Skip to main content
Log in

Features of Ceramic Material Formation Based Upon Cobalt (II) Ferrite

  • Published:
Refractories and Industrial Ceramics Aims and scope

Results of studying features of spinel structure formation in the CoO–Fe2O3 system obtained using various production techniques are presented. The possibility of forming cobalt (II) ferrite at the surface of a number of carriers is considered. It is shown that depending upon structural characteristics of the substrate, the cobalt (II) ferrite formed has different dispersion and degree of reversibility. It is established that increased catalytic activity in the process of purification of an aqueous solution from an organic dye during hydrogen peroxide breakdown of synthesized materials with an organic carrier has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. E. S. Abdrakhimova, “Influence of aluminum containing slag on physical and mechanical parameters, phase composition and porosity of acid-resistant materials,” Refract. Ind. Ceram., 63(6), 321 – 324 (2022). DOI: https://doi.org/10.17073/1683-4518-2022-6-28-32.

    Article  CAS  Google Scholar 

  2. B. B. Khaidarov, A. G. Yudin, D. S. Suvorov, et al., “Preparation of hollow spherical particles of ferrite strontium SrFe12O19 by spray pyrolysis,” Refract. Ind. Ceram., 62(8), 62 – 65 (2021). DOI: https://doi.org/10.17073/1683-4518-2021-8-62-65.

    Article  Google Scholar 

  3. V. G. Kostishyn, I. M. Isaev, R. I. Shakirzyanov, et al., “Radar absorbing properties of polyvinyl alcohol/Ni–Zn ferrite-spinel composite,” Techn. Phys., No. 1, 104 – 110 (2022). DOI: https://doi.org/10.21883/TP.2022.01.52540.217-21.

  4. A. S. Kamzin, I. M. Obaidat, V. S. Kozlov, et al., “Magnetic nanocomposites of graphine oxide/magnetite + cobalt ferrite (GrO/Fe3O4 + CoFe2O4) for magnetic hypperthermy,” Fiz. Tverdogo Tela, 63(7), 90 – 910 (2021). DOI: https://doi.org/10.21883/FTT.2021.07.51040.039.

    Article  Google Scholar 

  5. E. I. Kopeichenko and I. Ya. Mittova, N. S. Perov, et al, “Synthesis, composition and magnetic properties of lanthanum ferrite doped with cadmium,” Neorgan Materialy, 57(4), 388 – 392 (2021). DOI: https://doi.org/10.31857/S0002337X21040072.

    Article  Google Scholar 

  6. K. O. Denisova, A. A. Il’in, A. I. Il’in, and Yu. N. Sakahova, “Low-temperature breakdown of N2O” Teoret. Osnovy Khim. Tekhnol, 56(2), 220 – 235 (2022). DOI: https://doi.org/10.31857/S0040357122010055.

  7. A. I. Ivanets, V. G. Porzorovich, and V. V. Sarkisov, “Synthesis and catalytic properties of Fenton heterogeneous datalysts based upon MgFe2O4/G–C3N4 composites,” Uspekhi Khim. Tekhnol., 15(13), 34 – 36 (2021).

    Google Scholar 

  8. A. A. Lysenko, S. S. Yanchenko, A. Yu. Kuznetsov, and O. V. Astashkina, “Polymer composite-sorbents with inorganic fillers,” Dizain. Materialy. Tekhnologiya, 4(68), 81 – 85 (2022). DOI: https://doi.org/10.46418/1990-8997 2022 4(68) 81 85.

    Article  Google Scholar 

  9. S. A. Tikhonova, P. V. Evdokimov, V. I. Puglyaev, et al., “Formation of composites with a hydrogel matrix, filled with magnetoelectric elements of cobalt ferrite/piezoelectric by a stereolithographic 3D-printing method,” Perspekt. Materialy, No. 8, 36 – 47 (2022). DOI: https://doi.org/10.30791/1028-978X-2022-8-36-47.

    Article  Google Scholar 

  10. I. D. Kashcheev and K. G. Zemlyanoi, “Spinel production,” Refract. Ind. Ceram., 58(2), 162 – 168 (2017). DOI: https://doi.org/10.17073/1683-4518-2017-3-127-133.

    Article  CAS  Google Scholar 

  11. N. V. Buchilin, G. Y. Lyulyukina, and N. M. Varrik, “Effect of firing mode on the structure and properties of highly porous ceramic materials based on alumomagnesia spinel,” Refract. Ind. Ceram., 60(1), 55 – 60 (2019). DOI: https://doi.org/10.17073/1683-4518-2019-1-37-42.

    Article  CAS  Google Scholar 

  12. D. B. Sherstyuk, A. Yu. Starikov, V. E. Zhivudin, et al., “Technology of preparing Ni-Zn-Co ferrites with a spinel structure,” Vestnik Yuzhno-Ural Gos. Univ., Ser. Metall., 21(1), 35 – 41 (2021). DOI: https://doi.org/10.14529/met210104.

  13. E. V. Nikolaev, E. N. Lysenko, and A. P. Surzhikov, “Thermal analysis of processes during solid-phase synthesis of lithium-titanium ferrite,” Zh. Fiz. Khim, 95, No. 5, 686 – 691 (2021). DOI: https://doi.org/10.31857/S0044453721050216.

    Article  Google Scholar 

  14. D. V. Lazareva, D. V. Korolev, G. A. Shul’meister, and M. S. Istomina, “ Synthesis of nanoparticles of gadolinium ferrites and ferrite-garnets with a fluorescent marker and study of their natural biodistribution,” Nauka. Nast. Budush, No. 1, 94 – 97 (2021).

  15. E. E. Nikishina, “Heterophase synthesis of cobalt ferrite,” Tonkie Khim. Tekhnol., 16, No. 6, 502 – 511 (2021). DOI: https://doi.org/10.32362/2410-6593-2021-16-6-502-511.

    Article  CAS  Google Scholar 

  16. A. V. Belyakov, A. V. Fedotov, and V. I. Vanchurin, “Boehmite nanoparticles with different functional properties for manufacturing products with specified parameters,” Refract. Ind. Ceram., 62(1), 145 – 152 (2021). DOI: https://doi.org/10.17073/1683-4518-2021-3-16-23.

    Article  CAS  Google Scholar 

  17. S/E. V. Stepanova, V. G. Maximov, and Y. A. Ivakhnenko, “Internal defects of complex threads made of oxide refractory fibers,” Refract. Ind. Ceram., 63(1), 100 – 104 (2022). DOI: https://doi.org/10.17073/1683-4518-2022-2-56-60.

  18. A. M. Abyzov, “Aluminum oxide and alumina ceramics (review). Part 2. Foreign Manufacturers. Technologies and research in the field of alumina ceramics,” Refract. Ind. Ceram., 60(1), 33 – 42 (2019). DOI: https://doi.org/10.17073/1683-4518-2019-213-22.

    Article  Google Scholar 

  19. N. Shabelskaya, M. Egorova, A. Radjabov, et al., “Formation of biochar nanocomposite materials based on CoFe2O4 for purification of aqueous solutions from chromium compounds (VI),” Water, 15(1), 93 (2023). DOI: https://doi.org/10.3390/w15010093.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Shabel’skaya.

Additional information

Translated from Novye Ogneupory, No. 5, pp. 86 – 92, May, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabel’skaya, N.P., Radzhabov, A.M., Gaidukova, Y.A. et al. Features of Ceramic Material Formation Based Upon Cobalt (II) Ferrite. Refract Ind Ceram 64, 271–276 (2023). https://doi.org/10.1007/s11148-024-00837-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-024-00837-1

Keywords

Navigation