Skip to main content

Advertisement

Log in

Effects of Sintering Temperature on Microstructure and Mechanical Properties of Pressureless Sintering Alumina Ceramics with Al2O3–SiO2–CaO Sintering Aids

  • Published:
Refractories and Industrial Ceramics Aims and scope

The alumina ceramics with high compressive strength were prepared by pressureless sintering, and the kaolinite and calcium carbonate were added as Al2O3–SiO2–CaO sintering aids. The effects of sintering temperature on the volume shrinkage, bulk density, water absorption and compressive strength of the alumina ceramics were studied. The phase composition, crystal cell parameters, average grain size and microstructure of the ceramic were analyzed by XRD, SEM and EDS. The results show that the lattice tends to packed with the increase of sintering temperature. The bonding between grains is the most compact after sintering at 1700°C. The volume shrinkage increases with the increase of sintering temperature. The water absorption of alumina ceramics after sintering at 1700°C reaches the minimum value of 0.06%. The bulk density and compressive strength increase first and then decrease with the increase of sintering temperature. At 1700°C, optimized mechanical properties of alumina ceramics is obtained, with a bulk density of 3.80 g/cm3 and a compressive strength of 1323 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Zhang, X. Li, M. Zhang, Z. Xiu, J-G. Li, J. Li, et al., “High-strength macro-porous alumina ceramics with regularly arranged pores produced by gel-casting and sacrificial template methods,” J. Mater. Sci., 54(14), 10119 – 10129 (2019).

    Article  CAS  Google Scholar 

  2. Z. Xing, W. Liu, Y. Chen, W. Li, “Effect of plasticizer on the fabrication and properties of alumina ceramic by stereolithography-based additive manufacturing,” Ceram. Int., 44(16), 19939 – 19944 (2018).

    Article  CAS  Google Scholar 

  3. P. G. De la Iglesia, O. García-Moreno, J. L. Menéndez, A. H. De Aza, I. Álvarez-Clemares, R. Torrecillas, “Microstructural development and mechanical performance of mullite-alumina and hibonite-alumina ceramics with controlled addition of a glass phase,” Ceram. Int., 44(2), 2292 – 2299(2018).

    Article  Google Scholar 

  4. J. Du, X. Yi, M. Li, K. Peng, “Fabricating a denser SiO2–CaO co-doped 95 wt.% alumina ceramic to verify that small pores have no effect on the dielectric breakdown strength of alumina ceramics,” J. Eur. Ceram. Soc., 40(15), 6218 – 6222 (2020).

    Article  CAS  Google Scholar 

  5. H. Li, Y. Liu, P. Colombo,W. Li, Y. Liu, K. Hu, et al. “The influence of sintering procedure and porosity on the properties of 3D printed alumina ceramic cores,” Ceram. Int., 47(19), 27668 – 27676 (2021).

    Article  CAS  Google Scholar 

  6. K. Kita, N. Kondo, M. Hotta “A Study on the Sintering of a Mixed Powder Containing Alumina and Aluminum for Control of Volume Shrinkage during Sintering,” J. Mater. Eng. Perform., 29(9), 5594 – 5601 (2020).

    Article  CAS  Google Scholar 

  7. P.-Y. Gao, Y.-D. Ma, W.-W. Sun, Y. Yang, C. Zhang, Y.-H. Cui, et al., “Microstructure and properties of Al2O3–ZrO2–TiO2 composite coatings prepared by plasma spraying,” Rare Metals, 40(7), 1825 – 1834 (2020).

    Article  Google Scholar 

  8. Z. Yin, S. Yan, J. Ye, Z. Zhu, J. Yuan, “Cutting performance of microwave-sintered sub-crystal Al2O3/SiC ceramic tool in dry cutting of hardened steel,” Ceram. Int., 45(13), 16113 – 16120 (2019).

    Article  Google Scholar 

  9. X. Liu, B. Zou, H. Xing, C. Huang, “The preparation of ZrO2–Al2O3 composite ceramic by SLA-3D printing and sintering processing,” Ceram. Int., 46(1), 937 – 944 (2020).

    Article  CAS  Google Scholar 

  10. L. Lv, Y. Lu, X. Zhang, Y. Chen, W. Huo, W. Liu, et al. “Preparation of low-shrinkage and high-performance alumina ceramics via incorporation of pre-sintered alumina powder based on Isobam gelcasting,” Ceram. Int. 45(9), 11654 – 11659 (2019).

    Article  CAS  Google Scholar 

  11. H. Li, X. Xi, J. Ma, K. Hua, A. Shui, “Low-temperature sintering of coarse alumina powder compact with sufficient mechanical strength,” Ceram. Int., 43(6), 5108 – 5114 (2017).

    Article  CAS  Google Scholar 

  12. N. A. Rubinkovskii, D. P. Shornikov, A. V. Tenishev, A. G. Zaluzhnyi, A. G. Zholnin, “Effect of Aluminum Oxide Powder Particle Size on Spark Plasma Sintering Results,” Glass Ceram., 76(3 – 4), 94 – 98 (2019).

    Article  CAS  Google Scholar 

  13. G. Zhou, Y. Yang, L. Wang, Q. Guo, S. Yang, C. He, et al. Effects of high purity alumina powder modification on the sintering densification and translucent properties og alumina ceramics. J. Chin. Silic Soc., 38(8), 1450 – 1454 (2010).

    CAS  Google Scholar 

  14. H. Li, Y. Liu, Y. Liu, Q. Zeng, K. Hu, Z. Lu, et al., “Effect of burying sintering on the properties of ceramic cores via 3D printing,” Journal of Manufacturing Processes, 57, 380 – 388 (2020).

    Article  Google Scholar 

  15. H.-m. Bian, Y. Yang, Y.Wang,W. Tian, H.-f. Jiang, Z.-j. Hu , et al., “Alumina–titania ceramics prepared by microwave sintering and conventional pressure-less sintering,” J. Alloys Compd., 525, 63 – 67 (2012).

    Article  CAS  Google Scholar 

  16. T. Yuancheng, S. Zhiping, T. Jingyou, C. Kun, Q. I. Xiaomin, L. U. Weiyuan, “High-pressure sintering of microcrystalline and highly purified alumina ceramic,” J. Chin. Silic Soc., 5(8), 968 – 972 (2007).

    Google Scholar 

  17. M. Michálková, M. Michálek, G. Blugan, J. Kuebler, “The influence of spinel and magnesia powder bed on mechanical properties of alumina sintered under air and nitrogen atmosphere,” Adv. Appl. Ceram., 117(8), 485 – 492 (2018).

    Article  Google Scholar 

  18. X. Geng, Y. Hong, J. Lei, J. Ma, J. Chen, H. Xiao, et al., “Ultra- fast, selective, non-melting, laser sintering of alumina with anisotropic and size-suppressed grains,” J. Am. Ceram. Soc., 104(5), 1997 – 2006 (2021).

    Article  CAS  Google Scholar 

  19. D. Galusek, K. Ghillányová, J. Sedláèek, J. Kozánková, P. Šajgalík, “The influence of additives on microstrucutre of sub-micron alumina ceramics prepared by two-stage sintering,” J. Eur. Ceram. Soc., 32(9), 1965 – 1970 (2012).

    Article  CAS  Google Scholar 

  20. R. Jiao, S. Rong, D.Wang, “Effect of dual liquid phase sintering aids on the densification and microstructure of low temperature sintered alumina ceramics,” Ceram. Int., 48(5), 6138 – 6147 (2022).

    Article  CAS  Google Scholar 

  21. L. Yu, H. Xiao, “Liquid-Phase-Sintering of Alumina Ceramics and Sintering Kinetic Analysis,” J. Chin. Silic Soc. 34(6), 647 – 651 (2006).

    Google Scholar 

  22. N. Louet, H. Reveron, G. Fantozzi, “Sintering behaviour and microstructural evolution of ultrapure α-alumina containing low amounts of SiO2,” J. Eur. Ceram. Soc. 28(1), 205 – 215 (2008).

    Article  CAS  Google Scholar 

  23. E. Keramat, B. Hashemi, “Modelling and optimizing the liquid phase sintering of alumina / CaO–SiO2–Al2O3 ceramics using response surface methodology,” Ceram. Int., 47(3), 3159 – 3172 (2021).

    Article  CAS  Google Scholar 

  24. Y. Yang, M. Ma, F. Zhang, F. Liu, G. Chen, Z. Liu, et al., “Low-temperature sintering of Al2O3 ceramics doped with 4CuO–TiO2–2Nb2O5 composite oxide sintering aid,” J. Eur. Ceram. Soc., 40(15), 5504 – 5510 (2020).

    Article  CAS  Google Scholar 

  25. H. Li, Z. Zhi, L. Jun, X. Guang, “Low Temperature Sintering of Alumina Ceramics with MnO2–TiO2–MgO Additives,” Bull. Chin. Ceram. Soc., 27(1), 77 – 81 (2008).

    CAS  Google Scholar 

  26. T. O. Obolkina, M. A. Goldberg, V. V. Smirnov, S. V. Smirnov, D. D. Titov, A. A. Konovalov, et al., “Increasing the Sintering Rate and Strength of ZrO2–Al2O3 Ceramic Materials by Iron Oxide Additions,” Inorg. Mater., 56(2), 182 – 189 (2020).

    Article  CAS  Google Scholar 

  27. H. Bian, Y. Yang, Y.Wang,W. Tian, H. Jiang, Z. Hu, et al., “Effect of Microstructure of Composite Powders on Microstructure and Properties of Microwave Sintered Alumina Matrix Ceramics,” J. Mater. Sci. Technol. 29(5), 429 – 433 (2013).

    Article  CAS  Google Scholar 

  28. A. O. Bokuniaeva, A. S. Vorokh, “Estimation of particle size using the Debye equation and the Scherrer formula for polyphasic TiO2 powder,” Journal of Physics: Conference Series, 1410(1) (2019).

  29. J. Hu, X. Liu, C. Ding, X. Zhou, C. Hu, S. Wang, “Influence of Additives on Properties of Low Temperature Sintering 95 Alumina Ceramics,” Chim. Ceram., 48(2), 11 – 14 (2012).

    Google Scholar 

  30. V. I. Lutsyk, A. E. Zelenaya, V. V. Savinov, “Phase trajectories in CaO–Al2O3–SiO2 melts,” Crystallogr. Rep., 57(7), 943 – 947 (2012).

    Article  CAS  Google Scholar 

  31. C.W. Park, D. Y. Yoon, “Effects of SiO2, CaO2, and MgO Additions on the Grain Growth of Alumina,” J. Am. Ceram. Soc., 83(10), 2605 – 2609 (2000).

    Article  CAS  Google Scholar 

  32. S. H. Lee, D. Y. Kim, N. M. Hwang, “Effect of anorthite liquid on the abnormal grain growth of alumina,” J. Eur. Ceram. Soc., 22(3), 317 – 321 (2002).

    Article  CAS  Google Scholar 

  33. S. F. Rong, Y. C. Zhu, J. Q. Zhang, H. L. Liu, C. Y. Shi, “Research on the Growth Mechanism of Alumina Ceramics with Columnar Grain,” Advanced Materials Research, 79 – 82, 1899 – 1902 (2009).

    Article  Google Scholar 

  34. A. P. Goswami, S. Roy, G. C. Das, “Effect of powder, chemistry and morphology on the dielectric properties of liquid-phase-sintered alumina,” Ceram. Int. 28(4), 439 – 445 (2002).

    Article  CAS  Google Scholar 

  35. W. Du, Y. Ai, W. Chen, W. He, J. Zhang, Y. Fan, et al., “Grain growth kinetics and growth mechanism of columnar Al2O3 crystals in xNb2O5–7.5La2O3–Al2O3 ceramic composites,” Ceram. Int., 45(6), 6788 – 6794 (2019).

    Article  CAS  Google Scholar 

  36. Y. Hu, Z. Yin, Y. Gong, Z. Yang, Z. Yang, Y. Liang, et al., “Enhancing microstructural properties of alumina ceramics via binary sintering aids,” J. Cent. South. Univ., 28(12), 3705 – 3713 (2022).

    Article  Google Scholar 

  37. J. Chen, H. Wang, S. Feng, H. Ma, D. Deng, S. Xu, “Effects of CaSiO3 addition on sintering behavior and microwave dielectric properties of Al2O3 ceramics,” Ceram. Int., 37(3), 989 – 993 (2011).

    Article  CAS  Google Scholar 

  38. Q. Xia, Y. Yan, X. Yan, C. Ye, “Effect of Sintering Additives on the Properties of 95 Alumina Ceramics,” Bull. Chin. Ceram. Soc., 33(2), 266 – 270 (2014).

    CAS  Google Scholar 

  39. Z. Jing, S. Zhuoshen, “The effect of pre-sintered additives on the densification for 95% alumina ceramics,” Electron. Compon. Mater. 27(2), 57 – 59 (2008).

    Google Scholar 

  40. A. M. Abyzov, “Aluminum Oxide and Alumina Ceramics (review). Part 1. Properties of Al2O3 and Commercial Production of Dispersed Al2O3,” Refract. Ind. Ceram. 60(1), 24 – 32 (2019).

    Article  Google Scholar 

  41. A. M. Abyzov, “Oxide and Alumina Ceramics (Review). Part 3. Russian Manufacturers of Alumina Ceramics,” Refract. Ind. Ceram., 60(2), 183 – 191 (2019).

    Article  Google Scholar 

Download references

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (Nos. 52272027), Key R&D Project in Shaanxi Province (2022GY-421), Scientific Research Program Funded by Shaanxi Provincial Education Department (Z20200170), and the Scientific Research Program Funded by the department of Shaanxi Province (2019JQ-897). The authors also wish to express thanks to Chaowei Guo, the Nanoscale of Xi’an Jiaotong University, for helping with SEM and observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghai Ding.

Additional information

Translated from Novye Ogneupory, No. 3, pp. 32 – 42, March, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, D., Guan, Y., Xiao, G. et al. Effects of Sintering Temperature on Microstructure and Mechanical Properties of Pressureless Sintering Alumina Ceramics with Al2O3–SiO2–CaO Sintering Aids. Refract Ind Ceram 64, 136–146 (2023). https://doi.org/10.1007/s11148-023-00816-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-023-00816-y

Keywords

Navigation