Skip to main content

Advertisement

Log in

Novel mechanisms of protein synthesis in diabetic nephropathy—role of mRNA translation

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Ambient protein levels are affected by both synthesis and degradation. Synthesis of a protein is regulated by transcription and messenger RNA (mRNA) translation. Translation has emerged as an important site of regulation of protein expression during development and disease. It is under the control of distinct factors that regulate initiation, elongation and termination phases. Regulation of translation occurs via signaling reactions, guanosine diphosphate–guanosine triphosphate binding and by participation of non-coding RNA species such as microRNA. Recent work has revealed an important role for translation in hypertrophy, matrix protein synthesis, elaboration of growth factors in in vivo and in vitro models of diabetic nephropathy. Studies of translation dysregulation in diabetic nephropathy have enabled identification of novel therapeutic targets. Translation of mRNA is a fertile field for exploration in investigation of kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kasinath B, Lee MJ, Feliers D, Sonenberg N. 2006. mRNA Translation in Diabetic Nephropathy. In: Contemporary Diabetes: The Diabetic Kidney. pp 97–116.

  2. Chen G, Gharib TG, Huang CC, Taylor JM, Misek DE, Kardia SL, et al. Discordant protein and mRNA expression in lung adenocarcinomas. Mol Cell Proteomics. 2002;1:304–13. doi:10.1074/mcp.M200008-MCP200.

    Article  PubMed  CAS  Google Scholar 

  3. Gygi SP, Rochon Y, Franza BR, Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. 1999;19:1720–30.

    PubMed  CAS  Google Scholar 

  4. Kozak M. Some thoughts about translational regulation: forward and backward glances. J Cell Biochem. 2007;102:280–90. doi:10.1002/jcb.21464.

    Article  PubMed  CAS  Google Scholar 

  5. Kasinath BS, Mariappan MM, Sataranatarajan K, Lee MJ, Feliers D. mRNA translation: unexplored territory in renal science. J Am Soc Nephrol. 2006;17:3281–92. doi:10.1681/ASN.2006050488.

    Article  PubMed  CAS  Google Scholar 

  6. Holz MK, Ballif BA, Gygi SP, Blenis J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell. 2005;123:569–80. doi:10.1016/j.cell.2005.10.024.

    Article  PubMed  CAS  Google Scholar 

  7. Proud CG. Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J. 2007;403:217–34. doi:10.1042/BJ20070024.

    Article  PubMed  CAS  Google Scholar 

  8. Berkhout B, Jeang KT. RISCy business: MicroRNAs, pathogenesis, and viruses. J Biol Chem. 2007;282:26641–5. doi:10.1074/jbc.R700023200.

    Article  PubMed  CAS  Google Scholar 

  9. Sheets MD, Fox CA, Hunt T, Vande Woude G, Wickens M. The 3′-untranslated regions of c-mos and cyclin mRNAs stimulate translation by regulating cytoplasmic polyadenylation. Genes Dev. 1994;8:926–38. doi:10.1101/gad.8.8.926.

    Article  PubMed  CAS  Google Scholar 

  10. Kahvejian A, Svitkin YV, Sukarieh R, M'Boutchou MN, Sonenberg N. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev. 2005;19:104–13. doi:10.1101/gad.1262905.

    Article  PubMed  CAS  Google Scholar 

  11. Sonenberg N, Hinnebusch AG. New modes of translational control in development, behavior, and disease. Mol Cell. 2007;28:721–9. doi:10.1016/j.molcel.2007.11.018.

    Article  PubMed  CAS  Google Scholar 

  12. Alone PV, Dever TE. Direct binding of translation initiation factor eIF2gamma-G domain to its GTPase-activating and GDP-GTP exchange factors eIF5 and eIF2B epsilon. J Biol Chem. 2006;281:12636–44. doi:10.1074/jbc.M511700200.

    Article  PubMed  CAS  Google Scholar 

  13. Korneeva NL, Lamphear BJ, Hennigan FL, Rhoads RE. Mutually cooperative binding of eukaryotic translation initiation factor (eIF) 3 and eIF4A to human eIF4G-1. J Biol Chem. 2000;275:41369–76. doi:10.1074/jbc.M007525200.

    Article  PubMed  CAS  Google Scholar 

  14. von der Haar T, Gross JD, Wagner G, McCarthy JE. The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol. 2004;11:503–11. doi:10.1038/nsmb779.

    Article  PubMed  CAS  Google Scholar 

  15. Stoneley M, Willis AE. Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene. 2004;23:3200–7. doi:10.1038/sj.onc.1207551.

    Article  PubMed  CAS  Google Scholar 

  16. Thornton S, Anand N, Purcell D, Lee J. Not just for housekeeping: protein initiation and elongation factors in cell growth and tumorigenesis. J Mol Med. 2003;81:536–48. doi:10.1007/s00109-003-0461-8.

    Article  PubMed  CAS  Google Scholar 

  17. Hirokawa G, Kiel MC, Muto A, Kawai G, Igarashi K, Kaji H, et al. Binding of ribosome recycling factor to ribosomes, comparison with tRNA. J Biol Chem. 2002;277:35847–52. doi:10.1074/jbc.M206295200.

    Article  PubMed  CAS  Google Scholar 

  18. Ceci M, Gaviraghi C, Gorrini C, Sala LA, Offenhauser N, Marchisio PC, et al. Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature. 2003;426:579–84. doi:10.1038/nature02160.

    Article  PubMed  CAS  Google Scholar 

  19. Pause A, Belsham GJ, Gingras AC, Donze O, Lin TA, Lawrence JC Jr, et al. Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5′-cap function. Nature. 1994;371:762–7. doi:10.1038/371762a0.

    Article  PubMed  CAS  Google Scholar 

  20. Redpath NT, Price NT, Severinov KV, Proud CG. Regulation of elongation factor-2 by multisite phosphorylation. Eur J Biochem. 1993;213:689–99. doi:10.1111/j.1432-1033.1993.tb17809.x.

    Article  PubMed  CAS  Google Scholar 

  21. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9:102–14. doi:10.1038/nrg2290.

    Article  PubMed  CAS  Google Scholar 

  22. Grosshans H, Filipowicz W. Molecular biology: the expanding world of small RNAs. Nature. 2008;451:414–6. doi:10.1038/451414a.

    Article  PubMed  CAS  Google Scholar 

  23. Humphreys DT, Westman BJ, Martin DI, Preiss T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A. 2005;102:16961–6. doi:10.1073/pnas.0506482102.

    Article  PubMed  CAS  Google Scholar 

  24. Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science. 2005;309:1573–6. doi:10.1126/science.1115079.

    Article  PubMed  CAS  Google Scholar 

  25. Wakiyama M, Takimoto K, Ohara O, Yokoyama S. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev. 2007;21:1857–62. doi:10.1101/gad.1566707.

    Article  PubMed  CAS  Google Scholar 

  26. Hostetter TH. Progression of renal disease and renal hypertrophy. Annu Rev Physiol. 1995;57:263–78. doi:10.1146/annurev.ph.57.030195.001403.

    Article  PubMed  CAS  Google Scholar 

  27. Huang HC, Preisig PA. G1 kinases and transforming growth factor-beta signaling are associated with a growth pattern switch in diabetes-induced renal growth. Kidney Int. 2000;58:162–72. doi:10.1046/j.1523-1755.2000.00151.x.

    Article  PubMed  CAS  Google Scholar 

  28. Rasch R, Norgaard JO. Renal enlargement: comparative autoradiographic studies of 3H-thymidine uptake in diabetic and uninephrectomized rats. Diabetologia. 1983;25:280–7. doi:10.1007/BF00279944.

    Article  PubMed  CAS  Google Scholar 

  29. Satriano J. Kidney growth, hypertrophy and the unifying mechanism of diabetic complications. Amino Acids. 2007;33:331–9. doi:10.1007/s00726-007-0529-9.

    Article  PubMed  CAS  Google Scholar 

  30. Thompson S, Latham JA, Turner GA. A simple, reproducible and cheap batch method for the analysis of serum glycoproteins using sepharose-coupled lectins and silver staining. Clin Chim Acta. 1987;167:217–23. doi:10.1016/0009-8981(87)90374-3.

    Article  PubMed  CAS  Google Scholar 

  31. Senthil D, Choudhury GG, McLaurin C, Kasinath BS. Vascular endothelial growth factor induces protein synthesis in renal epithelial cells: a potential role in diabetic nephropathy. Kidney Int. 2003;64:468–79. doi:10.1046/j.1523-1755.2003.00135.x.

    Article  PubMed  CAS  Google Scholar 

  32. Awazu M, Omori S, Ishikura K, Hida M, Fujita H. The lack of cyclin kinase inhibitor p27(Kip1) ameliorates progression of diabetic nephropathy. J Am Soc Nephrol. 2003;14:699–708. doi:10.1097/01.ASN.0000051726.41601.C0.

    Article  PubMed  CAS  Google Scholar 

  33. Wolf G, Schanze A, Stahl RA, Shankland SJ, Amann K. p27(Kip1) Knockout mice are protected from diabetic nephropathy: evidence for p27(Kip1) haplotype insufficiency. Kidney Int. 2005;68:1583–9. doi:10.1111/j.1523-1755.2005.00570.x.

    Article  PubMed  CAS  Google Scholar 

  34. Lee MJ, Feliers D, Mariappan MM, Sataranatarajan K, Mahimainathan L, Musi N, et al. A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am J Physiol Renal Physiol. 2007;292:F617–27. doi:10.1152/ajprenal.00278.2006.

    Article  PubMed  CAS  Google Scholar 

  35. Hardie DG. The AMP-activated protein kinase pathway—new players upstream and downstream. J Cell Sci. 2004;117:5479–87. doi:10.1242/jcs.01540.

    Article  PubMed  CAS  Google Scholar 

  36. Viollet B, Andreelli F, Jorgensen SB, Perrin C, Flamez D, Mu J, et al. Physiological role of AMP-activated protein kinase (AMPK): insights from knockout mouse models. Biochem Soc Trans. 2003;31:216–9.

    PubMed  CAS  Google Scholar 

  37. Kovacic S, Soltys CL, Barr AJ, Shiojima I, Walsh K, Dyck JR. Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart. J Biol Chem. 2003;278:39422–7. doi:10.1074/jbc.M305371200.

    Article  PubMed  CAS  Google Scholar 

  38. Goncharova EA, Goncharov DA, Eszterhas A, Hunter DS, Glassberg MK, Yeung RS, et al. Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM). J Biol Chem. 2002;277:30958–67. doi:10.1074/jbc.M202678200.

    Article  PubMed  CAS  Google Scholar 

  39. Jozwiak J. Hamartin and tuberin: working together for tumour suppression. Int J Cancer. 2006;118:1–5. doi:10.1002/ijc.21542.

    Article  PubMed  CAS  Google Scholar 

  40. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115:577–90. doi:10.1016/S0092-8674(03)00929-2.

    Article  PubMed  CAS  Google Scholar 

  41. Chen JK, Chen J, Neilson EG, Harris RC. Role of mammalian target of rapamycin signaling in compensatory renal hypertrophy. J Am Soc Nephrol. 2005;16:1384–91. doi:10.1681/ASN.2004100894.

    Article  PubMed  CAS  Google Scholar 

  42. Lee MJ, Mariappan MM, Sataranatarajan K, Li M, Feliers D, Ghosh Choudhury G, et al. Resveratrol ameliorates renal hypertrophy in diabetic mice. J Am Soc Nephrol. 2007;18:170A. doi:10.1681/ASN.2006101119.

    Article  Google Scholar 

  43. Hong SP, Leiper FC, Woods A, Carling D, Carlson M. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci U S A. 2003;100:8839–43. doi:10.1073/pnas.1533136100.

    Article  PubMed  CAS  Google Scholar 

  44. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425:191–6. doi:10.1038/nature01960.

    Article  PubMed  CAS  Google Scholar 

  45. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337–42. doi:10.1038/nature05354.

    Article  PubMed  CAS  Google Scholar 

  46. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell. 2006;127:1109–22. doi:10.1016/j.cell.2006.11.013.

    Article  PubMed  CAS  Google Scholar 

  47. Matsuzawa Y. Therapy Insight: adipocytokines in metabolic syndrome and related cardiovascular disease. Nat Clin Pract Cardiovasc Med. 2006;3:35–42. doi:10.1038/ncpcardio0380.

    Article  PubMed  CAS  Google Scholar 

  48. Sharma K, Ramachandrarao S, Qiu G, Usui HK, Zhu Y, Dunn SR, et al. Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest. 2008;118:1645–56.

    PubMed  CAS  Google Scholar 

  49. Mahimainathan L, Das F, Venkatesan B, Choudhury GG. Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN. Diabetes. 2006;55:2115–25. doi:10.2337/db05-1326.

    Article  PubMed  CAS  Google Scholar 

  50. Burns KD. Angiotensin II and its receptors in the diabetic kidney. Am J Kidney. Dis 2000;36:449–67.

    PubMed  CAS  Google Scholar 

  51. Leehey DJ, Singh AK, Alavi N, Singh R. Role of angiotensin II in diabetic nephropathy. Kidney Int. Suppl 2000;77:S93–8. doi:10.1046/j.1523-1755.2000.07715.x.

    Article  PubMed  CAS  Google Scholar 

  52. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. 1993;329:1456–62. doi:10.1056/NEJM199311113292004.

    Article  PubMed  CAS  Google Scholar 

  53. Kagami S, Border WA, Miller DE, Noble NA. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-beta expression in rat glomerular mesangial cells. J Clin Invest. 1994;93:2431–7. doi:10.1172/JCI117251.

    Article  PubMed  CAS  Google Scholar 

  54. de Vriese AS, Tilton RG, Elger M, Stephan CC, Kriz W, Lameire NH. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol. 2001;12:993–1000.

    PubMed  Google Scholar 

  55. Flyvbjerg A, Dagnaes-Hansen F, De Vriese AS, Schrijvers BF, Tilton RG, Rasch R. Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes. 2002;51:3090–4. doi:10.2337/diabetes.51.10.3090.

    Article  PubMed  CAS  Google Scholar 

  56. Feliers D, Duraisamy S, Barnes JL, Ghosh-Choudhury G, Kasinath BS. Translational regulation of vascular endothelial growth factor expression in renal epithelial cells by angiotensin II. Am J Physiol Renal Physiol. 2005;288:F521–9. doi:10.1152/ajprenal.00271.2004.

    Article  PubMed  CAS  Google Scholar 

  57. Feliers D, Gorin Y, Ghosh-Choudhury G, Abboud HE, Kasinath BS. Angiotensin II stimulation of VEGF mRNA translation requires production of reactive oxygen species. Am J Physiol Renal Physiol. 2006;290:F927–36. doi:10.1152/ajprenal.00331.2005.

    Article  PubMed  CAS  Google Scholar 

  58. Ostareck DH, Ostareck-Lederer A, Wilm M, Thiele BJ, Mann M, Hentze MW. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3′ end. Cell. 1997;89:597–606. doi:10.1016/S0092-8674(00)80241-X.

    Article  PubMed  CAS  Google Scholar 

  59. Feliers D, Lee MJ, Ghosh-Choudhury G, Bomsztyk K, Kasinath BS. Heterogeneous nuclear ribonucleoprotein K contributes to angiotensin II stimulation of vascular endothelial growth factor mRNA translation. Am J Physiol Renal Physiol. 2007;293:F607–15. doi:10.1152/ajprenal.00497.2006.

    Article  PubMed  CAS  Google Scholar 

  60. Sataranatarajan K, Lee MJ, Mariappan MM, Feliers D. PKCdelta regulates the stimulation of vascular endothelial factor mRNA translation by angiotensin II through hnRNP K. Cell Signal. 2008;20:969–77. doi:10.1016/j.cellsig.2008.01.016.

    Article  PubMed  CAS  Google Scholar 

  61. Ziyadeh FN. Mediators of diabetic renal disease: the case for tgf-Beta as the major mediator. J Am Soc Nephrol 2004;15(Suppl 1):S55–7. doi:10.1097/01.ASN.0000093460.24823.5B.

    Article  PubMed  CAS  Google Scholar 

  62. Fraser D, Brunskill N, Ito T, Phillips A. Long-term exposure of proximal tubular epithelial cells to glucose induces transforming growth factor-beta 1 synthesis via an autocrine PDGF loop. Am J Pathol. 2003;163:2565–74.

    PubMed  CAS  Google Scholar 

  63. Mason RM, Wahab NA. Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol. 2003;14:1358–73. doi:10.1097/01.ASN.0000065640.77499.D7.

    Article  PubMed  CAS  Google Scholar 

  64. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414:799–806. doi:10.1038/414799a.

    Article  PubMed  CAS  Google Scholar 

  65. Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J. Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care 2008;31(Suppl 2):S262–8. doi:10.2337/dc08-s264.

    Article  PubMed  CAS  Google Scholar 

  66. Hummel KP, Dickie MM, Coleman DL. Diabetes, a new mutation in the mouse. Science. 1966;153:1127–8. doi:10.1126/science.153.3740.1127.

    Article  PubMed  CAS  Google Scholar 

  67. Ha TS, Barnes JL, Stewart JL, Ko CW, Miner JH, Abrahamson DR, et al. Regulation of renal laminin in mice with type II diabetes. J Am Soc Nephrol. 1999;10:1931–9.

    PubMed  CAS  Google Scholar 

  68. Bhandari BK, Feliers D, Duraisamy S, Stewart JL, Gingras AC, Abboud HE, et al. Insulin regulation of protein translation repressor 4E-BP1, an eIF4E-binding protein, in renal epithelial cells. Kidney Int. 2001;59:866–75. doi:10.1046/j.1523-1755.2001.059003866.x.

    Article  PubMed  CAS  Google Scholar 

  69. Feliers D, Duraisamy S, Faulkner JL, Duch J, Lee AV, Abboud HE, et al. Activation of renal signaling pathways in db/db mice with type 2 diabetes. Kidney Int. 2001;60:495–504. doi:10.1046/j.1523-1755.2001.060002495.x.

    Article  PubMed  CAS  Google Scholar 

  70. Kondo T, Kahn CR. Altered insulin signaling in retinal tissue in diabetic states. J Biol Chem. 2004;279:37997–8006. doi:10.1074/jbc.M401339200.

    Article  PubMed  CAS  Google Scholar 

  71. Zecchin HG, Bezerra RM, Carvalheira JB, Carvalho-Filho MA, Metze K, Franchini KG, et al. Insulin signalling pathways in aorta and muscle from two animal models of insulin resistance–the obese middle-aged and the spontaneously hypertensive rats. Diabetologia. 2003;46:479–91.

    PubMed  CAS  Google Scholar 

  72. Miner JH, Patton BL, Lentz SI, Gilbert DJ, Snider WD, Jenkins NA, et al. The laminin alpha chains: expression, developmental transitions, and chromosomal locations of alpha1–5, identification of heterotrimeric laminins 8–11, and cloning of a novel alpha3 isoform. J Cell Biol. 1997;137:685–701. doi:10.1083/jcb.137.3.685.

    Article  PubMed  CAS  Google Scholar 

  73. Mariappan MM, Feliers D, Mummidi S, Choudhury GG, Kasinath BS. High glucose, high insulin, and their combination rapidly induce laminin-beta1 synthesis by regulation of mRNA translation in renal epithelial cells. Diabetes. 2007;56:476–85. doi:10.2337/db05-1334.

    Article  PubMed  CAS  Google Scholar 

  74. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124:471–84. doi:10.1016/j.cell.2006.01.016.

    Article  PubMed  CAS  Google Scholar 

  75. Das F, Ghosh-Choudhury N, Mahimainathan L, Venkatesan B, Feliers D, Riley DJ, et al. Raptor-rictor axis in TGFbeta-induced protein synthesis. Cell Signal. 2008;20:409–23. doi:10.1016/j.cellsig.2007.10.027.

    Article  PubMed  CAS  Google Scholar 

  76. Sataranatarajan K, Mariappan MM, Lee MJ, Feliers D, Choudhury GG, Barnes JL, et al. Regulation of elongation phase of mRNA translation in diabetic nephropathy: amelioration by rapamycin. Am J Pathol. 2007;171:1733–42. doi:10.2353/ajpath.2007.070412.

    Article  PubMed  CAS  Google Scholar 

  77. Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J. 2001;20:4370–9. doi:10.1093/emboj/20.16.4370.

    Article  PubMed  CAS  Google Scholar 

  78. Lloberas N, Cruzado JM, Franquesa M, Herrero-Fresneda I, Torras J, Alperovich G, et al. Mammalian target of rapamycin pathway blockade slows progression of diabetic kidney disease in rats. J Am Soc Nephrol. 2006;17:1395–404. doi:10.1681/ASN.2005050549.

    Article  PubMed  CAS  Google Scholar 

  79. Sakaguchi M, Isono M, Isshiki K, Sugimoto T, Koya D, Kashiwagi A. Inhibition of mTOR signaling with rapamycin attenuates renal hypertrophy in the early diabetic mice. Biochem Biophys Res Commun. 2006;340:296–301.

    Article  PubMed  CAS  Google Scholar 

  80. Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 1980;107:519–27.

    PubMed  CAS  Google Scholar 

  81. Hanger DP, Hughes K, Woodgett JR, Brion JP, Anderton BH. Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett. 1992;147:58–62. doi:10.1016/0304-3940(92)90774-2.

    Article  PubMed  CAS  Google Scholar 

  82. Cui H, Meng Y, Bulleit RF. Inhibition of glycogen synthase kinase 3beta activity regulates proliferation of cultured cerebellar granule cells. Brain Res Dev Brain Res. 1998;111:177–88. doi:10.1016/S0165-3806(98)00136-9.

    Article  PubMed  CAS  Google Scholar 

  83. Kerkela R, Woulfe K, Force T. Glycogen synthase kinase-3beta—actively inhibiting hypertrophy. Trends Cardiovasc Med. 2007;17:91–6. doi:10.1016/j.tcm.2007.01.004.

    Article  PubMed  CAS  Google Scholar 

  84. Mariappan MM, Ghosh Choudhury G, Kasinath BS. Role of GSK3 beta (GSK3b) inactivation in high glucose (HG)- and high insulin (HI)-inducedextra cellular matrix protein synthesis in proximal tubular epithelial (MCT) cells. J Am Soc Nephrol. 2007;18:651A.

    Google Scholar 

Download references

Acknowledgements

Studies were supported by grants from the NIH- DK061597 (O'Brien Kidney Research Center, BSK, JLB), NIH-DK077295 (BSK), American Diabetes Association—7-05-RA-60 (BSK), VA Research Service (BSK, GGC, JLB), Juvenile Diabetes Research Foundation—3-2007-245 (MMM/BSK), NIH—DK050190 (GGC), American Heart Association SDG 0630283N (DF). GGC is a recipient of the VA Research Career Scientist Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Kasinath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasinath, B.S., Mariappan, M.M., Sataranatarajan, K. et al. Novel mechanisms of protein synthesis in diabetic nephropathy—role of mRNA translation. Rev Endocr Metab Disord 9, 255–266 (2008). https://doi.org/10.1007/s11154-008-9091-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-008-9091-3

Keywords

Navigation