

    Article  PubMed  CAS  Google Scholar 

  17. Slayden OD, Brenner RM. A critical period of progesterone withdrawal precedes menstruation in macaques. Reprod Biol Endocrinol. 2006;4 Suppl 1:S6.

    Article  PubMed  CAS  Google Scholar 

  18. Jones RL, Hannan NJ, Kaitu’u TJ, Zhang J, Salamonsen LA. Identification of chemokines important for leukocyte recruitment to the human endometrium at the times of embryo implantation and menstruation. J Clin Endocrinol Metab. 2004;89(12):6155–67.

    Article  PubMed  CAS  Google Scholar 

  19. Lydon JP, DeMayo FJ, Funk CR, Mani SK, Hughes AR, Montgomery Jr CA, et al. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 1995;9(18):2266–78.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang J, Hampton AL, Nie G, Salamonsen LA. Progesterone inhibits activation of latent matrix metalloproteinase (MMP)-2 by membrane-type 1 MMP: enzymes coordinately expressed in human endometrium. Biol Reprod. 2000;62(1):85–94.

    Article  PubMed  CAS  Google Scholar 

  21. Hampton AL, Nie G, Salamonsen LA. Progesterone analogues similarly modulate endometrial matrix metalloproteinase-1 and matrix metalloproteinase-3 and their inhibitor in a model for long-term contraceptive effects. Mol Hum Reprod. 1999;5(4):365–71.

    Article  PubMed  CAS  Google Scholar 

  22. Papp C, Schatz F, Krikun G, Hausknecht V, Lockwood CJ. Biological mechanisms underlying the clinical effects of mifepristone (RU 486) on the endometrium. Early Pregnancy. 2000;4(4):230–9.

    PubMed  CAS  Google Scholar 

  23. Fridovich I. Biological effects of the superoxide radical. Arch Biochem Biophys. 1986;247(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  24. Defrere S, Gonzalez-Ramos R, Lousse JC, Colette S, Donnez O, Donnez J, et al. Insights into iron and nuclear factor-kappa B (NF-kappaB) involvement in chronic inflammatory processes in peritoneal endometriosis. Histol Histopathol. 2011;26(8):1083–92.

    PubMed  CAS  Google Scholar 

  25. McDonald JR, Finck BK, McIntosh LM, Wilson SE. Anti-inflammatory approaches that target the chemokine network. Recent Pat Inflamm Allergy Drug Discov. 2011;5(1):1–16.

    Article  PubMed  CAS  Google Scholar 

  26. Bartz RR, Piantadosi CA. Clinical review: oxygen as a signaling molecule. Crit Care. 2010;14(5):234.

    Article  PubMed  Google Scholar 

  27. Sugino N. The role of oxygen radical-mediated signaling pathways in endometrial function. Placenta. 2007;28 Suppl A:S133–6.

    Article  PubMed  CAS  Google Scholar 

  28. Sugino N, Shimamura K, Takiguchi S, Tamura H, Ono M, Nakata M, et al. Changes in activity of superoxide dismutase in the human endometrium throughout the menstrual cycle and in early pregnancy. Hum Reprod. 1996;11(5):1073–8.

    Article  PubMed  CAS  Google Scholar 

  29. Sugino N, Karube-Harada A, Kashida S, Takiguchi S, Kato H. Differential regulation of copper-zinc superoxide dismutase and manganese superoxide dismutase by progesterone withdrawal in human endometrial stromal cells. Mol Hum Reprod. 2002;8(1):68–74.

    Article  PubMed  CAS  Google Scholar 

  30. Sugino N, Karube-Harada A, Sakata A, Takiguchi S, Kato H. Nuclear factor-kappa B is required for tumor necrosis factor-alpha-induced manganese superoxide dismutase expression in human endometrial stromal cells. J Clin Endocrinol Metab. 2002;87(8):3845–50.

    Article  PubMed  CAS  Google Scholar 

  31. Matsuoka A, Kizuka F, Lee L, Tamura I, Taniguchi K, Asada H, et al. Progesterone increases manganese superoxide dismutase expression via a cAMP-dependent signaling mediated by noncanonical Wnt5a pathway in human endometrial stromal cells. J Clin Endocrinol Metab. 2010;95(11):E291–9.

    Article  PubMed  Google Scholar 

  32. Tabibzadeh S. The signals and molecular pathways involved in human menstruation, a unique process of tissue destruction and remodelling. Mol Hum Reprod. 1996;2(2):77–92.

    Article  PubMed  CAS  Google Scholar 

  33. Sugino N, Telleria CM, Gibori G. Differential regulation of copper-zinc superoxide dismutase and manganese superoxide dismutase in the rat corpus luteum: induction of manganese superoxide dismutase messenger ribonucleic acid by inflammatory cytokines. Biol Reprod. 1998;59(1):208–15.

    Article  PubMed  CAS  Google Scholar 

  34. Li N, Karin M. Is NF-kappaB the sensor of oxidative stress? FASEB J. 1999;13(10):1137–43.

    PubMed  CAS  Google Scholar 

  35. Marshall HE, Merchant K, Stamler JS. Nitrosation and oxidation in the regulation of gene expression. FASEB J. 2000;14(13):1889–900.

    Article  PubMed  CAS  Google Scholar 

  36. Buhimschi IA, Kramer WB, Buhimschi CS, Thompson LP, Weiner CP. Reduction-oxidation (redox) state regulation of matrix metalloproteinase activity in human fetal membranes. Am J Obstet Gynecol. 2000;182(2):458–64.

    Article  PubMed  CAS  Google Scholar 

  37. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 1991;10(8):2247–58.

    PubMed  CAS  Google Scholar 

  38. Meyer M, Schreck R, Baeuerle PA. H2O2 and antioxidants have opposite effects on activation of NF-kappa B and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J. 1993;12(5):2005–15.

    PubMed  CAS  Google Scholar 

  39. Gloire G, Legrand-Poels S, Piette J. NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol. 2006;72(11):1493–505.

    Article  PubMed  CAS  Google Scholar 

  40. Sugino N, Karube-Harada A, Taketani T, Sakata A, Nakamura Y. Withdrawal of ovarian steroids stimulates prostaglandin F2alpha production through nuclear factor-kappaB activation via oxygen radicals in human endometrial stromal cells: potential relevance to menstruation. J Reprod Dev. 2004;50(2):215–25.

    Article  PubMed  CAS  Google Scholar 

  41. Lockwood CJ. Mechanisms of normal and abnormal endometrial bleeding. Menopause. 2011;18(4):408–11.

    Article  PubMed  Google Scholar 

  42. Tan H, Yi L, Rote NS, Hurd WW, Mesiano S. Progesterone receptor-A and -B have opposite effects on proinflammatory gene expression in human myometrial cells: implications for progesterone actions in human pregnancy and parturition. J Clin Endocrinol Metab. 2012;97(5):E719–30.

    Article  PubMed  CAS  Google Scholar 

  43. Hardy DB, Janowski BA, Corey DR, Mendelson CR. Progesterone receptor plays a major antiinflammatory role in human myometrial cells by antagonism of nuclear factor-kappaB activation of cyclooxygenase 2 expression. Mol Endocrinol. 2006;20(11):2724–33.

    Article  PubMed  CAS  Google Scholar 

  44. van der Burg B, van der Saag PT. Nuclear factor-kappa-B/steroid hormone receptor interactions as a functional basis of anti-inflammatory action of steroids in reproductive organs. Mol Hum Reprod. 1996;2(6):433–8.

    Article  PubMed  Google Scholar 

  45. Zhang JJ, Xu ZM, Zhang CM, Dai HY, Ji XQ, Wang XF, et al. Pyrrolidine dithiocarbamate inhibits nuclear factor-kappaB pathway activation, and regulates adhesion, migration, invasion and apoptosis of endometriotic stromal cells. Mol Hum Reprod. 2011;17(3):175–81.

    Article  PubMed  CAS  Google Scholar 

  46. Schoonbroodt S, Piette J. Oxidative stress interference with the nuclear factor-kappa B activation pathways. Biochem Pharmacol. 2000;60(8):1075–83.

    Article  PubMed  CAS  Google Scholar 

  47. Karin M, Delhase M. The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol. 2000;12(1):85–98.

    Article  PubMed  CAS  Google Scholar 

  48. Ilad RS, Fleming SD, Murphy CR, Fazleabas AT. Immunohistochemical study of the ubiquitin-nuclear factor-kB pathway in the endometrium of the baboon (Papio anubis) with and without endometriosis. Reprod Fertil Dev. 2010;22(7):1118–30.

    Article  PubMed  CAS  Google Scholar 

  49. Li YF, Xu XB, Chen XH, Wei G, He B, Wang JD. The nuclear factor-kappaB pathway is involved in matrix metalloproteinase-9 expression in RU486-induced endometrium breakdown in mice. Hum Reprod. 2012;27(7):2096–106.

    Article  PubMed  CAS  Google Scholar 

  50. Lappas M, Permezel M, Georgiou HM, Rice GE. Nuclear factor kappa B regulation of proinflammatory cytokines in human gestational tissues in vitro. Biol Reprod. 2002;67(2):668–73.

    Article  PubMed  CAS  Google Scholar 

  51. Tian B, Brasier AR. Identification of a nuclear factor kappa B-dependent gene network. Recent Prog Horm Res. 2003;58:95–130.

    Article  PubMed  CAS  Google Scholar 

  52. Blackwell TS, Christman JW. The role of nuclear factor-kappa B in cytokine gene regulation. Am J Respir Cell Mol Biol. 1997;17(1):3–9.

    PubMed  CAS  Google Scholar 

  53. Hapangama DK, Critchley HO, Henderson TA, Baird DT. Mifepristone-induced vaginal bleeding is associated with increased immunostaining for cyclooxygenase-2 and decrease in prostaglandin dehydrogenase in luteal phase endometrium. J Clin Endocrinol Metab. 2002;87(11):5229–34.

    Article  PubMed  CAS  Google Scholar 

  54. Cheng L, Kelly RW, Thong KJ, Hume R, Baird DT. The effect of mifepristone (RU486) on the immunohistochemical distribution of prostaglandin E and its metabolite in decidual and chorionic tissue in early pregnancy. J Clin Endocrinol Metab. 1993;77(3):873–7.

    Article  PubMed  CAS  Google Scholar 

  55. Cheng L, Kelly RW, Thong KJ, Hume R, Baird DT. The effects of mifepristone (RU486) on prostaglandin dehydrogenase in decidual and chorionic tissue in early pregnancy. Hum Reprod. 1993;8(5):705–9.

    PubMed  CAS  Google Scholar 

  56. Catalano RD, Critchley HO, Heikinheimo O, Baird DT, Hapangama D, Sherwin JR, et al. Mifepristone induced progesterone withdrawal reveals novel regulatory pathways in human endometrium. Mol Hum Reprod. 2007;13(9):641–54.

    Article  PubMed  CAS  Google Scholar 

  57. Wymann MP, Schneiter R. Lipid signalling in disease. Nat Rev Mol Cell Biol. 2008;9(2):162–76.

    Article  PubMed  CAS  Google Scholar 

  58. Jones RL, Kelly RW, Critchley HO. Chemokine and cyclooxygenase-2 expression in human endometrium coincides with leukocyte accumulation. Hum Reprod. 1997;12(6):1300–6.

    Article  PubMed  CAS  Google Scholar 

  59. Baird DT, Cameron ST, Critchley HO, Drudy TA, Howe A, Jones RL, et al. Prostaglandins and menstruation. Eur J Obstet Gynecol Reprod Biol. 1996;70(1):15–7.

    Article  PubMed  CAS  Google Scholar 

  60. Catalano RD, Wilson MR, Boddy SC, Jabbour HN. Comprehensive expression analysis of prostanoid enzymes and receptors in the human endometrium across the menstrual cycle. Mol Hum Reprod. 2011;17(3):182–92.

    Article  PubMed  CAS  Google Scholar 

  61. King AE, Critchley HO. Oestrogen and progesterone regulation of inflammatory processes in the human endometrium. J Steroid Biochem Mol Biol. 2010;120(2–3):116–26.

    Article  PubMed  CAS  Google Scholar 

  62. Battersby S, Critchley HO, de Brum-Fernandes AJ, Jabbour HN. Temporal expression and signalling of prostacyclin receptor in the human endometrium across the menstrual cycle. Reproduction. 2004;127(1):79–86.

    Article  PubMed  CAS  Google Scholar 

  63. Christiaens I, Zaragoza DB, Guilbert L, Robertson SA, Mitchell BF, Olson DM. Inflammatory processes in preterm and term parturition. J Reprod Immunol. 2008;79(1):50–7.

    Article  PubMed  CAS  Google Scholar 

  64. Hutchinson JL, Rajagopal SP, Sales KJ, Jabbour HN. Molecular regulators of resolution of inflammation: potential therapeutic targets in the reproductive system. Reproduction. 2011;142(1):15–28.

    Article  PubMed  CAS  Google Scholar 

  65. Abu JI, Konje JC. Leukotrienes in gynaecology: the hypothetical value of anti-leukotriene therapy in dysmenorrhoea and endometriosis. Hum Reprod Update. 2000;6(2):200–5.

    Article  PubMed  CAS  Google Scholar 

  66. Noguchi K, Okubo M. Leukotrienes in nociceptive pathway and neuropathic/inflammatory pain. Biol Pharm Bull. 2011;34(8):1163–9.

    Article  PubMed  CAS  Google Scholar 

  67. Fan X, Krieg S, Kuo CJ, Wiegand SJ, Rabinovitch M, Druzin ML, et al. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium. FASEB J. 2008;22(10):3571–80.

    Article  PubMed  CAS  Google Scholar 

  68. Jabbour HN, Sales KJ. Prostaglandin receptor signalling and function in human endometrial pathology. Trends Endocrinol Metab. 2004;15(8):398–404.

    PubMed  CAS  Google Scholar 

  69. Colditz IG. Effect of exogenous prostaglandin E2 and actinomycin D on plasma leakage induced by neutrophil-activating peptide-1/interleukin-8. Immunol Cell Biol. 1990;68(Pt 6):397–403.

    Article  PubMed  CAS  Google Scholar 

  70. Critchley HO, Osei J, Henderson TA, Boswell L, Sales KJ, Jabbour HN, et al. Hypoxia-inducible factor-1alpha expression in human endometrium and its regulation by prostaglandin E-series prostanoid receptor 2 (EP2). Endocrinology. 2006;147(2):744–53.

    Article  PubMed  CAS  Google Scholar 

  71. Liu XH, Kirschenbaum A, Lu M, Yao S, Dosoretz A, Holland JF, et al. Prostaglandin E2 induces hypoxia-inducible factor-1alpha stabilization and nuclear localization in a human prostate cancer cell line. J Biol Chem. 2002;277(51):50081–6.

    Article  PubMed  CAS  Google Scholar 

  72. Maybin JA, Critchley HO, Jabbour HN. Inflammatory pathways in endometrial disorders. Mol Cell Endocrinol. 2011;335(1):42–51.

    Article  PubMed  CAS  Google Scholar 

  73. Lumsden MA, Kelly RW, Baird DT. Primary dysmenorrhoea: the importance of both prostaglandins E2 and F2 alpha. Br J Obstet Gynaecol. 1983;90(12):1135–40.

    Article  PubMed  CAS  Google Scholar 

  74. Lumsden MA, Kelly RW, Baird DT. Is prostaglandin F2 alpha involved in the increased myometrial contractility of primary dysmenorrhoea? Prostaglandins. 1983;25(5):683–92.

    Article  PubMed  CAS  Google Scholar 

  75. Bley KR, Hunter JC, Eglen RM, Smith JA. The role of IP prostanoid receptors in inflammatory pain. Trends Pharmacol Sci. 1998;19(4):141–7.

    Article  PubMed  CAS  Google Scholar 

  76. Chantler I, Mitchell D, Fuller A. The effect of three cyclo-oxygenase inhibitors on intensity of primary dysmenorrheic pain. Clin J Pain. 2008;24(1):39–44.

    Article  PubMed  Google Scholar 

  77. Bitner M, Kattenhorn J, Hatfield C, Gao J, Kellstein D. Efficacy and tolerability of lumiracoxib in the treatment of primary dysmenorrhoea. Int J Clin Pract. 2004;58(4):340–5.

    Article  PubMed  CAS  Google Scholar 

  78. Maybin JA, Hirani N, Jabbour HN, Critchley HO. Novel roles for hypoxia and prostaglandin E2 in the regulation of IL-8 during endometrial repair. Am J Pathol. 2011;178(3):1245–56.

    Article  PubMed  CAS  Google Scholar 

  79. Wallace AE, Sales KJ, Catalano RD, Anderson RA, Williams AR, Wilson MR, et al. Prostaglandin F2alpha-F-prostanoid receptor signaling promotes neutrophil chemotaxis via chemokine (C-X-C motif) ligand 1 in endometrial adenocarcinoma. Cancer Res. 2009;69(14):5726–33.

    Article  PubMed  CAS  Google Scholar 

  80. Maybin JA, Battersby S, Hirani N, Nikitenko LL, Critchley HO, Jabbour HN. The expression and regulation of adrenomedullin in the human endometrium: a candidate for endometrial repair. Endocrinology. 2011;152(7):2845–56.

    Article  PubMed  CAS  Google Scholar 

  81. Maybin JA, Hirani N, Brown P, Jabbour HN, Critchley HO. The regulation of vascular endothelial growth factor by hypoxia and prostaglandin F(2)alpha during human endometrial repair. J Clin Endocrinol Metab. 2011;96(8):2475–83.

    Article  PubMed  CAS  Google Scholar 

  82. Maybin JA, Barcroft J, Thiruchelvam U, Hirani N, Jabbour HN, Critchley HO. The presence and regulation of connective tissue growth factor in the human endometrium. Hum Reprod. 2012;27(4):1112–21.

    Article  PubMed  CAS  Google Scholar 

  83. Li HZ, Sun X, Stavreus-Evers A, Gemzell-Danielsson K. Effect of mifepristone on the expression of cytokines in the human Fallopian tube. Mol Hum Reprod. 2004;10(7):489–93.

    Article  PubMed  CAS  Google Scholar 

  84. Shynlova O, Tsui P, Dorogin A, Lye SJ. Monocyte chemoattractant protein-1 (CCL-2) integrates mechanical and endocrine signals that mediate term and preterm labor. J Immunol. 2008;181(2):1470–9.

    PubMed  CAS  Google Scholar 

  85. Milne SA, Critchley HO, Drudy TA, Kelly RW, Baird DT. Perivascular interleukin-8 messenger ribonucleic acid expression in human endometrium varies across the menstrual cycle and in early pregnancy decidua. J Clin Endocrinol Metab. 1999;84(7):2563–7.

    Article  PubMed  CAS  Google Scholar 

  86. Tamura I, Taketani T, Lee L, Kizuka F, Taniguchi K, Maekawa R, et al. Differential effects of progesterone on COX-2 and Mn-SOD expressions are associated with histone acetylation status of the promoter region in human endometrial stromal cells. J Clin Endocrinol Metab. 2011;96(7):E1073–82.

    Article  PubMed  Google Scholar 

  87. Arici A, Seli E, Senturk LM, Gutierrez LS, Oral E, Taylor HS. Interleukin-8 in the human endometrium. J Clin Endocrinol Metab. 1998;83(5):1783–7.

    Article  PubMed  CAS  Google Scholar 

  88. Jolicoeur C, Boutouil M, Drouin R, Paradis I, Lemay A, Akoum A. Increased expression of monocyte chemotactic protein-1 in the endometrium of women with endometriosis. Am J Pathol. 1998;152(1):125–33.

    PubMed  CAS  Google Scholar 

  89. Hannan NJ, Jones RL, Critchley HO, Kovacs GJ, Rogers PA, Affandi B, et al. Coexpression of fractalkine and its receptor in normal human endometrium and in endometrium from users of progestin-only contraception supports a role for fractalkine in leukocyte recruitment and endometrial remodeling. J Clin Endocrinol Metab. 2004;89(12):6119–29.

    Article  PubMed  CAS  Google Scholar 

  90. Higgins DF, Biju MP, Akai Y, Wutz A, Johnson RS, Haase VH. Hypoxic induction of Ctgf is directly mediated by Hif-1. Am J Physiol Renal Physiol. 2004;287(6):F1223–32.

    Article  PubMed  CAS  Google Scholar 

  91. Fukuda R, Kelly B, Semenza GL. Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Res. 2003;63(9):2330–4.

    PubMed  CAS  Google Scholar 

  92. Salamonsen LA, Woolley DE. Menstruation: induction by matrix metalloproteinases and inflammatory cells. J Reprod Immunol. 1999;44(1–2):1–27.

    Article  PubMed  CAS  Google Scholar 

  93. Manaster I, Mizrahi S, Goldman-Wohl D, Sela HY, Stern-Ginossar N, Lankry D, et al. Endometrial NK cells are special immature cells that await pregnancy. J Immunol. 2008;181(3):1869–76.

    PubMed  CAS  Google Scholar 

  94. King A, Wellings V, Gardner L, Loke YW. Immunocytochemical characterization of the unusual large granular lymphocytes in human endometrium throughout the menstrual cycle. Hum Immunol. 1989;24(3):195–205.

    Article  PubMed  CAS  Google Scholar 

  95. van den Heuvel MJ, Chantakru S, Xuemei X, Evans SS, Tekpetey F, Mote PA, et al. Trafficking of circulating pro-NK cells to the decidualizing uterus: regulatory mechanisms in the mouse and human. Immunol Invest. 2005;34(3):273–93.

    Article  PubMed  CAS  Google Scholar 

  96. Laskarin G, Strbo N, Sotosek V, Rukavina D, Faust Z, Szekeres-Bartho J, et al. Progesterone directly and indirectly affects perforin expression in cytolytic cells. Am J Reprod Immunol. 1999;42(5):312–20.

    Article  PubMed  CAS  Google Scholar 

  97. Zhou F, Chen XY, Zhuang YL, Chen YZ, Huang LL. Low-dose mifepristone increases uterine natural killer cell cytotoxicity and perforin expression during the receptive phase. Fertil Steril. 2011;96(3):649–53.

    Article  PubMed  CAS  Google Scholar 

  98. Guo W, Li P, Zhao G, Fan H, Hu Y, Hou Y. Glucocorticoid receptor mediates the effect of progesterone on uterine natural killer cells. Am J Reprod Immunol. 2012;67(6):463–73.

    Article  PubMed  CAS  Google Scholar 

  99. Jeziorska M, Salamonsen LA, Woolley DE. Mast cell and eosinophil distribution and activation in human endometrium throughout the menstrual cycle. Biol Reprod. 1995;53(2):312–20.

    Article  PubMed  CAS  Google Scholar 

  100. Caughey GH. Mast cell proteases as protective and inflammatory mediators. Adv Exp Med Biol. 2011;716:212–34.

    Article  PubMed  CAS  Google Scholar 

  101. Baram D, Vaday GG, Salamon P, Drucker I, Hershkoviz R, Mekori YA. Human mast cells release metalloproteinase-9 on contact with activated T cells: juxtacrine regulation by TNF-alpha. J Immunol. 2001;167(7):4008–16.

    PubMed  CAS  Google Scholar 

  102. Fang KC, Wolters PJ, Steinhoff M, Bidgol A, Blount JL, Caughey GH. Mast cell expression of gelatinases A and B is regulated by kit ligand and TGF-beta. J Immunol. 1999;162(9):5528–35.

    PubMed  CAS  Google Scholar 

  103. Soehnlein O, Zernecke A, Weber C. Neutrophils launch monocyte extravasation by release of granule proteins. Thromb Haemost. 2009;102(2):198–205.

    PubMed  CAS  Google Scholar 

  104. Hannan NJ, Paiva P, Meehan KL, Rombauts LJ, Gardner DK, Salamonsen LA. Analysis of fertility-related soluble mediators in human uterine fluid identifies VEGF as a key regulator of embryo implantation. Endocrinology. 2011;152(12):4948–56.

    Article  PubMed  CAS  Google Scholar 

  105. Tremellen KP, Russell P. The distribution of immune cells and macrophages in the endometrium of women with recurrent reproductive failure. II: adenomyosis and macrophages. J Reprod Immunol. 2012;93(1):58–63.

    Article  PubMed  CAS  Google Scholar 

  106. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69.

    Article  PubMed  CAS  Google Scholar 

  107. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11(11):723–37.

    Article  PubMed  CAS  Google Scholar 

  108. Nathan C, Ding A. Nonresolving inflammation. Cell. 2010;140(6):871–82.

    Article  PubMed  CAS  Google Scholar 

  109. Degrossoli A, Giorgio S. Functional alterations in macrophages after hypoxia selection. Exp Biol Med. 2007;232(1):88–95.

    CAS  Google Scholar 

  110. Kita H. Eosinophils: multifaceted biological properties and roles in health and disease. Immunol Rev. 2011;242(1):161–77.

    Article  PubMed  CAS  Google Scholar 

  111. Zhang J, Salamonsen LA. In vivo evidence for active matrix metalloproteinases in human endometrium supports their role in tissue breakdown at menstruation. J Clin Endocrinol Metab. 2002;87(5):2346–51.

    Article  PubMed  CAS  Google Scholar 

  112. Vincent AJ, Zhang J, Ostor A, Rogers PA, Affandi B, Kovacs G, et al. Matrix metalloproteinase-1 and -3 and mast cells are present in the endometrium of women using progestin-only contraceptives. Hum Reprod. 2000;15(1):123–30.

    Article  PubMed  CAS  Google Scholar 

  113. Gaide Chevronnay HP, Selvais C, Emonard H, Galant C, Marbaix E, Henriet P. Regulation of matrix metalloproteinases activity studied in human endometrium as a paradigm of cyclic tissue breakdown and regeneration. Biochim Biophys Acta. 2012;1824(1):146–56.

    Article  PubMed  CAS  Google Scholar 

  114. Marbaix E, Kokorine I, Moulin P, Donnez J, Eeckhout Y, Courtoy PJ. Menstrual breakdown of human endometrium can be mimicked in vitro and is selectively and reversibly blocked by inhibitors of matrix metalloproteinases. Proc Natl Acad Sci U S A. 1996;93(17):9120–5.

    Article  PubMed  CAS  Google Scholar 

  115. Zhang J, Salamonsen LA. Tissue inhibitor of metalloproteinases (TIMP)-1, -2 and -3 in human endometrium during the menstrual cycle. Mol Hum Reprod. 1997;3(9):735–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratory is supported by the National Health and Medical Research Council of Australia; Program grant #494802, Fellowship grant #1002028, and by the Victorian Government’s Operational Infrastructure Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lois A. Salamonsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, J., Salamonsen, L.A. Inflammation, leukocytes and menstruation. Rev Endocr Metab Disord 13, 277–288 (2012). https://doi.org/10.1007/s11154-012-9223-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-012-9223-7

Keywords

Navigation