Skip to main content

Advertisement

Log in

Adrenal changes associated with adrenarche

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

The mechanisms causing the rise in adrenal androgen production during the course of adrenarche remain to be defined. However, the increase in steroid release is clearly associated with a series of intra-adrenal changes in the expression of steroidogenic enzymes needed for dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS) production, as well as an expansion of the adrenal zona reticularis (ZR). We and others have defined the adrenal expression pattern of key steroidogenic enzymes during adrenarche. As adrenarche proceeds, the expanding ZR expresses greater levels of cytochrome b5 (CYB5) and steroid sulfotransferase (SULT2A1) than the adjacent fasciculata. In contrast, the growing ZR is deficient in 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2). The resulting profile of steroidogenic enzymes lends itself to the production of adrenal androgens and appears to track the progression of adrenarche. This article reviews the intra-adrenal changes of the adrenal cortex associated with adrenarche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. de Peretti E, Forest MG. Unconjugated dehydroepiandrosterone plasma levels in normal subjects from birth to adolescence in human: the use of a sensitive radioimmunoassay. J Clin Endocrinol Metab. 1976;43:982–91.

    PubMed  Google Scholar 

  2. Parker LN. Adrenarche. Endocrinol Metab Clin North Am. 1991;20:71–83.

    PubMed  CAS  Google Scholar 

  3. Hopper BR, Yen SS. Circulating concentrations of dehydroepiandrosterone and dehydroepiandrosterone sulfate during puberty. J Clin Endocrinol Metab. 1975;40:458–61.

    PubMed  CAS  Google Scholar 

  4. Cutler GB Jr, Loriaux DL. Andrenarche and its relationship to the onset of puberty. Fed Proc. 1980;39:2384–90.

    PubMed  CAS  Google Scholar 

  5. Ibáñez L, Dimartino-Nardi J, Potau N, Saenger P. Premature adrenarche—normal variant or forerunner of adult disease? Endocr Rev. 2000;21:671–96. doi:10.1210/er.21.6.671.

    Article  PubMed  Google Scholar 

  6. Papadimas J. Adrenarche. Ann NY Acad Sci. 1997;816:57–9. doi:10.1111/j.1749-6632.1997.tb52129.x.

  7. Zemel BS, Katz SH. The contribution of adrenal and gonadal androgens to the growth in height of adolescent males. Am J Phys Anthropol. 1986;71:459–66. doi:10.1002/ajpa.1330710409.

    Article  PubMed  CAS  Google Scholar 

  8. Largo RH. Catch-up growth during adolescence. Horm Res. 1993;39(Suppl 3):41–8.

    Article  PubMed  Google Scholar 

  9. Voutilainen R, Perheentupa J, Apter D. Benign premature adrenarche: clinical features and serum steroid levels. Acta Paediatr Scand. 1983;72:707–11.

    Article  PubMed  CAS  Google Scholar 

  10. Korth-Schutz S, Levine LS, New MI. Serum androgens in normal prepubertal and pubertal children and in children with precocious adrenarche. J Clin Endocrinol Metab. 1976;42:117–24.

    PubMed  CAS  Google Scholar 

  11. Ilondo MM, Vanderschueren-Lodeweyckx M, Vlietinck R, Pizarro M, Malvaux P, Eggermont E, et al. Plasma androgens in children and adolescents. Part II. A longitudinal study in patients with hypopituitarism. Horm Res. 1982;16:78–95.

    Article  PubMed  CAS  Google Scholar 

  12. Sizonenko PC, Paunier L. Hormonal changes in puberty III: correlation of plasma dehydroepiandrosterone, testosterone, FSH, and LH with stages of puberty and bone age in normal boys and girls and in patients with Addison’s disease or hypogonadism or with premature or late adrenarche. J Clin Endocrinol Metab. 1975;41:894–904.

    PubMed  CAS  Google Scholar 

  13. Katz SH, Hediger ML, Zemel BS, Parks JS. Adrenal androgens, body fat and advanced skeletal age in puberty: new evidence for the relations of adrenarche and gonadarche in males. Hum Biol. 1985;57:401–13.

    PubMed  CAS  Google Scholar 

  14. Herman-Giddens ME, Slora EJ, Wasserman RC, Bourdony CJ, Bhapkar MV, Koch GG, et al. Secondary sexual characteristics and menses in young girls seen in office practice: a study from the Pediatric Research in Office Settings network. Pediatrics. 1997;99:505–12. doi:10.1542/peds.99.4.505.

    Article  PubMed  CAS  Google Scholar 

  15. Sklar CA, Kaplan SL, Grumbach MM. Evidence for dissociation between adrenarche and gonadarche: studies in patients with idiopathic precocious puberty, gonadal dysgenesis, isolated gonadotropin deficiency, and constitutionally delayed growth and adolescence. J Clin Endocrinol Metab. 1980;51:548–56.

    PubMed  CAS  Google Scholar 

  16. Genazzani AR, Facchinetti F, Petraglia F, Pintor C, Bagnoli F, Puggioni R, et al. Correlations between plasma levels of opioid peptides and adrenal androgens in prepuberty and puberty. J Steroid Biochem. 1983;19:891–5.

    Article  PubMed  CAS  Google Scholar 

  17. Genazzani AR, Facchinetti F, Pintor C, Puggioni R, Parrini D, Petraglia F, et al. Proopiocortin-related peptide plasma levels throughout prepuberty and puberty. J Clin Endocrinol Metab. 1983;57:56–61.

    PubMed  CAS  Google Scholar 

  18. Biason-Lauber A, Zachmann M, Schoenle EJ. Effect of leptin on CYP17 enzymatic activities in human adrenal cells: new insight in the onset of adrenarche. Endocrinology. 2000;141:1446–54. doi:10.1210/en.141.4.1446.

    Article  PubMed  CAS  Google Scholar 

  19. Parker LN, Lifrak ET, Ramadan MB, Lai MK. Aging and the human zona reticularis. Arch Androl. 1983;10:17–20. doi:10.3109/01485018308990164.

    Article  PubMed  CAS  Google Scholar 

  20. Auchus RJ, Rainey WE. Adrenarche—physiology, biochemistry and human disease. Clin Endocrinol (Oxf). 2004;60:288–96. doi:10.1046/j.1365-2265.2003.01858.x.

    Article  CAS  Google Scholar 

  21. Havelock JC, Auchus RJ, Rainey WE. The rise in adrenal androgen biosynthesis: adrenarche. Semin Reprod Med. 2004;22:337–47. doi:10.1055/s-2004-861550.

    Article  PubMed  CAS  Google Scholar 

  22. Dhom G. The prepuberal and puberal growth of the adrenal (adrenarche). Beitr Pathol. 1973;150:357–77.

    PubMed  CAS  Google Scholar 

  23. Nguyen AD, Conley AJ. Adrenal androgens in humans and nonhuman primates: production, zonation and regulation. Endocr Dev. 2008;13:33–54. doi:10.1159/000134765.

    Article  PubMed  CAS  Google Scholar 

  24. Gell JS, Carr BR, Sasano H, Atkins B, Margraf L, Mason JI, et al. Adrenarche results from development of a 3beta-hydroxysteroid dehydrogenase-deficient adrenal reticularis. J Clin Endocrinol Metab. 1998;83:3695–701. doi:10.1210/jc.83.10.3695.

    Article  PubMed  CAS  Google Scholar 

  25. Gell JS, Atkins B, Margraf L, Mason JI, Sasano H, Rainey WE, et al. Adrenarche is associated with decreased 3 beta-hydroxysteroid dehydrogenase expression in the adrenal reticularis. Endocr Res. 1996;22:723–8.

    PubMed  CAS  Google Scholar 

  26. Cutler GB Jr, Glenn M, Bush M, Hodgen GD, Graham CE, Loriaux DL. Adrenarche: a survey of rodents, domestic animals, and primates. Endocrinology. 1978;103:2112–8.

    PubMed  CAS  Google Scholar 

  27. Smail PJ, Faiman C, Hobson WC, Fuller GB, Winter JS. Further studies on adrenarche in nonhuman primates. Endocrinology. 1982;111:844–8.

    PubMed  CAS  Google Scholar 

  28. Conley AJ, Pattison JC, Bird IM. Variations in adrenal androgen production among (nonhuman) primates. Semin Reprod Med. 2004;22:311–26. doi:10.1055/s-2004-861548.

    Article  PubMed  CAS  Google Scholar 

  29. Winter JS, Faiman C, Hobson WC, Reyes FI. The endocrine basis of sexual development in the chimpanzee. J Reprod Fertil Suppl 1980;;(Suppl 28):131–8.

    Google Scholar 

  30. Copeland KC, Eichberg JW, Parker CR Jr, Bartke A. Puberty in the chimpanzee: somatomedin-C and its relationship to somatic growth and steroid hormone concentrations. J Clin Endocrinol Metab. 1985;60:1154–60.

    PubMed  CAS  Google Scholar 

  31. Schiebinger RJ, Albertson BD, Barnes KM, Cutler GB Jr, Loriaux DL. Developmental changes in rabbit and dog adrenal function: a possible homologue of adrenarche in the dog. Am J Physiol. 1981;240:E694–9.

    PubMed  CAS  Google Scholar 

  32. Lack EE, Kozakewich HPW. Embryology, developmental anatomy, and selected aspects of non-neoplastic pathology. In: Lack EE, editor. Pathology of the adrenal glands. New York: Churchill Livingstone; 1990. p. 1–74.

    Google Scholar 

  33. Neville AM, O'Hare MJ. Functional activity of the adrenal cortex. The human adrenal cortex. New York: Springer; 198268–98.

    Google Scholar 

  34. Cutler GB Jr, Schiebinger RJ, Albertson BD, Cassorla FG, Chrousos GP, Comite F, et al. The adrenarche (human and animal). Control of the onset of puberty. Baltimore: Williams & Wilkins; 1990. p. 506–33.

    Google Scholar 

  35. Griffiths K, Grant JK, Symington T. A biochemical investigation of the functional zonation of the adrenal cortex in man. J Clin Endocrinol Metab. 1963;23:776–85.

    PubMed  CAS  Google Scholar 

  36. Narasaka T, Suzuki T, Moriya T, Sasano H. Temporal and spatial distribution of corticosteroidogenic enzymes immunoreactivity in developing human adrenal. Mol Cell Endocrinol. 2001;174:111–20. doi:10.1016/S0303-7207(00)00445-7.

    Article  PubMed  CAS  Google Scholar 

  37. Mesiano S, Jaffe RB. Developmental and functional biology of the primate fetal adrenal cortex. Endocr Rev. 1997;18:378–403. doi:10.1210/er.18.3.378.

    Article  PubMed  CAS  Google Scholar 

  38. Bech K, Tygstrup I, Nerup J. The involution of the foetal adrenal cortex. A light microscopic study. Acta Pathol Microbiol Scand. 1969;76:391–400.

    PubMed  CAS  Google Scholar 

  39. Hyatt PJ, Bhatt K, Tait JF. Steroid biosynthesis by zona fasciculata and zona reticularis cells purified from the mammalian adrenal cortex. J Steroid Biochem. 1983;19:953–9. doi:10.1016/0022-4731(83)90039-0.

    Article  PubMed  CAS  Google Scholar 

  40. Endoh A, Kristiansen SB, Casson PR, Buster JE, Hornsby PJ. The zona reticularis is the site of biosynthesis of dehydroepiandrosterone and dehydroepiandrosterone sulfate in the adult human adrenal cortex resulting from its low expression of 3 beta-hydroxysteroid dehydrogenase. J Clin Endocrinol Metab. 1996;81:3558–65. doi:10.1210/jc.81.10.3558.

    Article  PubMed  CAS  Google Scholar 

  41. Kenny FM, Preeyasombat C, Migeon CJ. Cortisol production rate. II. Normal infants, children, and adults. Pediatrics. 1966;37:34–42.

    PubMed  CAS  Google Scholar 

  42. Kowarski A, Katz H, Migeon CJ. Plasma aldosterone concentration in normal subjects from infancy to adulthood. J Clin Endocrinol Metab. 1974;38:489–91.

    Article  PubMed  CAS  Google Scholar 

  43. Suzuki T, Sasano H, Takeyama J, Kaneko C, Freije WA, Carr BR, et al. Developmental changes in steroidogenic enzymes in human postnatal adrenal cortex: immunohistochemical studies. Clin Endocrinol (Oxf). 2000;53:739–47. doi:10.1046/j.1365-2265.2000.01144.x.

    Article  CAS  Google Scholar 

  44. Rainey WE, Carr BR, Sasano H, Suzuki T, Mason JI. Dissecting human adrenal androgen production. Trends Endocrinol Metab. 2002;13:234–9. doi:10.1016/S1043-2760(02)00609-4.

    Article  PubMed  CAS  Google Scholar 

  45. Reiter EO, Fuldauer VG, Root AW. Secretion of the adrenal androgens dehydroepiandrosterone sulfate during normal infancy, childhood, and adolescence, in sick children and in children with endocrinologic abnormalities. J Pediatr. 1977;90:766–70. doi:10.1016/S0022-3476(77)81244-4.

    Article  PubMed  CAS  Google Scholar 

  46. Hornsby PJ. The regulation of adrenocortical function by control of growth and structure. Adrenal cortex. London: Butterworth; 1985. p. 1–31.

    Google Scholar 

  47. Hornsby PJ. Aging of the human adrenal cortex. Ageing Res Rev. 2002;1:229–42. doi:10.1016/S1568-1637(01)00007-1.

    Article  PubMed  CAS  Google Scholar 

  48. Wang W, Yang L, Suwa T, Casson PR, Hornsby PJ. Differentially expressed genes in zona reticularis cells of the human adrenal cortex. Mol Cell Endocrinol 2001 28;173:127–34.

    Article  PubMed  CAS  Google Scholar 

  49. Chen CC, Parker CR Jr. Adrenal androgens and the immune system. Semin Reprod Med. 2004;22:369–77. doi:10.1055/s-2004-861553.

    Article  PubMed  CAS  Google Scholar 

  50. Marx C, Bornstein SR, Wolkersdörfer GW, Peter M, Sippell WG, Scherbaum WA. Relevance of major histocompatibility complex class II expression as a hallmark for the cellular differentiation in the human adrenal cortex. J Clin Endocrinol Metab. 1997;82:3136–40. doi:10.1210/jc.82.9.3136.

    Article  PubMed  CAS  Google Scholar 

  51. Khoury EL, Greenspan JS, Greenspan FS. Adrenocortical cells of the zona reticularis normally express HLA-DR antigenic determinants. Am J Pathol. 1987;127:580–91.

    PubMed  CAS  Google Scholar 

  52. Hirokawa K, Utsuyama M, Kasai M, Kurashima C. Aging and immunity. Acta Pathol Jpn. 1992;42:537–48.

    PubMed  CAS  Google Scholar 

  53. Stocco DM. The steroidogenic acute regulatory (StAR) protein two years later. An update. Endocrine. 1997;6:99–109. doi:10.1007/BF02738952.

    Article  PubMed  CAS  Google Scholar 

  54. Sasano H, Mason JI, Sasano N. Immunohistochemical study of cytochrome P-45017 alpha in human adrenocortical disorders. Hum Pathol. 1989;20:113–7. doi:10.1016/0046-8177(89)90174-3.

    Article  PubMed  CAS  Google Scholar 

  55. Miller WL. Early steps in androgen biosynthesis: from cholesterol to DHEA. Baillieres Clin Endocrinol Metab. 1998;12:67–81. doi:10.1016/S0950-351X(98)80461-8.

    Article  PubMed  CAS  Google Scholar 

  56. Yanase T, Sasano H, Yubisui T, Sakai Y, Takayanagi R, Nawata H. Immunohistochemical study of cytochrome b5 in human adrenal gland and in adrenocortical adenomas from patients with Cushing's syndrome. Endocr J. 1998;45:89–95. doi:10.1507/endocrj.45.89.

    Article  PubMed  CAS  Google Scholar 

  57. Auchus RJ, Lee TC, Miller WL. Cytochrome b5 augments the 17,20-lyase activity of human P450c17 without direct electron transfer. J Biol Chem. 1998;273:3158–65. doi:10.1074/jbc.273.6.3158.

    Article  PubMed  CAS  Google Scholar 

  58. Strott CA. Steroid sulfotransferases. Endocr Rev. 1996;17:670–97. doi:10.1210/er.17.6.670.

    PubMed  CAS  Google Scholar 

  59. Luu-The V, Bernier F, Dufort I. Steroid sulfotransferases. J Endocrinol. 1996;150:S87–97.

    PubMed  CAS  Google Scholar 

  60. Weinshilboum RM, Otterness DM, Aksoy IA, Wood TC, Her C, Raftogianis RB. Sulfation and sulfotransferases 1: sulfotransferase molecular biology: cDNAs and genes. FASEB J. 1997;11:3–14.

    PubMed  CAS  Google Scholar 

  61. Warne GL, Carter JN, Faiman C, Reyes FI, Winter JS. Hormonal changes in girls with precocious adrenarche: a possible role for estradiol or prolactin. J Pediatr. 1978;92:743–7. doi:10.1016/S0022-3476(78)80141-3.

    Article  PubMed  CAS  Google Scholar 

  62. Dardis A, Saraco N, Rivarola MA, Belgorosky A. Decrease in the expression of the 3beta-hydroxysteroid dehydrogenase gene in human adrenal tissue during prepuberty and early puberty: implications for the mechanism of adrenarche. Pediatr Res. 1999;45:384–8. doi:10.1203/00006450-199903000-00016.

    Article  PubMed  CAS  Google Scholar 

  63. Palmert MR, Hayden DL, Mansfield MJ, Crigler JF Jr, Crowley WF Jr, Chandler DW, et al. The longitudinal study of adrenal maturation during gonadal suppression: evidence that adrenarche is a gradual process. J Clin Endocrinol Metab. 2001;86:4536–42. doi:10.1210/jc.86.9.4536.

    Article  PubMed  CAS  Google Scholar 

  64. White PC, New MI, Dupont B. Congenital adrenal hyperplasia. N Engl J Med. 1987;316:1519–24.

    PubMed  CAS  Google Scholar 

  65. Saner KJ, Suzuki T, Sasano H, Pizzey J, Ho C, Strauss JF 3rd, et al. Steroid sulfotransferase 2A1 gene transcription is regulated by steroidogenic factor 1 and GATA-6 in the human adrenal. Mol Endocrinol. 2005;19:184–97. doi:10.1210/me.2003-0332.

    Article  PubMed  CAS  Google Scholar 

  66. Seely J, Amigh KS, Suzuki T, Mayhew B, Sasano H, Giguere V, et al. Transcriptional regulation of dehydroepiandrosterone sulfotransferase (SULT2A1) by estrogen-related receptor alpha. Endocrinology. 2005;146:3605–13. doi:10.1210/en.2004-1619.

    Article  PubMed  CAS  Google Scholar 

  67. Labrie F, Luu-The V, Bélanger A, Lin SX, Simard J, Pelletier G, et al. Is dehydroepiandrosterone a hormone? J Endocrinol 2005;187:169–96. doi:10.1677/joe.1.06264.

    Article  PubMed  CAS  Google Scholar 

  68. Petry CJ, Ong KK, Wingate DL, de Zegher F, Ibáñez L, Dunger DB. Lack of association between common polymorphisms in the 17beta-hydroxysteroid dehydrogenase type V gene (HSD17B5) and precocious pubarche. J Steroid Biochem Mol Biol. 2007;105:176–80. doi:10.1016/j.jsbmb.2007.01.004.

    Article  PubMed  CAS  Google Scholar 

  69. Qin KN, Rosenfield RL. Expression of 17 beta-hydroxysteroid dehydrogenase type 5 in human ovary: a pilot study. J Soc Gynecol Investig. 2000;7:61–4. doi:10.1016/S1071-5576(99)00067-2.

    Article  PubMed  CAS  Google Scholar 

  70. Nakamura Y, Hornsby PJ, Casson PR, Morimoto R, Satoh F, Sasano H, et al. Gene profiling of the reticularis and fasciculata zones of human adult adrenals. 2008; In: The Endocrine Society's 90th Annual Meeting, San Francisco, CA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Rainey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, Y., Gang, H.X., Suzuki, T. et al. Adrenal changes associated with adrenarche. Rev Endocr Metab Disord 10, 19–26 (2009). https://doi.org/10.1007/s11154-008-9092-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-008-9092-2

Keywords

Navigation