Skip to main content

Advertisement

Log in

Inherited hypophosphatemic disorders in children and the evolving mechanisms of phosphate regulation

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Phosphorous is essential for multiple cellular functions and constitutes an important mineral in bone. Hypophosphatemia in children leads to rickets resulting in abnormal growth and often skeletal deformities. Among various causes of low serum phosphorous are inherited disorders associated with increased urinary excretion of phosphate, including autosomal dominant hypophosphatemic rickets (ADHR), X-linked hypophosphatemia (XLH), autosomal recessive hypophosphatemia (ARHP), and hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Recent genetic analyses and subsequent biochemical and animal studies have revealed several novel molecules that appear to play key roles in the regulation of renal phosphate handling. These include a protein with abundant expression in bone, fibroblast growth factor 23 (FGF23), which has proven to be a circulating hormone that inhibits tubular reabsorption of phosphate in the kidney. Two other bone-specific proteins, PHEX and dentin matrix protein 1 (DMP1), appear to be necessary for limiting the expression of fibroblast growth factor 23, thereby allowing sufficient renal conservation of phosphate. This review focuses on the clinical, biochemical, and genetic features of inherited hypophosphatemic disorders, and presents the current understanding of hormonal and molecular mechanisms that govern phosphorous homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Miller WL, Portale AA. Genetic causes of rickets. Curr Opin Pediatr. 1999;11:333–9.

    Article  PubMed  CAS  Google Scholar 

  2. Demay MB, Sabbagh Y, Carpenter TO. Calcium and vitamin D: what is known about the effects on growing bone. Pediatrics. 2007;119 Suppl 2:S141–4.

    Article  PubMed  Google Scholar 

  3. Jüppner H, Thakker R. Genetic disorders of calcium and phosphate homeostasis. In: Pollak M (ed) The kidney. W.B. Saunders Company, Philadelphia, PA; 2008. (in press).

  4. Sabbagh Y, Carpenter TO, Demay MB. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci U S A. 2005;102:9637–42.

    Article  PubMed  CAS  Google Scholar 

  5. Forster IC, Hernando N, Biber J, Murer H. Proximal tubular handling of phosphate: a molecular perspective. Kidney Int. 2006;70:1548–59.

    Article  PubMed  CAS  Google Scholar 

  6. Tenenhouse HS. Phosphate transport: molecular basis, regulation and pathophysiology. J Steroid Biochem Mol Biol. 2007;103:572–7.

    Article  PubMed  CAS  Google Scholar 

  7. Miyamoto K, Ito M, Tatsumi S, Kuwahata M, Segawa H. New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter. Am J Nephrol. 2007;27:503–15.

    Article  PubMed  CAS  Google Scholar 

  8. St-Arnaud R, Demay MB. Vitamin D biology. In: Glorieux FH, Juppner H, Pettifor JM, editors. Pediatric bone: biology and diseases. San Diego: Academic; 2003. p. 193–216.

    Google Scholar 

  9. Jüppner H, Gardella T, Brown E, Kronenberg H, Potts J Jr. Parathyroid hormone and parathyroid hormone-related peptide in the regulation of calcium homeostasis and bone development. In: DeGroot L, Jameson J, editors. Endocrinology. 5th ed. Philadelphia, PA: W.B. Saunders Company; 2005. p. 1377–417.

    Google Scholar 

  10. Mensenkamp AR, Hoenderop JG, Bindels RJ. TRPV5, the gateway to Ca2+ homeostasis. Handb Exp Pharmacol. 2007;179:207–20.

    PubMed  CAS  Google Scholar 

  11. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357:266–81.

    Article  PubMed  CAS  Google Scholar 

  12. Portale AA, Miller WL. Rickets due to hereditary abnormalities of vitamin D synthesis and action. In: Glorieux FH, Juppner H, Pettifor JM, editors. Pediatric bone: biology and diseases. San Diego: Academic; 2003. p. 583–602.

    Google Scholar 

  13. Holm IA, Econs MJ, Carpenter TO. Familial hypophosphatemia and related disorders. In: Glorieux FH, Juppner H, Pettifor JM, editors. Pediatric bone: biology and diseases. San Diego, CA: Academic; 2003. p. 603–31.

    Google Scholar 

  14. White K, Larsson T, Econs M. The roles of specific genes implicated as circulating factors involved in normal and disordered phosphate homeostasis: Frp-4, MEPE, and FGF23. Endocr Rev. 2006;27 3:221–41.

    Article  PubMed  CAS  Google Scholar 

  15. Econs M, Drezner M. Tumor-induced osteomalacia—unveiling a new hormone. N Engl J Med. 1994;330:1679–81.

    Article  PubMed  CAS  Google Scholar 

  16. ADHR Consortium T; White KE, Evans WE, O’Riordan JLH, Speer MC, Econs MJ, et al. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet. 2000;26:345–8.

    Article  CAS  Google Scholar 

  17. Bianchine JW, Stambler AA, Harrison HE. Familial hypophosphatemic rickets showing autosomal dominant inheritance. Birth Defects Orig Artic Ser. 1971;7:287–95.

    PubMed  CAS  Google Scholar 

  18. Econs M, McEnery P. Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate-wasting disorder. J Clin Endocrinol Metab. 1997;82:674–81.

    Article  PubMed  CAS  Google Scholar 

  19. Econs M, McEnery P, Lennon F, Speer M. Autosomal dominant hypophosphatemic rickets is linked to chromosome 12p13. J Clin Invest. 1997;100:2653–7.

    Article  PubMed  CAS  Google Scholar 

  20. Imel EA, Hui SL, Econs MJ. FGF23 concentrations vary with disease status in autosomal dominant hypophosphatemic rickets. J. Bone Mineral Res. 2007;22(4):520–6 (Apr).

    Article  CAS  Google Scholar 

  21. Kruse K, Woelfel D, Strom T. Loss of renal phosphate wasting in a child with autosomal dominant hypophosphatemic rickets caused by a FGF23 mutation. Horm Res. 2001;55:305–8.

    Article  PubMed  CAS  Google Scholar 

  22. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113:561–8.

    PubMed  CAS  Google Scholar 

  23. Sitara D, Razzaque MS, Hesse M, Yoganathan S, Taguchi T, Erben RG, et al. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol. 2004;23:421–32.

    Article  PubMed  CAS  Google Scholar 

  24. Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab. 2006;291:E38–49.

    Article  PubMed  CAS  Google Scholar 

  25. Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci USA. 2001;98:6500–5.

    Article  PubMed  CAS  Google Scholar 

  26. Shimada T, Muto T, Urakawa I, Yoneya T, Yamazaki Y, Okawa K, et al. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology. 2002;143:3179–82.

    Article  PubMed  CAS  Google Scholar 

  27. Benet-Pages A, Lorenz-Depiereux B, Zischka H, White K, Econs M, Strom T. FGF23 is processed by proprotein convertases but not by PHEX. Bone. 2004;35:455–62.

    Article  PubMed  CAS  Google Scholar 

  28. Berndt TJ, Craig TA, McCormick DJ, Lanske B, Sitara D, Razzaque MS, et al. Biological activity of FGF-23 fragments. Pflugers Arch. 2007;454:615–23.

    Article  PubMed  CAS  Google Scholar 

  29. Jan De Beur S, Finnegan R, Vassiliadis J, Cook B, Barberio D, Estes S, et al. Tumors associated with oncogenic osteomalacia express genes important in bone and mineral metabolism. J Bone Miner Res. 2002;17:1102–10.

    Article  CAS  Google Scholar 

  30. White K, Jonsson K, Carn G, Hampson G, Spector T, Mannstadt M, et al. The autosomal dominant hypophosphatemic rickets (ADHR) gene is a secreted polypeptide overexpressed by tumors that cause phosphate wasting. J Clin Endocrinol Metab. 2001;86:497–500.

    Article  PubMed  CAS  Google Scholar 

  31. Topaz O, Shurman D, Bergman R, Indelman M, Ratajczak P, Mizrachi M, et al. Mutations in GALNT3, encoding a protein involved in O-linked glycosylation, cause familial tumoral calcinosis. Nat Genet. 2004;36:579–81.

    Article  PubMed  CAS  Google Scholar 

  32. Ichikawa S, Lyles K, Econs M. A novel GALNT3 mutation in a pseudoautosomal dominant form of tumoral calcinosis: evidence that the disorder is autosomal recessive. J Clin Endocrinol Metab. 2005;90:2420–3.

    Article  PubMed  CAS  Google Scholar 

  33. Perwad F, Azam N, Zhang M, Yamashita T, Tenenhouse H, Portale A. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology. 2005;146:5358–64.

    Article  PubMed  CAS  Google Scholar 

  34. Perwad F, Zhang MY, Tenenhouse HS, Portale AA. Fibroblast growth factor 23 impairs phosphorus and vitamin D metabolism in vivo and suppresses 25-hydroxyvitamin D-1alpha-hydroxylase expression in vitro. Am J Physiol Renal Physiol. 2007;293:F1577–83.

    Article  PubMed  CAS  Google Scholar 

  35. Ferrari S, Bonjour J, Rizzoli R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J Clin Endocrinol Metab. 2005;90:1519–24.

    Article  PubMed  CAS  Google Scholar 

  36. Burnett S, Gunawardene S, Bringhurst F, Jüppner H, Lee H, Finkelstein J. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res. 2006;21:1187–96.

    Article  PubMed  CAS  Google Scholar 

  37. Consortium TH. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet. 1995;11:130–6.

    Article  Google Scholar 

  38. Holm IA, Huang X, Kunkel LM. Mutational analysis of the PEX gene in patients with X-linked hypophosphatemic rickets. Am J Hum Genet. 1997;60:790–7.

    PubMed  CAS  Google Scholar 

  39. Yamazaki Y, Okazaki R, Shibata M, Hasegawa Y, Satoh K, Tajima T, et al. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J Clin Endocrinol Metab. 2002;87:4957–60.

    Article  PubMed  CAS  Google Scholar 

  40. Jonsson K, Zahradnik R, Larsson T, White K, Sugimoto T, Imanishi Y, et al. Fibroblast growth factor 23 in oncogenic osteomalacia and X-linked hypophosphatemia. New Engl J Med. 2003;348:1656–62.

    Article  PubMed  CAS  Google Scholar 

  41. Weber T, Liu S, Indridason O, Quarles L. Serum FGF23 levels in normal and disordered phosphorus homeostasis. J Bone Miner Res. 2003;18:1227–34.

    Article  PubMed  CAS  Google Scholar 

  42. Aono Y, Shimada T, Yamazaki Y, Hino R, Takeuchi M, Fujita T, et al. The neutralization of FGF-23 ameliorates hypophosphatemia and rickets in Hyp mice. Meeting of the American Society for Bone and Mineral Research, Minneapolis, Minnesota, 2003; p 1056.

  43. Liu S, Brown T, Zhou J, Xiao Z, Awad H, Guilak F, et al. Role of matrix extracellular phosphoglycoprotein in the pathogenesis of X-linked hypophosphatemia. J Am Soc Nephrol. 2005;16:91645–53.

    Article  PubMed  CAS  Google Scholar 

  44. Bowe A, Finnegan R, Jan de Beur S, Cho J, Levine M, Kumar R, et al. FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun. 2001;284:977–81.

    Article  PubMed  CAS  Google Scholar 

  45. Perry W, Stamp T. Hereditary hypophosphataemic rickets with autosomal recessive inheritance and severe osteosclerosis. A report of two cases. J Bone Joint Surg Br. 1978;60-B:430–4.

    PubMed  CAS  Google Scholar 

  46. Scriver C, Reade T, Halal F, Costa T, Cole D. Autosomal hypophosphataemic bone disease responds to 1,25-(OH)2D3. Arch Dis Child. 1981;56:203–7.

    PubMed  CAS  Google Scholar 

  47. Bastepe M, Shlossberg H, Murdock H, Jüppner H, Rittmaster R. A Lebanese family with osteosclerosis and hypophosphatemia. J Bone Miner Res. 1999;14:S558.

    Google Scholar 

  48. Lorenz-Depiereux B, Bastepe M, Benet-Pagès A, Amyere M, Wagenstaller J, Müller-Barth U, et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet. 2006;38:1248–50.

    Article  PubMed  CAS  Google Scholar 

  49. Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38:1310–5.

    Article  PubMed  CAS  Google Scholar 

  50. George A, Sabsay B, Simonian PA, Veis A. Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization. J Biol Chem. 1993;268:12624–30.

    PubMed  CAS  Google Scholar 

  51. Narayanan K, Ramachandran A, Hao J, He G, Park KW, Cho M, et al. Dual functional roles of dentin matrix protein 1. Implications in biomineralization and gene transcription by activation of intracellular Ca2+ store. J Biol Chem. 2003;278:17500–8.

    Article  PubMed  CAS  Google Scholar 

  52. George A, Ramachandran A, Albazzaz M, Ravindran S. DMP1—a key regulator in mineralized matrix formation. J Musculoskelet Neuronal Interact. 2007;7:308.

    PubMed  CAS  Google Scholar 

  53. Lu Y, Liu S, Yu S, Xie Y, Zhou J, Quarles L, et al. The 57 kDa C-terminal fragment of Dentin Matrix Protein 1 (DMP1) retains all biological activity: Osteocytic regulation of Pi homeostasis through FGF23. 29. Annual Meeting of American Society Bone and Mineral Research, Honolulu, Hawai, 2007.

  54. Ye L, Mishina Y, Chen D, Huang H, Dallas S, Dallas M, et al. Dmp1-deficient mice display severe defects in cartilage formation responsible for a chondrodysplasia-like phenotype. J Biol Chem. 2005;280:6197–203.

    Article  PubMed  CAS  Google Scholar 

  55. Feng JQ, Scott G, Guo D, Jiang B, Harris M, Ward T, et al. Generation of a conditional null allele for Dmp1 in mouse. Genesis. 2008;46:87–91.

    Article  PubMed  CAS  Google Scholar 

  56. Lu Y, Xie Y, Zhang S, Dusevich V, Bonewald LF, Feng JQ. DMP1-targeted Cre expression in odontoblasts and osteocytes. J Dent Res. 2007;86:320–5.

    Article  PubMed  CAS  Google Scholar 

  57. Beighton P. Osteoglophonic dysplasia. J Med Genet. 1989;26:572–6.

    PubMed  CAS  Google Scholar 

  58. Beighton P, Cremin BJ, Kozlowski K. Osteoglophonic dwarfism. Pediatr Radiol. 1980;10:46–50.

    Article  PubMed  CAS  Google Scholar 

  59. White K, Cabral J, Evans W, Ichikawa S, Davis S, Ornitz D, et al. A missense mutation in FGFR1 causes a novel syndrome: craniofacial dysplasia with hypophosphatemia (CFDH). J Bone Miner Res. 2003;18 Suppl 2:S4.

    Google Scholar 

  60. Farrow E, Davis S, Mooney S, Beighton P, Mascarenhas L, Gutierrez Y, et al. Extended mutational analyses of FGFR1 in osteoglophonic dysplasia. Am J Med Genet. 2006;140:537–9.

    Article  PubMed  CAS  Google Scholar 

  61. Muenke M, Schell U, Hehr A, Robin NH, Losken HW, Schinzel A, et al. A common mutation in the fibroblast growth factor receptor 1 gene in Pfeiffer syndrome. Nat Genet. 1994;8:269–74.

    Article  PubMed  CAS  Google Scholar 

  62. Roscioli T, Flanagan S, Kumar P, Masel J, Gattas M, Hyland VJ, et al. Clinical findings in a patient with FGFR1 P252R mutation and comparison with the literature. Am J Med Genet. 2000;93:22–8.

    Article  PubMed  CAS  Google Scholar 

  63. Hoffman W, Jüppner H, Deyoung B, O’dorisio M, Given K. Elevated fibroblast growth factor-23 in hypophosphatemic linear nevus sebaceous syndrome. Am J Med Genet A. 2005;134:233–6.

    PubMed  Google Scholar 

  64. Heike C, Cunningham M, Steiner R, Wenkert D, Hornung R, Gruss J, et al. Skeletal changes in epidermal nevus syndrome: does focal bone disease harbor clues concerning pathogenesis? Am J Med Genet A. 2005;139:67–77.

    PubMed  Google Scholar 

  65. Weinstein L, Yu S, Warner D, Liu J. Endocrine manifestations of stimulatory G protein alpha-subunit mutations and the role of genomic imprinting. Endocr Rev. 2001;22:675–705.

    Article  PubMed  CAS  Google Scholar 

  66. Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. New Engl J Med. 1991;325:1688–95.

    Article  PubMed  CAS  Google Scholar 

  67. Schwindinger W, Francomano C, Levine M. Identification of a mutation in the gene encoding the alpha subunit of the stimulatory G protein of adenylyl cyclase in McCune–Albright syndrome. Proc Natl Acad Sci U S A. 1992;89:5152–6.

    Article  PubMed  CAS  Google Scholar 

  68. Riminucci M, Collins M, Fedarko N, Cherman N, Corsi A, White K, et al. FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. J Clin Invest. 2003;112:683–92.

    PubMed  CAS  Google Scholar 

  69. Kobayashi K, Imanishi Y, Koshiyama H, Miyauchi A, Wakasa K, Kawata T, et al. Expression of FGF23 is correlated with serum phosphate level in isolated fibrous dysplasia. Life Sci. 2006;78:2295–301.

    Article  PubMed  CAS  Google Scholar 

  70. Yamamoto T, Imanishi Y, Kinoshita E, Nakagomi Y, Shimizu N, Miyauchi A, et al. The role of fibroblast growth factor 23 for hypophosphatemia and abnormal regulation of vitamin D metabolism in patients with McCune–Albright syndrome. J Bone Miner Metab. 2005;23:231–7.

    Article  PubMed  CAS  Google Scholar 

  71. Beck L, Karaplis AC, Amizuka N, Hewson AS, Ozawa H, Tenenhouse HS. Targeted inactivation of Ntp2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc Natl Acad Sci U S A. 1998;95:5372–7.

    Article  PubMed  CAS  Google Scholar 

  72. Tieder M, Modai D, Samuel R, Arie R, Halabe A, Bab I, et al. Hereditary hypophosphatemic rickets with hypercalciuria. N Engl J Med. 1985;312:611–7.

    Article  PubMed  CAS  Google Scholar 

  73. Tieder M, Modai D, Shaked U, Samuel R, Arie R, Halabe A, et al. “Idiopathic” hypercalciuria and hereditary hypophosphatemic rickets. Two phenotypical expressions of a common genetic defect. N Engl J Med. 1987;316:125–9.

    Article  PubMed  CAS  Google Scholar 

  74. Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, Tiosano D, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium/phosphate cotransporter gene SLC34A3. Am J Human Genet. 2006;78 2:193–201.

    Article  CAS  Google Scholar 

  75. Yamamoto T, Michigami T, Aranami F, Segawa H, Yoh K, Nakajima S, et al. Hereditary hypophosphatemic rickets with hypercalciuria: a study for the phosphate transporter gene type IIc and osteoblastic function. J Bone Miner Metab. 2007;25:407–13.

    Article  PubMed  Google Scholar 

  76. Jones A, Tzenova J, Frappier D, Crumley M, Roslin N, Kos C, et al. Hereditary hypophosphatemic rickets with hypercalciuria is not caused by mutations in the Na/Pi cotransporter NPT2 gene. J Am Soc Nephrol. 2001;12:507–14.

    PubMed  CAS  Google Scholar 

  77. Bergwitz C, Roslin N, Tieder M, Loredo-Osti J, Bastepe M, Abu-Zahra H, et al. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria (HHRH) predict a key role for the sodium-phosphate co-transporter NaPi-IIc in maintaining phosphate homeostasis and skeletal function. Am J Human Genet. 2006;78 2:179–92.

    Article  CAS  Google Scholar 

  78. Ichikawa S, Sorenson AH, Imel EA, Friedman NE, Gertner JM, Econs MJ. Intronic deletions in the SLC34A3 gene cause hereditary hypophosphatemic rickets with hypercalciuria. J Clin Endocrinol Metab. 2006;91:4022–7.

    Article  PubMed  CAS  Google Scholar 

  79. Prié D, Huart V, Bakouh N, Planelles G, Dellis O, Gérard B, et al. Nephrolithiasis and osteoporosis associated with hypophosphatemia caused by mutations in the type 2a sodium-phosphate cotransporter. N Engl J Med. 2002;347:983–91.

    Article  PubMed  Google Scholar 

  80. Virkki L, Forster I, Hernando N, Biber J, Murer H. Functional characterization of two naturally occurring mutations in the human sodium-phosphate cotransporter type IIa. J Bone Miner Res. 2003;18:2135–41.

    Article  PubMed  CAS  Google Scholar 

  81. Lapointe JY, Tessier J, Paquette Y, Wallendorff B, Coady MJ, Pichette V, et al. NPT2a gene variation in calcium nephrolithiasis with renal phosphate leak. Kidney Int. 2006;69:2261–7.

    Article  PubMed  CAS  Google Scholar 

  82. Walton RJ, Bijvoet OL. Nomogram for derivation of renal threshold phosphate concentration. Lancet. 1975;2:309–10.

    Article  PubMed  CAS  Google Scholar 

  83. Yamashita T, Konishi M, Miyake A, Inui K, Itoh N. Fibroblast growth factor (FGF)-23 inhibits renal phosphate reabsorption by activation of the mitogen-activated protein kinase pathway. J Biol Chem. 2002;277:28265–70.

    Article  PubMed  CAS  Google Scholar 

  84. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444:770–4.

    Article  PubMed  CAS  Google Scholar 

  85. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, et al. Regulation of fibroblast growth factor-23 signaling by Klotho. J Biol Chem. 2006;281:6120–3.

    Article  PubMed  CAS  Google Scholar 

  86. Ichikawa S, Imel EA, Kreiter ML, Yu X, Mackenzie DS, Sorenson AH, et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J Clin Invest. 2007;117:2684–91.

    Article  PubMed  CAS  Google Scholar 

  87. Kato Y, Arakawa E, Kinoshita S, Shirai A, Furuya A, Yamano K, et al. Establishment of the anti-Klotho monoclonal antibodies and detection of Klotho protein in kidneys. Biochem Biophys Res Commun. 2000;267:597–602.

    Article  PubMed  CAS  Google Scholar 

  88. Li SA, Watanabe M, Yamada H, Nagai A, Kinuta M, Takei K. Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Cell Struct Funct. 2004;29:91–9.

    Article  PubMed  CAS  Google Scholar 

  89. Kolek OI, Hines ER, Jones MD, LeSueur LK, Lipko MA, Kiela PR, et al. 1alpha,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal–gastrointestinal–skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol. 2005;289:G1036–42.

    Article  PubMed  CAS  Google Scholar 

  90. Masuyama R, Stockmans I, Torrekens S, Van Looveren R, Maes C, Carmeliet P, et al. Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest. 2006;116:3150–9.

    Article  PubMed  CAS  Google Scholar 

  91. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro OM, Mohammadi M, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007;117:4003–8.

    PubMed  CAS  Google Scholar 

  92. Krajisnik T, Bjorklund P, Marsell R, Ljunggren O, Akerstrom G, Jonsson KB, et al. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol. 2007;195:125–31.

    Article  PubMed  CAS  Google Scholar 

  93. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390:45–51.

    Article  PubMed  CAS  Google Scholar 

  94. Nabeshima Y. Klotho: a fundamental regulator of aging. Ageing Res Rev. 2002;1:627–38.

    Article  PubMed  CAS  Google Scholar 

  95. Kawata T, Imanishi Y, Kobayashi K, Miki T, Arnold A, Inaba M, et al. Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J Am Soc Nephrol. 2007;18:2683–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Jüppner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastepe, M., Jüppner, H. Inherited hypophosphatemic disorders in children and the evolving mechanisms of phosphate regulation. Rev Endocr Metab Disord 9, 171–180 (2008). https://doi.org/10.1007/s11154-008-9075-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-008-9075-3

Keywords

Navigation