Skip to main content
Log in

Effect of High-Temperature Annealing on the Structure and Properties of a Composite Material Based on TiC/TiB2/Ti3SiC2

  • Published:
Refractories and Industrial Ceramics Aims and scope

High-temperature annealing of a composite material based on the Ti3SiC2 MAX-phase dispersion-strengthened with TiC and TiB2 particles obtained by free SHS compression was carried out. The annealing was carried out in an oxidizing atmosphere at 900, 1100, and 1300°C for 10 h and at 1400°C for 4 h. Experimental dependences of the specific weight gain of the oxidized samples and the oxidation rate on the temperature and annealing time were plotted. The effect of annealing temperature on the phase composition, structure, and mechanical properties of the materials was established based on x-ray phase analysis, scanning electron microscope images, and energy-dispersive analysis. The proportion of the MAX-phase increased from 26 to 63 wt.% as the annealing temperature of the material increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Q. Zou, L. Bu, Y. Li, et al., “Effects of Ti3SiC2 on microstructure and properties of TiC0.4 enhanced TiAl matrix composites,” Mater. Chem. Phys., 297, Art. 127330 (2023); DOI: https://doi.org/10.1016/j.matchemphys.2023.127330.

  2. H. Kwon, X. Zhou, and D. Yoon, “Fabrication of SiCf/Ti3SiC2 by the electrophoresis of highly dispersed Ti3SiC2 powder,” Ceram. Int., 46(11), Part A, 18168 – 18174 (2020); DOI: https://doi.org/10.1016/j.ceramint.2020.04.138.

  3. Z. Liu, J. Xu, X. Xi, et al., “Molten salt dynamic sealing synthesis of MAX phases (Ti3AlC2, Ti3 SiC2 et al.) powder in air,” Ceram. Int., 49(1), 168 – 178 (2023); DOI: https://doi.org/10.1016/j.ceramint.2022.08.325.

    Article  CAS  Google Scholar 

  4. H. Chen, S. Zhao, X. Nai, et al., “Effects of microfluidic morphologies on the interfacial microstructure and mechanical properties of Ti3SiC2 ceramic and pure copper brazed joints,” Ceram. Int., 49(10), 16370 – 16378 (2023); DOI: https://doi.org/10.1016/j.ceramint.2023.01.239.

    Article  CAS  Google Scholar 

  5. Z. Yang, J. Xu, Y. Qian, et al., “Electrical conductivities and mechanical properties of Ti3SiC2 reinforced Cu-based composites prepared by cold spray,” J. Alloys Compd., 946, Art. 169473 (2023); DOI: https://doi.org/10.1016/j.jallcom.2023.169473.

  6. W. A. Hanson, M. K. Patel, M. L. Crespillo, et al., “Ionizing vs collisional radiation damage in materials: Separated, competing, and synergistic effects in Ti3SiC2,” Acta Mater., 50, 195 – 205 (2019).

    Article  Google Scholar 

  7. H. L. Zhang, R. R. Su, L. Q. Shi, et al., “The damage evolution of He irradiation on Ti3SiC2 as a function of annealing temperature,” J. Eur. Ceram. Soc., 38(4), 1253 – 1264 (2018).

    Article  CAS  Google Scholar 

  8. H. L. Zhang, R. R. Su, I. Szlufarska, et al., “Helium effects and bubbles formation in irradiated Ti3SiC2,” J. Eur. Ceram. Soc., 41(1), 252 – 258 (2021).

    Article  CAS  Google Scholar 

  9. B. Y. Islak and E. Ayas, “Evaluation of properties of spark plasma sintered Ti3SiC2 and Ti3SiC2/SiC composites,” Ceram. Int., 45(9), 12297 – 12306 (2019).

    Article  CAS  Google Scholar 

  10. B. Y. Islak and D. Candar, “Synthesis and properties of TiB2/Ti3SiC2 composites,” Ceram. Int., 47(1), 1439 – 1446 (2020).

    Article  Google Scholar 

  11. A. D. Bykova, V. V. Semenova, S. N. Perevislov, et al., “Influence of synthesis parameters on density and phase composition of materials based on Ti3SiC2,” Refract. Ind. Ceram., 62(1), 89 – 93 (2021).

    Article  CAS  Google Scholar 

  12. Y. Uchida, K. Morita, T. S. Suzuki, et al., “Fabrication and mechanical properties of textured Ti3SiC2 systems using commercial powder,” Mater. Trans., 59(5), 829 – 834 (2018).

    Article  CAS  Google Scholar 

  13. W. J. Zou, H. B. Zhang, J. Yang, et al., “Mechanical, thermal physical properties and thermal shock resistance of in situ (TiB2 + SiC)/Ti3SiC2 composite,” J. Alloys Compd., 741, 44 – 50 (2018).

    Article  CAS  Google Scholar 

  14. S. R. Luan, J. S. Zhou, Y. K. Xi, et al., “High lithium-ion storage performance of Ti3SiC2 MAX by oxygen doping,” ChemistrySelect, 4(18), 5319 – 5321 (2019).

    Article  CAS  Google Scholar 

  15. Y. Li, X. Z. Zhang, S. Y. Zhang, et al., “First principles study of stability, electronic structure and fracture toughness of Ti3SiC2/TiC interface,” Vacuum, 196, Art. 110745 (2022).

  16. M. F. R. P. Alves, C. dos Santos, B. X. de Freitas, et al., “Preparation of TiC/Ti3SiC2 composite by sintering mechanical alloyed Ti–Si–C powder mixtures,” J. Nanosci. Nanotechnol., 20(7), 4580 – 4586 (2020).

    Article  CAS  Google Scholar 

  17. B. Y. Islak and D. Candar, “Synthesis and properties of TiB2/Ti3SiC2 composites,” Ceram. Int., 47(1), 1439 – 1446 (2021); DOI: https://doi.org/10.1016/j.ceramint.2020.09.098.

    Article  CAS  Google Scholar 

  18. N. V. Sevost’yanov, O. V. Basargin, and V. G. Maksimov, “High-temperature oxidation of Ti3SiC2-based materials prepared by spark plasma sintering,” Neorg. Mater., 55(1), 11 – 15 (2019); DOI: https://doi.org/10.1134/S0002337X19010111.

  19. S. Csaki, F. Lukac, J. Veverka, et al., “Preparation of Ti3SiC2 MAX phase from Ti, TiC, and SiC by SPS,” Ceram. Int., 48(19), Part A, 28391 – 28395 (2022); DOI: https://doi.org/10.1016/j.ceramint.2022.06.149.

  20. D. Chen, H. Gu, A. Huang, et al., “Mechanical performance and oxidation resistance of SiC castables with lamellar Ti3SiC2 coatings on SiC aggregates prepared by SPS,” J. Alloys Compd., 791, 461 – 468 (2019); DOI: https://doi.org/10.1016/j.jallcom.2019.03.358.

    Article  CAS  Google Scholar 

  21. C. Magnus, D. Cooper, L. Ma, et al., “Microstructures and intrinsic lubricity of in situ Ti3SiC2-TiSi2-TiC MAX phase composite fabricated by reactive spark plasma sintering (SPS),” Wear, 448 – 449, Art. 203169 (2020); DOI: https://doi.org/10.1016/j.wear.2019.203169.

  22. T. Galvin, N. C. Hyatt, W. M. Rainforth, et al., “Laser sintering of electrophoretically deposited (EPD) Ti3SiC2 MAX phase coatings on titanium,” Surf. Coat. Technol., 366, 199 – 203 (2019); DOI: https://doi.org/10.1016/j.surfcoat.2019.03.031.

    Article  CAS  Google Scholar 

  23. C. Magnus, T. Galvin, L. Ma, et al., “Synthesis and microstructural evolution in ternary metalloceramic Ti3SiC2 consolidated via the Maxthal 312 powder route,” Ceram. Int., 46(10), 15342 – 15356 (2020); DOI: https://doi.org/10.1016/j.ceramint.2020.03.078.

    Article  CAS  Google Scholar 

  24. B. Chahhou, C. Labrugere-Sarroste, F. Ibalot, et al., “Synthesis of Ti3SiC2 coatings onto SiC monoliths from molten salts,” J. Eur. Ceram. Soc., 42(13), 5484 – 5492 (2022); DOI: https://doi.org/10.1016/j.jeurceramsoc.2022.05.054.

    Article  CAS  Google Scholar 

  25. H. Xu, T. Fu, P. Wang, et al., “Microstructure and properties of plasma sprayed copper-matrix composite coatings with Ti3SiC2 addition,” Surf. Coat. Technol., 460, Art. 129434 (2023); DOI: https://doi.org/10.1016/j.surfcoat.2023.129434.

  26. Y. Xiong, H. Li, J. Huang, et al., “Fabrication of TiC coated short carbon fiber reinforced Ti3SiC2 composites: Process, microstructure and mechanical properties,” J. Eur. Ceram. Soc., 42(9), 3770 – 3779 (2022); DOI: https://doi.org/10.1016/j.jeurceramsoc.2022.03.024.

    Article  CAS  Google Scholar 

  27. X. Jiang, W. Liu, Y. Li, et al., “Microstructures and mechanical properties of Cu/Ti3SiC2/C/graphene nanocomposites prepared by vacuum hot-pressing sintering and hot isostatic pressing,” Composites, Part B, 141, 203 – 213 (2018); DOI: https://doi.org/10.1016/j.compositesb.2017.12.050.

    Article  CAS  Google Scholar 

  28. M. Li, M. Gong, Z. Cheng, et al., “Novel WC-Co-Ti3SiC2 cemented carbide with ultrafine WC grains and improved mechanical properties,” Ceram. Int., 48(15), 22335 – 22342 (2022); DOI: https://doi.org/10.1016/j.ceramint.2022.04.239.

    Article  CAS  Google Scholar 

  29. F. Qi, Z. Wang, J. Wu, et al., “Improved mechanical properties of Al2O3 ceramic by in-situ generated Ti3SiC2 and TiC via hot pressing sintering,” Ceram. Int., 43(14), 10691 – 10697 (2017); DOI: https://doi.org/10.1016/j.ceramint.2017.04.165.

    Article  CAS  Google Scholar 

  30. S. Li, L. Cheng, and L. Zhang, “Oxidation behavior of Ti3SiC2 at high temperature in air,” Mater. Sci. Eng., A, 1, 112 – 120 (2003); DOI: https://doi.org/10.1016/S0921-5093(02)00210-1.

  31. P. M. Bazhin, M. S. Antipov, A. S. Konstantinov, et al., “In-situ study of the process of self-propagating high temperature synthesis of titanium carbide with a nichrome binder,” Mater. Lett., 308, Part A, Art. 131086 (2022); DOI: https://doi.org/10.1016/j.matlet.2021.131086.

  32. P. M. Bazhin, A. M. Stolin, A. S. Konstantinov, et al., “Ceramic Ti–B composites synthesized by combustion followed by hightemperature deformation,” Materials, 9, 1027 – 1032 (2016); DOI: https://doi.org/10.3390/ma9121027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. V. I. Vershinnikov and D. Yu. Kovalev, “Formation of V2AlC MAX phase by SHS involving magnesium reduction of V2O5,” Ceram. Int., 49, No. 4, 6063 – 6067 (2023); DOI: https://doi.org/10.1016/j.ceramint.2022.10.134.

    Article  CAS  Google Scholar 

  34. A. D. Bazhina, A. S. Konstantinov, A. P. Chizhikov, et al., “Materials based on the MAX phases of the Ti-Al-C system obtained under combustion and high-temperature shear deformation,” Mater. Lett., 318, Art. 132196 (2022); DOI: https://doi.org/10.1016/j.matlet.2022.132196.

  35. A. D. Prokopets, P. M. Bazhin, A. S. Konstantinov, et al., “Structure and mechanical characteristics of a laminated Ti3AlC2 MAX phase-based composite material prepared by a free self-propagating high-temperature synthesis compression method,” Inorg. Mater., 57(9), 937 – 941 (2021); DOI: https://doi.org/10.1134/S0020168521090132.

    Article  CAS  Google Scholar 

  36. A. D. Prokopets, A. S. Konstantinov, A. P. Chizhikov, et al., “General trends of structure formation in graded composite materials based on the Ti3AlC2 MAX-phase on titanium,” Inorg. Mater., 56(10), 1087 – 1091 (2020); DOI: https://doi.org/10.1134/S002016852010012X.

    Article  CAS  Google Scholar 

  37. A. Pazniak, P. Bazhin, I. Shchetininc, et al., “Dense Ti3AlC2 based materials obtained by SHS-extrusion and compression methods,” Ceram. Int., 45(2), 2020 – 2027 (2019); DOI: https://doi.org/10.1016/j.ceramint.2018.10.101.

    Article  CAS  Google Scholar 

  38. P. M. Bazhin, L. S. Stel’makh, and A. M. Stolin, “Effect of strain on the formation of a MAX phase in Ti-Al-C materials during self-propagating high temperature synthesis and extrusion,” Inorg. Mater., 55(3), 302 – 307 (2019); DOI: https://doi.org/10.1134/S0020168519030051.

Download references

The research was financially supported by Russian Science Foundation Grant No. 22-79-00158; https://rscf.ru/project/22-79-00158/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Bazhin.

Additional information

Translated from Novye Ogneupory, No. 8, pp. 48 – 53, August, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konstantinov, A.S., Chizhikov, A.P., Antipov, M.S. et al. Effect of High-Temperature Annealing on the Structure and Properties of a Composite Material Based on TiC/TiB2/Ti3SiC2. Refract Ind Ceram 64, 439–443 (2023). https://doi.org/10.1007/s11148-024-00867-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-024-00867-9

Keywords

Navigation