Skip to main content
Log in

Bulk Solid-State Polyantimonic-Acid-Based Proton-Conducting Membranes

  • Published:
Refractories and Industrial Ceramics Aims and scope

Bulk solid-state polyantimonic-acid-(PAA)-based proton-conducting membranes were manufactured via cold isostatic pressing using an inert polymeric binder. Precursor PAA powder was obtained using stepwise aqueous hydrolysis of antimony pentachloride. X-ray diffraction (XRD) data showed that hydrolysis resulted in crystalline PAA with the pyrochlore structure. The composition of the powder obtained via solid-state synthesis corresponded to sodium antimonate having the ilmenite structure. The logarithm of the conductivity of PAA membranes in air was linearly dependent on inverse temperature in the range 293 – 452 K. Based on XRD and conductivity data, the obtained solid-state PAA-based membranes were prospective proton conductors having a conductivity of 10–4 S/m and an activation energy of conductivity of 0.395 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. L. Carrette, K. A. Friedrich, and U. Stimming, “Fuel cells: Principles, types, fuels, and applications,” ChemPhysChem, 1(4), 162 – 193 (2000).

    Article  CAS  Google Scholar 

  2. A. Vourros, V. Kyriako, I. Garagounis, et al., “Chemical reactors with high temperature proton conductors as a main component: progress in the past decade,” Solid State Ionics, 306, 76 – 81 (2017).

    Article  CAS  Google Scholar 

  3. M. Nomnqa, D. Ikhu-Omoregbe, A. Rabiu, et al., “Performance evaluation of a HT-PEM fuel cell micro-cogeneration system for domestic application,” Energy Syst., 10(1), 185 – 210 (2019).

    Article  Google Scholar 

  4. S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, “Review of the proton exchange membranes for fuel cell applications,” Int. J. Hydrogen Energy, 35(17), 9349 – 9384 (2010).

    Article  CAS  Google Scholar 

  5. A. A. Lysova and A. B. Yaroslavtsev, “New proton-conducting membranes based on phosphorylated polybenzimidazole and silica,” Inorg. Mater., 55(5), 470 – 476 (2019).

    Article  CAS  Google Scholar 

  6. P. Colomban, “Proton conductors and their applications: A tentative historical overview of the early researches,” Solid State Ionics, 334, 125 – 144 (2019).

    Article  CAS  Google Scholar 

  7. N. Mahato, A. Banerjee, A. Gupta, et al., “Progress in material selection for solid oxide fuel cell technology: A review,” Prog. Mater. Sci., 72, 141 – 337 (2015).

    Article  CAS  Google Scholar 

  8. A. B. Yaroslavtsev, Yu. A. Dobrovolsky. N. S. Shaglaeva, et al., “Nanostructured materials for low-temperature fuel cells,” Russ. Chem. Rev., 81(3), 191 – 220 (2012).

    Article  CAS  Google Scholar 

  9. J. Yu, M. Pan, and R. Yuan, “Nafion/silicon oxide composite membrane for high temperature proton exchange membrane fuel cell,” J. Wuhan Univ. Technol., Mater. Sci. Ed., 22(3), 478 – 481 (2007).

    Article  CAS  Google Scholar 

  10. J. P. Critchley, G. J. Knight, and W. W. Wright, “Fluorine-containing polymers” in: Heat-Resistant Polymers, Springer Science+ Business Media, New York, US, 1983, Chap. 3, pp. 87 – 123.

  11. N. Anantharamulu, K. Koteswara Rao, G. Rambabu, et al., “A wide-ranging review on Nasicon type materials,” J. Mater. Sci., 46(9), 2821 – 2837 (2011).

    Article  CAS  Google Scholar 

  12. D. Y. Voropaeva, M. A. Moshareva, A. B. Il’in, et al., “Phase transitions and proton conductivity in hafnium hydrogen phosphate with the NASICON structure,” Mendeleev Commun., 26(2), 152 – 153 (2016).

    Article  CAS  Google Scholar 

  13. K. T. Adjemian, S. J. Lee, S. Srinivasan, et al., “Silicon oxide Nafion composite membranes for proton-exchange membrane fuel cell operation at 80 – 140°C,” J. Electrochem. Soc., 149(3), A256 (2002).

    Article  CAS  Google Scholar 

  14. A. A. Gaydamaka, V. G. Ponomareva, and I. N. Bagryantseva, “Phase composition, thermal and transport properties of the system based on the mono- and dihydrogen phosphates of rubidium,” Solid State Ionics, 329, 124 – 130 (2019).

    Article  CAS  Google Scholar 

  15. V. G. Ponomareva and G. V. Lavrova, “Effect of the excess protons on the electrotansport, structural and thermodynamic properties of CsH2PO4,” Solid State Ionics, 304, 90 – 95 (2017).

    Article  CAS  Google Scholar 

  16. L. Mathur, I.-H. Kim, and A. Bhardwaj, “Structural and electrical properties of novel phosphate based composite electrolyte for low-temperature fuel cells,” Composites, Part B, 202, 108405 (2020).

    Article  CAS  Google Scholar 

  17. N. L. R. M. Rashid, A. A. Samat, A. A. Jais, et al., “Review on zirconate-cerate-based electrolytes for proton-conducting solid oxide fuel cell,” Ceram. Int., 45(6), 6605 – 6615 (2019).

    Article  CAS  Google Scholar 

  18. A. Dixit, S. B. Majumder, P. S. Dobala, et al., “Phase transition studies of sol-gel deposited barium zirconate titanate thin films,” Thin Solid Films, 447/448, 284 – 288 (2004).

    Article  Google Scholar 

  19. F. G. Will and S. P. Mitoff, “Primary sodium batteries with beta-alumina solid electrolyte,” J. Electrochem. Soc., 122(4), 457 – 461 (1975).

    Article  CAS  Google Scholar 

  20. F. A. Yaroshenko and V. A. Burmistrov, “Dielectric relaxation and protonic conductivity of polyantimonic crystalline acid at low temperatures,” Russ. J. Electrochem., 51(5), 391 – 396 (2015).

    Article  CAS  Google Scholar 

  21. F. A. Yaroshenko and V. A. Burmistrov, “Proton conductivity of polyantimonic acid studied by impedance spectroscopy in the temperature range 370–480 K,” Inorg. Mater., 51(8), 783 – 787 (2015).

    Article  CAS  Google Scholar 

  22. R. Leysen and H. Vandenborre, “Synthesis and characterization of polyantimonic acid membranes,” Mater. Res. Bull., 15(4), 437 – 450 (1980).

    Article  CAS  Google Scholar 

  23. F. A. Belinskaya and E. A. Militsina, “Inorganic ion-exchange materials based on insoluble antimony(V) compounds,” Russ. Chem. Rev., 49(10), 933 – 952 (1980).

    Article  Google Scholar 

  24. L. Y. Kovalenko, V. A. Burmistrov, and Y. A. Lupitskaya, “Ion exchange of H+/Na+ in polyantimonic acid, doped with vanadium ions,” Pure Appl. Chem., No. 3, 505 – 514 (2020).

    Article  Google Scholar 

  25. F. A. Yaroshenko and V. A. Burmistrov, “Dielectric losses and proton conductivity of polyantimonic acid membranes,” Russ. J. Electrochem., 52(7), 690 – 693 (2016).

    Article  CAS  Google Scholar 

Download references

The work was supported by Grant No. 075-15-2021-370 from the President of the Russian Federation for State Support of Young Russian Scientists and Candidates of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Kurapova.

Additional information

Translated from Novye Ogneupory, No. 2, pp. 45 – 50, January, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurapova, O.Y., Zaripov, A.A., Pazheltsev, V.V. et al. Bulk Solid-State Polyantimonic-Acid-Based Proton-Conducting Membranes. Refract Ind Ceram 63, 90–95 (2022). https://doi.org/10.1007/s11148-022-00685-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-022-00685-x

Keywords

Navigation