Skip to main content

Advertisement

Log in

Utilization of Demolished Waste of Glass Kilns for the Synthesis of High-Strength, Low-Cement Alumina-Zirconia-Silica Refractory Matrix

  • Published:
Refractories and Industrial Ceramics Aims and scope

Herein low-cement alumina-zirconia-silica matrices with outstanding high-temperature strength have been successfully produced for the first time from the demolished industrial trash obtained from glass melting furnaces. Different fine matrix mixes with Al2O3/SiO2 ratios of 1 to 3 were formed from the fine powders with particle sizes of less than 500 μm of ZAC, calcined alumina, refractory cement, and silica fume. The formed batches were cast with water, demolded, dried, and fired at different sintering temperatures. The experimental mixture of formula Al2O3/SiO2 = 3 presented the maximum load capacity (~132 MPa), the highest density (2.76 g/cm3), and the lowest porosity (1.42 vol.%) at 1375oC. The formulated refractory mixture from demolished wastes of glass melting furnaces with Al2O3/SiO2 = 3 can be substantially proposed as a potential matrix for synthesizing low-cement refractory castables with application temperatures up to 1375°C for the sake of lining specific parts of cement kilns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. X. Liu, G. Buchel, and A. Buhr, “Upgrading castable performance through matrix optimization,” Naihuo Cailiao / Refractories, 37(14) (2003); https://www.almatis.com/media/umbngrjc/upgrading-castable-performance-through-matrix-optimization.pdf.

  2. J. Kiennemann, E. Chabas, C. Ulrich, and D. Dumont, “The role of granulometry and additives in optimising the alumina matrix in low cement castables,” Refractories WORLDFORUM, 9, 77 – 82 (2017).

    Google Scholar 

  3. H. Peng, J. Liu, Q.Wang, and Y. Li, “Improvement in slag resistance of no-cement refractory castables by matrix design,” Ceramics, 3, 31 – 39 (2020); DOI: https://doi.org/10.3390/ceramics3010004.

    Article  CAS  Google Scholar 

  4. I. M. I. Bayoumi, E. M. M. Ewais, and A. A. M. El-Amir, “Rheology of refractory concrete: An article review,” Bol. Soc. Esp. Ceram. Vidrio, (2021); DOI: https://doi.org/10.1016/j.bsecv.2021.03.003.

  5. M. Nouri-Khezrabad, M. A. L. Braulio, V. C. Pandolfelli, F. Golestani-Fard, and H. R. Rezaie, “Nano-bonded refractory castables,” Ceram. Int., 39, 3479 – 3497 (2013); DOI: https://doi.org/10.1016/j.ceramint.2012.11.028.

    Article  CAS  Google Scholar 

  6. W. E. Lee, W. Vieira, S. Zhang, K. Ghanbari Ahari, H. Sarpoolaky, and C. Parr, “Castable refractory concretes,” Int. Mater. Rev., 46, 145 – 167 (2001); DOI: 10.1179/095066001101528439.

  7. S. I. Bae and S. Baik, “Sintering and grain growth of ultrapure alumina,” J. Mater. Sci., 28, 4197 – 4204 (1993); DOI: https://doi.org/10.1007/BF00351254.

    Article  CAS  Google Scholar 

  8. P. D. D. Rodrigo and P. Boch, “High purity mullite ceramics by reaction sintering,” Int. J. High Technol. Ceram., 1(1), 3 – 30 (1985); https://www.sciencedirect.com/science/article/pii/0267376285900220.

    Article  CAS  Google Scholar 

  9. D. J. Green, An Introduction to the Mechanical Properties of Ceramics, Cambridge University Press, 1998; DOI: https://doi.org/10.1017/cbo9780511623103.

  10. F. Cardarelli, Materials Handbook, Springer International Publishing AG, part of Springer Nature, 2018; https://link.springer.com/content/pdf/ 10.1007/978-3-319-38925-7.pdf.

  11. H. Majidian, L. Nikzad, H. Eslami-Shahed, and T. Ebadzadeh, “Phase evolution, microstructure, and mechanical properties of alumina–mullite–zirconia composites prepared by Iranian andalusite,” Int. J. Appl. Ceram. Technol., 13, 1024 – 1032 (2016); DOI: https://doi.org/10.1111/ijac.12582.

    Article  CAS  Google Scholar 

  12. F. Sahnoune and N. Saheb, “Mechanical behavior of mullite-zirconia composites,” EPJ Web Conf., 6, 6 – 11 (2010); DOI: https://doi.org/10.1051/epjconf/20100620005.

    Article  CAS  Google Scholar 

  13. M. F. Zawrah, “Effect of zircon additions on low and ultra-low cement alumina and bauxite castables,” Ceram. Int., 33, 751 – 759 (2007); DOI: https://doi.org/10.1016/j.ceramint.2005.12.019.

    Article  CAS  Google Scholar 

  14. C. Aksel, “Mechanical properties and thermal shock behaviour of alumina-mullite-zirconia and alumina-mullite refractory materials by slip casting,” Ceram. Int., 29, 311 – 316 (2003); DOI: https://doi.org/10.1016/S0272-8842(02)00139-6.

    Article  CAS  Google Scholar 

  15. C. Aksel, “The microstructural features of an aluminamullite-zirconia refractory material corroded by molten glass,” Ceram. Int., 29, 305 – 309 (2003); DOI: https://doi.org/10.1016/S0272-8842(02)00137-2.

    Article  CAS  Google Scholar 

  16. R. Sarkar, “Effect of different mullite precursors on the properties of low cement high alumina castable,” Ind. Ceram., 31(3), 217 – 222 (2011); https://www.researchgate.net/publication/272792463.

    Google Scholar 

  17. B. Y. Ma, Y. Li, S. G. Cui, and Y. C. Zhai, “Preparation and sintering properties of zirconia-mullite-corundum composites using fly ash and zircon,” Trans. Nonferrous Met. Soc. China (English Ed., 20, 2331 – 2335 (2010); DOI: https://doi.org/10.1016/S1003-6326(10)60650-4.

  18. S. Student and C. On, “Synthesis and characterazation of the mullite-zirconia composite material,” 547 – 556 (2016).

  19. G. I. V. Carbajal, J. L. R. Galicia, J. C. R. Angeles, J. L. Cuevas, and C. A. G. Chavarria, “Microstructure and mechanical behavior of alumina-zirconia-mullite refractory materials,” Ceram. Int., 38, 1617 – 1625 (2012); DOI: https://doi.org/10.1016/j.ceramint.2011.09.051.

    Article  CAS  Google Scholar 

  20. P. Kumar, M. Nath, A. Ghosh, and H. S. Tripathi, “Synthesis and characterization of mullite-zirconia composites by reaction sintering of zircon flour and sillimanite beach sand,” Bull. Mater. Sci., 38, 1539 – 1544 (2015); DOI: https://doi.org/10.1007/s12034-015-0890-3.

    Article  CAS  Google Scholar 

  21. T. Ebadzadeh and E. Ghasemi, “Effect of TiO2 addition on the stability of t-ZrO2 in mullite-ZrO2 composites prepared from various starting materials,” Ceram. Int., 28, 447 – 450 (2002); DOI: https://doi.org/10.1016/S0272-8842(01)00117-1.

    Article  CAS  Google Scholar 

  22. S. Ding, S. Zhu, Y. P. Zeng, and D. Jiang, “Fabrication of mullite-bonded porous silicon carbide ceramics by in situ reaction bonding,” J. Eur. Ceram. Soc., 27, 2095 – 2102 (2007); DOI: https://doi.org/10.1016/j.jeurceramsoc.2006.06.003.

    Article  CAS  Google Scholar 

  23. J. Zhang, S. Yan, X. Liu, Q. Jia, X. Li, and H. Guo, “Effect of microsilica on the properties of bauxite-andalusite based castables at the presence of colloidal silica as binder,” 14th Bienn. Worldw. Congr. Unified Int. Tech. Conf. Refract. UNITECR 2015, Conjunction with 58th Int. Colloq. Refract. (2015).

  24. V. Garnier and H. Belhouchet, “Characterization of mullite-zirconia composites prepared from various starting alumina phases,” Verres Ceram. Compos., 1, 16 – 24 (2011).

    Google Scholar 

  25. C. Zanelli, M. Dondi, M. Raimondo, and G. Guarini, “Phase composition of alumina-mullite-zirconia refractory materials,” J. Eur. Ceram. Soc., 30, 29 – 35 (2010); DOI: https://doi.org/10.1016/j.jeurceramsoc.2009.07.016.

    Article  CAS  Google Scholar 

  26. A. P. Silva, D. G. Pinto, A. M. Segadaes, and T. C. Devezas, “Designing particle sizing and packing for flowability and sintered mechanical strength,” J. Eur. Ceram. Soc., 30, 2955 – 2962 (2010); DOI: https://doi.org/10.1016/j.jeurceramsoc.2009.12.017.

    Article  CAS  Google Scholar 

  27. R. Sarkar and A. D. Samant, “Study on the effect of deflocculant variation in high-alumina low-cement castable,” Interceram Int. Ceram. Rev., 65, 28 – 34 (2016); DOI: https://doi.org/10.1007/bf03401184.

    Article  Google Scholar 

  28. K. Tabit, H. Hajjou, M. Waqif, and L. Saadi, “Effect of CaO/SiO2 ratio on phase transformation and properties of anorthite- based ceramics from coal fly ash and steel slag,” Ceram. Int., 46, 7550 – 7558 (2020); DOI: https://doi.org/10.1016/j.ceramint.2019.11.254.

    Article  CAS  Google Scholar 

  29. A. Harabi, S. Zaiou, A. Guechi, L. Foughali, E. Harabi, N. E. Karboua, S. Zouai, F. Z. Mezahi, and F. Guerfa, “Mechanical properties of anorthite based ceramics prepared from kaolin DD2 and calcite,” Ceramica, 63, 311 – 317 (2017); DOI: https://doi.org/10.1590/0366-69132017633672020.

    Article  CAS  Google Scholar 

  30. E. A. Firoozjaei, A. Saidi, A. Monshi, and P. Koshy, “The effect of microsilica and refractory cement content on the properties of andalusite based low cement castables used in aluminum casthouse,” Ceramica, 56, 411 – 421 (2010); DOI: https://doi.org/10.1590/s0366-69132010000400016.

    Article  CAS  Google Scholar 

  31. J. Davalos, A. Bonilla, M. A. Villaquiran-Caicedo, R. M. de Gutierrez, and J. M. Rincon, “Preparation of glass-ceramic materials from coal ash and rice husk ash: Microstructural, physical and mechanical properties,” Bol. Soc. Esp. Ceram. Vidrio, 60(3), 183 – 193 (2021); DOI: https://doi.org/10.1016/j.bsecv.2020.02.002.

    Article  CAS  Google Scholar 

  32. M. F. M. Zawrah and N. M. Khalil, “Effect of mullite formation on properties of refractory castables,” Ceram. Int., 27, 689 – 694 (2001); DOI: https://doi.org/10.1016/S0272-8842(01)00021-9.

    Article  CAS  Google Scholar 

  33. S. Papatzani and K. Paine, “A step by step methodology for building sustainable cementitious matrices,” Appl. Sci., 10, 2955 (2020); DOI: https://doi.org/10.3390/app10082955.

    Article  CAS  Google Scholar 

  34. B. F. Slag, C. Strength, C. Paste, G. Granu-, O. P. Cement, and D. K. Panesar, Cement-Matrix Composites, (2019).

  35. C. Toy and O. J. Whittemore, “Phosphate bonding with several calcined aluminas,” Ceram. Int., 15, 167 – 171 (1989); DOI: https://doi.org/10.1016/0272-8842(89)90012-6.

    Article  CAS  Google Scholar 

  36. C. Toy and O. J. Whittemore, “Phosphate bonding with several calcined aluminas,” Ceram. Int., 15, 167 – 171 (1989); DOI: https://doi.org/10.1016/0272-8842(89)90012-6.

    Article  CAS  Google Scholar 

  37. T. C. Holland, Silica Fume User’s Manual, Silica Fume Association and United States Department of Transportation Federal Highway Administration Technical Report FHWA-IF-05-016, 2005; http://www.silicafume.org/pdf/silicafume-users-manual.pdf.

  38. L. C. Dejonghe and M. N. Rahaman, “Sintering of ceramics,” in: Handbook of Advanced Ceramics, S. Somiya, et al. (eds.), Elsevier (2003), Chap. 4.1, pp. 187 – 264.

  39. Sintering: Grain Boundaries, Interfaces, and Porosity, Am. Ceram. Soc. (2014), 19 pp.; http://ceramics.org/wp-content/uploads/2014/04/Sintering-Lesson-FINAL-111.pdf.

  40. C. B. Carter, M. G. Norton, C. B. Carter, and M. G. Norton, “Sintering and grain growth,” Ceram. Mater., 439 – 456 (2013); DOI: https://doi.org/10.1007/978-1-4614-3523-5_24.

  41. A. A. M. El-Amir, M. Abdelgawad, S. Li, E. M. M. Ewais, and S. M. A. El-Gamal, “Effect of waste-derived MA spinel on sintering and stabilization behavior of partially stabilized double phase zirconia,” Int. J. Appl. Ceram. Technol., 18, 203 – 212 (2021); DOI: https://doi.org/10.1111/ijac.13628.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. M. Ewais.

Additional information

Translated from Novye Ogneupory, No. 1, pp. 26 – 34, January, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayoumi, I.M.I., El-Amir, A.A.M., El-korashy, S.A. et al. Utilization of Demolished Waste of Glass Kilns for the Synthesis of High-Strength, Low-Cement Alumina-Zirconia-Silica Refractory Matrix. Refract Ind Ceram 63, 28–35 (2022). https://doi.org/10.1007/s11148-022-00675-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-022-00675-z

Keywords

Navigation